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ABSTRACT. 

The undecidable word problem for groups and semlgroups is investigated as a basis 

for a public-key cryptosystem. A specific approach is discussed along with the results 

of an experimental implementation. This approach does not give a provably secure or 
practical system, but shows the type of cryptosystem that could be constructed around 

the word problem. This cryptosystem is randomized, with infinitely many ciphertexts 

corresponding t o  each plaintext. 

1. NP-COMPLETE PROBLEMS. 

The idea of using an NP-complete problem to  construct a public-key cryptosystem 

(PKC) seemed promising [Diff76], but has not been successful historically. The earliest 

such PKC was based on the integer knapsack problem, and recently various versions of 

this PKC have been broken by general, powerful attacks [Sha83al, IAdle831. (In this case, 

the attacks have been carried out on the type of trapdoor inserted, and not directly on the 

This work was supported in part by NSF grant DCR-8403350, and by 
Drexel University's Faculty Development Mini-Grant program 

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPT0 '84, LNCS 196, pp. 19-36, 1985. 
0 Springer-Verlag Berlin Heidelberg 1985 



20 

knapsack problem itself.) Other PKCs based on NP-complete problems have been pro- 

posed, but none seems successful so far. 

There i s  a hierarchy of decision problems, from simplest to  hardest, extending 

from polynomial-time problems, through NP-complete problems, t o  the undecidable 

problems (the hardest o f  all) ITarj831, [Aho741. 

NP-complete problems are often regarded as lying on the 'boundary' o f  intract- 

ability, i.e., they are the simplest known 'natural' problems which are intractable. 

Stated differently, i f  an NP-complete problem is  even slightly weakened, i t may no 

longer be intractable. In constructing a PKC, one must insert a trapdoor, and after 

allowing for al l  the various kinds of attacks, we would not usually expect to have a 

'pure' NP-complete problem remaining. 

Along similar lines Brassard [Bras791 has shown that, wi th  a few restrictions, if a 

cryptosystem were provably NP-complete to  break, then the theoretlcal result NP= co-NP 

would follow. This latter result is widely conjectured to  be untrue, though no proof i s  

available IGary791. Thus the cryptanalysis of a PKC based on an NP-complete problem 

would be easier than NP-complete, hence likely a tractable computation. 

There is a large body of theory about NP-completeness, but the theory only W l i e s  

to worst-case analyses and t o  arbitrarily large problem instances. For example, the 

integer knapsack problem i s  not strong NP-complete, meaning that polynomial-time 

algorithms are available unless 'exponentially large' integers are used in  the problem 

instance [Gary79]. (Problems that are not strong in  this sense are said to be solvable In 

pseudo -PO lynom ra f f rme. ) 
Two other classes of polynomial-time algorithms can be used to  try to solve 

NP-complete problems. There are clever approximation algorithms which always get a 

approximate answer, though not necessarily the exact answer. (See [Gary791 and 

iHoro781 for examples.) There are also non-deterministic algorithms, whit3 give an 

exact answer but may not give any answer at all [Horo781. Of course there is  no known 

polynomial-time algorithm that w i l l  solve worst-case, arbitrarily large problem 

instances, but algorithms like those above might force unacceptably large instances of 

an NP-complete problem i f  a PKC using it i s  to  be secure. 
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There is  specialized problem, factoring, that has become the basis for several 

cryptographic appl ica t ions, including 

0 the RSA-like cryptosystem with exponent 2 IRabi791, IWi11801, 
0 the generation of a cryptographically secure random number generator 

[Sha83cl, and 
0 the exchange of secret keys without an arbiter lBlum831. 

Each has a protocol w i th  a complete security proof, assuming that factoring is  intrac- 

table. And of course the RSA cryptosystem itself, while not equivalent t o  factoring, 

depends on the dif f iculty of factoring for i t s  security [Rive79]. New applications that 

depend on factoring appear regularly [Ong84]. As long as factoring remains intractable, 

we are in a good position, but we are overdependent on the computational complexity of 

one particular problem. 

The exact complexity status of the factoring problem is not known, though as wi th  

knapsack, factoring is easily solved in pseudo-polynomial time. As before, even if no 

polynomial-time algorithm is  found, unacceptably large integers might eventually be 

required to  keep the problem intractable. 

