A PUBLIC-KEY CRYPTOSYSTEM
BASED ON THE WORD PROBLEM

Neal R. wagner'
Marianne R. Magyarik

Drexel University
Mathematics and Computer Science
Philadelphia, Pennsylvania 19104

ABSTRACT.

The undecidable word problem for groups and semigroups is investigated as a basis
for a public-key cryptosystem. A specific approach is discussed along with the results
of an experimental implementation. This approach does not give a provably secure or
practical system, but shows the type of cryptosystem that could be constructed around
thev word problem. This cryptosystem is randomized, with infinitely many ciphertexts
corresponding to each plaintext.

1. NP-COMPLETE PROBLEMS.

The fdea of using an NP-complete problem to construct a public-key cryptosystem
(PKC) seemed promising [Diff76], but has not been successful historicatly. The earliest
such PKC was based on the integer knapsack problem, and recently various versions of
this PKC have been broken by general, powerful attacks [Sha83al, [Adle83]. (In this case,
the attacks have been carried out on the type of trapdoor inserted, and not directly on the

1 This work was supported in part by NSF grant DCR-8403350, and by
Drexel University's Faculty Development Mini-Grant program

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPTO *84, LNCS 196, pp. 19-36, 1985.
© Springer-Verlag Berlin Heidelberg 1985

20

knapsack problem itself.) Other PKC's based on NP-complete problems have been pro-
posed, but none seems successful so far.

There is a hierarchy of decision problems, from simplest to hardest, extending
from polynomial-time probiems, through NP-complete problems, to the undecidable
problems (the hardest of all) [Tarj83], [Aho74l

NP-complete problems are often regarded as lying on the "boundary™ of intract-
ability, i.e., they are the simplest known “natural” problems which are intractable.
Stated differently, if an NP-complete problem is even slightly weakened,‘it may no
longer be intractable. In constructing a PKC, one must insert a trapdoor, and after
allowing for ail the various kinds of attacks, we would not usually expect to have a
“pure” NP-complete problem remaining.

Along similar lines Brassard [Bras79] has shown that, with a few restrictions, if a
cryptosystem were provably NP-complete to break, then the theoretical result NP= co-NP
would follow. This latter result is widely conjectured to be untrue, though no proof is
available [6ary79]. Thus the cryptanalysis of a PKC based on an NP-complete problem
would be easier than NP-complete, hence likely a tractable computation.

There is a large body of theory about NP-completeness, but the theory only applies
to worst-case analyses and to arbitrarily large problem instances. For exampie, the
integer knapsack problem is not sfrong NP-complete, meaning that polynomial-time
algorithms are available unless "exponentially large” integers are used in the problem
instance [Gary79]. (Problems that are not strong in this sense are said to be solvable in
pseuda-polynomial time)

Two other classes of polynomial-time algorithms can be used to try to solve
NP-complete problems. There are clever gpproximation algorithms which always get a
approximate answer, though not necessarily the exact answer. (See [Gary79] and
{Horo78] for examples.) There are also non-deterministic algorithms, which give an
exact answer but may not give any answer at all [Horo78). Of course there is no known
polynomiai-time algorithm that will solve worst-case, arbitrarily large probiem
instances, but algorithms like those above might force unacceptably large instances of

an NP-complete problem if a PKC using it is to be secure.

21

There is specialized problem, sactoring, that has become the basis for several
cryptographic applications, including

e the RSA-like cryptosystem with exponent 2 [Rabi79], [wil180],

e the generation of a cryptographically secure randem number generator

[Sha83c], and
e the exchange of secret keys without an arbiter [Blum83].

Each has a protocol with a complete security proof, assuming that factoring is intrac-
table. And of course the RSA cryptosystem itself, while not equivalent to factoring,
depends on the difficulty of factoring for its security [Rive78]. New applications that
depend on factoring appear regularly [Ong84]. As long as factoring remains intractable,
we are in a good position, but we are overdependent on the computational complexity of
one particular problem.