* * * * 
Thus it seems natural and desirable to  look toward harder problems as the basis 

for a PKC. There are various provab/y intractable problems [Aho74], and o f  course the 

undecidable problems for which no general algorithmic solution can exist. It i s  impor- 

tant t o  note that for  a PKC one could use only a specia/ inslance of  one o f  these 

harder problems. The dif f iculty of cryptanalysis would s t i l l  be in the class NP. 

This paper i s  the result o f  an init ial look at various undecidable problems, trying 

t o  construct PKC's. We are concentrating on a particular problem along the lines Of an 
earlier paper lWagn841, w i th  more specific details included here. 

2. THE WORD PROBLEM 

There are undecidable problems for finitely presented groups and for semigroups. 

First we need a number of definitions. (See [Magndd], IRotm731, [Crow631, [Lynd771.) A 
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f i~ite/ypresentedgfoup G consists of generators xl, +, ..., xn, which are just 

abstract symbols, and re/aturs rl 

Corresponding to  each generator xi there i s  an inverse x i 1 .  A word i n  G is a finite 

string made up of symbols xiand x;'. The empty string e is also a word, the 

identity of the group. Each of  the r,. above i s  a word The group operation for 

combining words i s  concatenation. For each word n! the inverse word 6' consists 

o f  al l  the symbols of w written in reverse order, where each xi i s  replaced by x;l and 

each x; i s  replaced by xi. 

e, 5 e, ..., rm = e, to be defined below. 

The group G consists of equfvalence classes of al l  posslble words. Two words w 

and Y are equfva/ent in G I f  we can transform w to  Y by a finite sequence of 
repfacement rufes of the form 

Rule (I): changing xi 

Rule (if): 
Rule (iii): 
Rule (iv): 

or  x i i  xi t o  e, Vlat is elimlnating xix;' or 
xi' xi, 
fntroducing xi xi1 or x;1 xi at any point, 
changing 9 or 9-l to e, that i s  eliminating 5 or q-l, 
Introducing 5 or 9-1 at any point. 

There 1s a more formal way to define these concepts. First the free group F on 

generators xl, 5, ..., xn i s  defined as the set of all words in the xi and x i  I that are 

reduced by repeatedly cancelling out xi x i 1  and x ; ~  xi until no further cancellations 

are possible. Let R be the norma/ subgroup generated by the words r,, r2, ..-, fm ( R  

i s  the intersection of  a l l  normal subgroups containing the r,..) Finally G i s  the quotient 

group F M  
The wordproblem for a group G is the decision problem that asks for each 

word w, whether w is equivalent to  the identity of 15 (Equivalently one can ask 

whether two given words are equivalent.) It turns out that there exist specific groups 

for whlch the word problem is undecidable [Novi551, [BoonS91, LRabi581. Like any 
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undecidable problem, the word problem can only be undecidable as a question asked about 

infinitely many words -- any f ini te collection of words must have a decidable word 

problem. 

Finitely presented groups are extremely complex objects. For example, the free 

group on two generators wi th  no relators contains within it as a subgroup the free p u p  

on a countably inf ini te number of generators. There is a great deal of structure and 

theory associated w i th  such groups and with the word problem. A number of researchers 

devote their entire energies to this subject [Lynd77]. 

There is  a similar and simpler wordpro&/emfor semigroups We start w i th  

generators and words in the generators as before but without the inverses. Instead Of 

relators we have a l ist of equatfons of the form a, = b,, 3 = 4, ..., a, = b,,,. In 

defining equivalent words we can only replace any occurrence of aiby bj and vice versa. 

The word problem for semigroups again asks i f  we can decide whether two given words 

are equivalent. Using the halting problem, for example, it i s  easy to  see that there is  a 

specific semigroup for  which the word problem i s  undecidable. 

All of our discussion of  youps in this paper can be regarded as just a special case 

of semigroups since one could regard the group as a semiywp with extra symbols xi1  

and extra equations x, = e, etc. Thus a semigroup would just be more general and 

flexible for our applications. We have chosen to emphasize groups because they seem to 

f i t  in  naturally w i th  OUT main ideas for cryptosystems and because of the enormous 

amount of research on p u p s  and their word problems. One hopes that such a thoroughly 

studied problem might someday yield a good theoretical foundation for a CryptOSyStem. 

3. PUBL I C-KEY CRY PTOSY STEMS. 

The word problem i s  similar to the knapsack problem in that both are 'natural' 

problems for public-key cryptosystems, i.e., both immediately and directly allow public 

encryption. The dif f iculty i s  to insert a trapdoor that w i l l  allow decryption (See 

[Di f f 761.) 
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The trapdoor then becomes a point of weakness for cryptanalytic attacks. We feel 

that a harder problem may make direct attacks more difficult and allow more leeway for 

such trapdoor insertions. 

To use the word problem to encrypt a single hi& start with a finitely presented 

group G and with two 'qxclal' words w, and w2 known to be lnequivalent In 6 Choose 

one of w, and w2 and randmly apply Rule (i) through Rule (iv) to the word, resulting in a 

word Y equivalent to either w, or w2 (but not both). Thus the public key consists Of the 

group G and the special words w, and w2 

This is a randomized encryption procedure in the sense of [Rive831 There are 

infinitely many possible ciphertexts corresponding to  each plaintext bit, and the system 

has an arbitrarily large expansion factor. 

ciphers introduced centuries ago [Denn821 associate one of a (finite) set of ciphertext 

elements with each plaintext element. In this case security is increased wlth greater 

expansion faclots to perfect security 'when each letter of plaintext enciphers into a 

unique ciphertext symbol' KIenn821. As another example Brassard [Bras81 1 mentions a 

message length n to ciphertext length 2 expansion. More generally various random- 

ization techniques [Rive821 can be used to trade a larger expansion factor for the 

likelihood of increased security. 

This property of a large expansion factor is  not new. In fact the homophonic 

One can improve the large expansion factor in w system as follows: to encrypt n 

blts, select Q= 2" mutually lnepulvalent special words w,, wp ..., wq. Choose one of 

these and encrypt as above. This gives an n-fold improvement in expansion factor, but 

makes the 'special w o r d  part of the public key 2' times as long. 

With good choices for the group and special words in the encryption method de- 
scribed above, it appears that decryption can be made very difficult. Decryption di f f i -  

culty also depends on the m b e r  and type of replacements made during encryption 
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4. TRAPDOOR INSERTION. 

There are surely many ways to insert a trapdoor. We present one general approach 

in  section 4.1. Section 42 discusses cryptanalysis, and section 4.3 gives a more specific 

approach whose implementation is discussed in section 5. 

4 I. GENERALITIES. 

Sta r t  w i th  a f lnl teiy presented group 

G=(xl, .tj ,..., xnl rl = e, r2= e ,..., rm =el ,  

and add more relators 

s1= e n % =  e ,..., sp=e. 

to get another finitely presented group 6'. There is a special relationship between G 
and 8'. In formal group theory terms if N is the normal subgroup of G generated by the 

words sl. 4, ..., spz then G' i s  the quot ient  group 6' = G/A! There is  a natural 

function (the quot ien t  mapping) Q:G---> G'defined as follows. If x i s  a group 

element of G (= equivalence class of words) let w be any word representing x. Then 

Q ( x )  is just the equivalence class of w within 6'. For us the most important property 

of 0 is the following if x and y are equivalent in G, then 0 ( x )  and O(y) are 

equivalent in 6'. Stated another way, if 0 ( x )  and O(y) are notequivalent in 6'. then x 

and y must be not equivalent in 6. (The converse does not hold: in fact it i s  easy for 

elements not equivalent in G t o  "collapse' t o  equivalent elements in  G'.) 

For this trapdoor to  work, the w, and w2 from G that are part of the public key 

must have the property that O( w, 1 and 0( w2> are not equivalent in 6'. To decrypt one 

needs to  decide in 6' which of O( w,) and O( w2) the word O(y) i s  equivalent to, 1.e.. one 

needs to  solve the word problem in G', at least for m e  words. ( 0 ( y )  must be 

equivalent in 6' t o  m or the other, but not both.) 
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The idea behind this method i s  that the word problem in  G might be intractable, 

while the extra relators fsi = 81 mlght simplify things so that there i s  an efficlently 

solvable word problem for 6'. This general decryption method would work both for the 

owner of the PKC and for an opponent attempting cryptanalysis. This method is a 

standard way in group theory to  show that two elements are not equivalent. 