The exact complexity status of the factoring problem is not known, though as with
knapsack, factoring is easily solved in pseudo-polynomial time. As before, even if no
polynomial-time algorithm is found, unacceptably large integers might eventually be
required to keep the problem intractable.

* »* * *

Thus it seems natural and desirable to look toward harder problems as the basis
for a PKC. There are various provably intractable problems [Aho74], and of course the
undecidable problems for which no general algorithmic solution can exist. It is impor-
tant to note that for a PKC one could use only a special instance of one of these
harder problems. The difficulty of cryptanalysis would still be in the class NP.

This paper is the result of an initial look at various undecidable problems, trying
to construct PKC's. We are concentrating on a particular problem along the lines of an

earlier paper [Wagn84j, with more specific details included here.

2. THE WORD PROBLEM.

There are undecidable problems for finitely presented groups and for semigroups.
First we need a number of definitions. (See [Magn66), [Rotm73], [Crow63], [Lynd771) A

22

rinitely presented group G consists of generators X, %, ..., X,, which are just
abstract symbols, and re/ators rn ~e r, = e, ..., r, = e, to be defined below.
Corresponding to each generator x; there is an /nverse x,-“. A word in & is afinite
string made up of symbols x,and x,“. The emply string e is also a word, the

/gentity of the group. Each of the r; above is a word The group operation for
combining words is concatenation. For each word w, the /nverse word w' consists

of all the symbols of w written in reverse order, where each x; 1s replaced by x,-" and
each x; ! is replaced by x;.

The group G consists of equivalence classes of all possible words. Two words w
and v are egu/valent in G If we can transform w to v by a finite sequence of
rep/acement ru/es of the form

Rule (1): changing x; x; ' or x7 ! x, to & that Is eliminating x, x; ! or

-1
Xi© Xjs

Rule (i) Introducing x; x;7 ' or x7! x; at any point,
Rule (iif): changing 7; or /7! to ¢ that is eliminating 7 or 77,
Rule (iv): Introducing 7, or 7~ at any point.

There is a more formal way to define these concepts. First the /ree group F on

generators x, X, .., x, is defined as the set of all words in the x, and x,-" that are
réguced by repeatedly cancelling out x; x,." and x,-" x; until no further cancellations
are possible. Let & be the normal subgroup generated by the words 1y, 75, .., 7 (R

is the intersection of all normal subgroups containing the 7,.) Finally & is the quotient
group F/R.

The word problem for agroup & is the decision problem that asks for each
word w, whether w is equivalent to the identity of 4 (Equivalently one can ask
whether two given words are equivalent.) It turns out that there exist spec/f/c groups
for which the word problem 1s undecidable [NoviS5], [BoonS9), [RabiS8). Like any

23

undecidable problem, the word problem can only be undecidable as a question asked about
infinitely many words -- any finite collection of words must have a decidable word
problem.

Finitely presented groups are extremely complex objects. For example, the free
group on two generators with no relators contains within it as a subgroup the free group
on a countably infinite number of generators. There is a great deal of structure and
theory associated with such groups and with the word problem. A number of researchers
devote their entire energies to this subject [Lynd77]

There is a similar and simpler word prod/em for semigroups We start with

generators and words in the generators as before but without the inverses. Instead of

relators we have a 1ist of equat/ons of the form & = 8y, &= by, .., 3, = D,y 1N

defining equivalent words we can only replace any occurrence of #,by &, and vice versa.

The word problem for semigroups again asks if we can decide whether two given words
are equivalent. Using the haiting problem, for example, it is easy to see that there is a
specific semigroup for which the word problem is undecidable.