4.2. CRYPTANALYSIS. 

We now l ist possible cryptanalytic attacks on this type of cryptosystem. Assume 

that a finitely presented group G i s  given along with two special inequivalent words wl 

and w2 for the public key. We regard the quotient group 6' or the extra sj = e relators 

as the secret key. One of w, or w2 i s  chosen and encrypted to  form a word y 

Attack (a): find a rfacrame a/gorirhm which decides the word 

PfofWem in 6: With this algorithm, one directly decides which o f  w, or w2 

is equivalent t o  y Gilles Brassard has pointed out that there is always a 

simple but impractical constructive algorithm that works for two words (or 

finitely many wordst: just t ry  a l l  possible sequences o f  replacements in  

Parallel on w, and w2. Producing the word y i n  a finite amount o f  time. Thus 

as we have mentioned before, in no sense is  cryptanalysis undecidable. 

However, one hopes that w i th  a good choice o f  G, there w i l l  be no tractable 

algorithms for direct attacks of this sort. 

Attack (b): Find extra re/ators [si = el witb quotient group G', 

so that O( w l )  is not equivalent to O( w2, and so fbal tbere is a 

tractam a/gofithm in G' to  decide me word pfob/em. This Is just 

the general method mentioned In sectlon 4. I .  These particular extra relators 

do not need to  be the same as In the secret key -- just so the other condltlons 

are satisfled. Gwrding against this bothersome attack is the maln reason for 
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the complexity of  section 5. 

Attack (c): Use a brute-fome attack on a PKC, in which one 

decrypts the ciphertext under each possib/e secret key: This attack 

would succeed and shows that cryptanalysis i s  in the class NP. However, 

unlike the situation w i th  a traditional PKC, here there is no fixed bound on the 

size of the smallest secret key that would work for decryption. There might 

be infintely many possible candidate secret keys to try, and success might 

take arbitrarily long (The specific system described in section 5 has only 

finitely many possible secret keys for each public key.) 

Attack (d): Regard the system as a conventions/ cryptosystem, 

and use a brute-force known plaintext attack in which the p/ain- 

text is encrypted under each pos.sib/e key This attack is almost 

hopeless, since even wi th  the correct key the ciphertext i s  not determined, 

and since there is no bound on the number of keys to try. 

4.3. DETAILS. 

In order to construct a specific trapdoor, we propose choosing the additional 

relators (si = el so that each of the r,. = e becomes trivlal. The words ri are also 

chosen to facil i tate this. Consider extra relators of one of three forms: 

Type (S I ): (E/imjnafion of a generator) 
x,. = e, for some specific i (Thus any occurrence of xi just 
drops out) 

x . x - l  - e,or  X . X .  -,?,forspecific i and] (Any 
reference to  5 can be replaced by xi or by x;'.)  
(Commutator of two generators) 
x -  x -  x,:' 5-l = e, or x .  x .  = xi xi ,  for specific i and 1: 
(x i  and x,. commute.) 

Type (S2): Co//apse of two generators to  one) 

f i  f J  

Type (S3): 
f J  I J  

Such extra relators might greatly simplify the ri words. In fact we w i l l  choose 

the r,. and the s, in such a way that each ri, in conjuction with all the s,, will reduce 
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to the empty word e. After eliminating and collapsing generators, the group 6' w i l l  

have on/y relators of  type 6 3 )  (the commutators). Thus 6' w i l l  be a free group in 

which certain pairs of generators commute. There is  a simple (polynomial-time) 

algorithm which decides the word problem for  such a group. (See section 5.) Notice that 

in  G' the special words wl and w2 must s t i l l  not be equivalent. 

This method for inserting a trapdoor could also be as an attack by an Opponent, a 

speclal case of Attack (b) of the previous sectlon. 

Attack (bk Ffnd extra relators ( s j  = e 1 o f  types (Sl), (52) and 
(S3) sucb that 

ti) earn r j  word becomes tfjvial, and 
( f i )  even wi th  the extra [si = e l  relators, the words w1 

and w2 are still no& equivalent. 

We propose to choose the special words w1 and w2 so that for 'most' choices of 

si = e relators, condltlon (ii) will not be true. Here Is ow approach In outline form. 

Given a large collection of ri - e relators the opponent or PKC originator must introduce 

many commuting pairs of generators in  order to  make al l  the r j  trivial. So in the 

slmpllfied group G', most pairs of generators w i l l  commute. The PKC origlnator w i l l  

have a small (secret) -set of non-commuting palm. 

It Is falrly easy to construct at%itrarily many inequlvalent words that reduce to e 

if any one of bset of pairs commutes. For a single pair Cx,, +ti), just use the word 

x1 %x,-' or xl (5)' 3-l (+-l)z, etc. For a recursive general definition, assume 

u i s  a word that reduces to  e i n  case any one o f  a set I/ of pairs commutes. Assume Y 

and Y have the same property. Then the word u Y f t  v-l will  reduce t o  e in case any 

one pair commutes from the union of the sets I/ and Y: 

In thls form, w, and w2 would s t l l l  not work In a public key. Before publlshlng 

them, they must be encrypted as we have described, so that the set of commuting pairs 

w i l l  no longer be recq izab le .  
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5. AN EXPERIMENTAL IMPLEMENTATION. 

We have chosen specific parameters, relators, and special words and have wr i t ten 

a computer program to  implement an example cryptosystem. We should emphasize that 

we are only attempting a rough implementation to  demonstrate the feasibility of this 

system, and to  stimulate further research. Much more work w i l l  be required before 

anyone could rely on the security and practicality of any uyptosystem similar t o  this 

one. 

The relators rj = e are chosen so that for each generator xi appearing in  f,. there 

is a corresponding ? - I .  Then it i s  easy to make each r,. tr ivial by allowing certain 

pairs to commute, f.e., adding relators of type (53) (section 4.3). Adding relators of 

types (SI 1 and 62) w i l l  give alternative ways to make the r,. trivial. The basic idea Is 

to Present an opponent w i th  a very large number of ways to  get r i d  of the r,. relators. 

We might hope that the opponent would have to  search for the secret subset of non- 

commuting pairs in order to  break this system. 

After Some searching around, we have settled on relators o f  three types for the 

original (r,. = el, where below xp 3, xk, and x,, stand for arbitrwy generators or 

inverses of generators. 

Type(R1): x i q  xk x / x i j  xpI xr l  / x i 1  = e, 
Type (R2): xi 9 xk x;I 9-I x;l = e, and 
Type (R3): x,q xk x;l x i 1  xr l  = e. 

/ 

We mostly use relators of type (R1) with some of types (R2) and (R3). We do not know 

the complexity of the word problem for a group made up o f  relators of these forms, SO 

that Attack (a) of section 4.2 might succeed. (It would be better to  start wi th  a group G 

with an undecidable word problem.) 

Type (R 1 )  has the advantage that there are seven distinct ways to  make such a 

relator vanish using a minimal number of extra relators of types 6 2 )  (co//a,sing) and 

6 3 )  ( comm#taCors ), (Type (S 1 ) ( e/imhnation 1 relators are rather too drastic t o  Use 

much, i f  at all.) For example, suppose we use an extra collapsing relator 
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9 xI = e, or xi =x i ' ,  

and three extra commutators 

xjxk x):' xk-' = e, or xjxk  = xk xi. 

x .  x x - '  xF1 = e, or x. x =xk 9, and l k l  l k  

xk x,x;' x i '  = e, or xk x, = xI xk . 

The original relator simplif ies as follows 

X . X .  x x x-1 xk-l x.-Ix;l = 

x . x . x  x-1 xi1 $ 1  9-1 1 1  k l  xi 
x . x . x  x-1 x1:1 xk-l = 

I l k 1 1  1 
= 

1 1  R /  

/ i i  , t i  I k l  
x x x - I  x x-I xk-I = x . x  x-1 xk-1 = e. 

There are four other very similar distinct methods to make this relator vanish. In 

additon, just setting xi -- x, makes everything drop out and making five of the s ix  

possible pairs commute also makes the relator vanish. 

Along similar lines there are three ways to make a relator of type (R2) vanish and 

two ways for a relator of type (R3). Of course any of these relators w i l l  vanish if one 

just allows a l l  relevant pairs to  commute, with no need to include the pair (9, xk) in 

types (R 1 1 or (R3). 

In making up a specific PKC we have chosen four non-commuting pairs and made UP 

special words (at least 64 symbols long) that would vanish i f  any one of the four Pairs 

commuted. These pairs were chosen so that for each pair there is a specific ri - e 

relator so that a l l  but one way of  making the word rj tr ivial w i l l  also make the given 

pair commute. Thus if an opponent uses Attack (b') of section 4.3. then in making each rj  

vanish, he w i l l  very l ikely make one or more of the crucial pairs commute, and so the 

special words w i l l  also vanish. (In order to  keep the special word from degenerating. it 

was necessary to  add extra non-commuting pairs.) 

Applications of the replacement rules (i) through (iv) are more complicated than 

one might expect. For  example, suppose we have a relator 
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'l'? 4 % X 4 % X 6 " e  

and a word 

w = x 3 % x I  xi- 
Then in the equation f, = B ,  multiply on the l e f t  by 3 - l  A',-' and on the right by to  

4et 

x3 x4 5 = 3-1 x1-'Xk-'. 

x5-I x4-' x3-' = % XI 3. 
Taking the inverse of both sides gives 

Thus In a group with the relator rl = e, the word w = x3 % x, 3 i s  equivalent to the 

word 

xj x4-' 5-1, 

(The process given &me can be redone using just Rules (i) through (iv) in a fOmIal 

fashion) 

In general we can wri te the generators of a relator clockwise in a circle, and any 

clockwise connected string can be replaced by the inverse of the complementary string, 

plus inverses of these replacements. The relator of length 6 above allows 72 different 

possible replacements, and a relator of length n allows 22. Our computer program 

attempts to look for replacements where the string being replaced is  as long as possible. 

This kind of string matching can be done fairly efficiently using a variation of the 

Knuth-Morris-Pratt a1 gori t hm [Aho341. 

In actual rum of WT experimental implementation, we tried n = 25 and n = 50 

generators. (We think the latter size might provide moderate security against attacks 

we can visualize.) The special words w, and w2 are first made up as described in 

Section 4.3, and then must be 'pre-encrypteb before public release t o  hide the 

nOn-COInmUtlng Pain used in  making them up. Actual public encryption just consists of 

more of the same kinds of  replacements. Table 1 shows sets of parameters for two 

cryptosystems. 
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Table I .  Parameters for two experimental cryptosystems. 

Number of Generators 25 50 
~ _ _ _  

Number Type R1 34 153 
of  Type R2 6 21 

relators Type R3 6 20 

Pairs of g e m  Total 300 1225 

in 6 Total 46 194 

tors i n  6 Non-commut. 19 29 

Number of Type S1 0 0 
additional Type 52 3 3 
re1 a t  or-s Type 53 220 1 067 
in  6 Total 223 I 070 

~ ~~ - ~~ ~ _ _ _  

Length of  Original 64 64 
special word Encrypted -114 symbol -in symbol 

perrepl==n. perreplacem. 

Public key size (bits) -1oOQ- - 1 0000 
2000 

Expansion factor (minimum) -50-500 -100- 1000 

The replacements used fo r  public encryption pose interesting problems. There 

need to be many random choices in the invocation of these replacements, but we do not 

want things completely random because we want the lengths to stay within reasonable 

bounds. It i s  also necessary that a l l  parts of the original word get acted upon. Finally, 

we do not want a replacement to  just undo the action of a previous replacement. To help 

with these goals, we maintained a 'ghost' string In parallel wlth the real string being 

encrypted The ghost keeps track of which string symbols have been replaced, using 

which relator. The replacement strategy was to choose a string location and relator a t  

random, and to definitely use that relator for a replacement, trying f i rs t  near the chosen 
location. But the algorithm was given some leeway to try to achieve the above goals. We 

performed thousands of replacements on the special words to  get an idea of the 
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6. CONCLUSIONS. 

We have made a case for basing cryptosystemson problems harder than 

NP-complete. As an illustration, we have used the undecidable word problem for groups 

to design a public-key cryptosystem. Public encryption is straightforward, but trapdoor 

insertion requires fllrther study. An experimental system was implemented and seems 

resistent to init ial  cryptanalytic attacks. This system has a large key size and 

encryption time, and an excessively large expansion factor, at least 100 to I .  
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