All of our discussion of groups in this paper can be regarded as just a special case

of semigroups since one could regard the group as a semigroup with extra symbols x,-“
and extra equations x, x,“ = g etc. Thus a semigroup would just be more general and

flexible for our applications. We have chosen to emphasize groups because they seem to
fit in naturally with our main ideas for cryptosystems and because of the enormous
amount of research on groups and their word problems. One hopes that such a thoroughly

studied problem might someday yield a good theoretical foundation for a cryptosystem.

3. PUBLIC-KEY CRYPTOSYSTEMS.

The word problem is similar to the knapsack problem in that both are “natural”
problems for public-key cryptosystems, i.e., both immediately and directly allow public
encryption. The difficulty is to insert a trapdoor that will allow decryption. (See
[Diff761)

24

The trapdoor then becomes a point of weakness for cryptanalytic attacks. We feel
that a harder problem may make direct attacks more difficult and allow more leeway for
such trapdoor insertions.

To use the word problem to encrypt a s/ing/e &7¢, start with a finitely presented

group & and with two “special” words w, and u, known to be inequivalent in & Choose
one of w, and w, and randomly apply Rule (i) through Rule (iv) to the word, resulting in a
word v equivalent to either wy or w;, (but not both). Thus the public key consists of the

group & and the special words w, and w,.

This is a randomized encryption procedure in the sense of {Rive83]. There are
infinitely many possible ciphertexts corresponding to each plaintext /¢ and the system
has an arbitrarily large expansion factor.

This property of a large expansion factor is not new. In fact the homophonic
ciphers introduced centuries ago [Denn82] associate one of a (finite) set of ciphertext
elements with each plaintext element. In this case security is increased with greater
expansion factors to perfect security “when each letter of plaintext enciphers into a
unique ciphertext symbol” [Denn82]. As another example Brassard [BrasB1] mentions a
message length 7 to ciphertext length P expansion. More generally various random-
ization techniques [Rive82] can be used to trade a larger expansion factor for the
likelihood of increased security.

One can improve the 1arge expansion factor in our system as follows: to encrypt »

bits, select ¢=2” mutually Inequivalent special words w;, W, ..., w,,. Choose one of

these and encrypt as above. This gives an /~fold improvement in expansion factor, but
makes the “special word™ part of the public key 27 times as long.

With good choices for the group and special words in the encryption method de-
scribed above, it appears that decryption can be made very difficult. Decryption diffi-
culty also depends on the number and type of replacements made during encryption

25
4. TRAPDOOR INSERTION.

There are surely many ways to insert a trapdoor. We present one general approach
in section 4.1. Section 4.2 discusses cryptanalysis, and section 4.3 gives a more specific

approach whose implementation is discussed in section 5.

4.1. GENERALITIES.

Start with a finitely presented group
G=(x, %, s x”l n=enrn=6.,r,=e)
and add more relators

KTl SH=6..,5,"e

to get another finitely presented group 6°. There is a special relationship between &

and &°. In formal group theory terms if # is the normal subgroup of & generated by the
words s, 5, s sp, then &' is the guotient group 6' = 6/N. There is a natural
function (the quotient mapping) Q:6---> 6 defined as follows. If x is a group
element of & (= equivalence class of words) let w be any word representing x. Then
((x) is just the equivalence class of w within &°. For us the most important property
of Q is the following if x and y are equivalent in &, then Q(x) and Q(y) are
equivalent in 5°. Stated another way, if Q(x) and Q(y) are n#0f equivalent in &°, then x
and y must be not equivalent in &. (The converse does not hold: in fact it is easy for

elements not¢ equivalent in & to "collapse” to equivalent elements in &°.)
For this trapdoor to work, the W, and w5 from & that are part of the public key
must have the property that Q(;) and Q(us,) are not equivalent in &°. To decrypt one

needs to decide in & which of Q(W) and QO w,) the word Q(y) Is equivalent to, i.e, one

needs to solve the word problem in &, at least for some words. (Q(y) must be

equivalent in 6° to one or the other, but not both.)

26

The idea behind this method is that the word problem in & might be intractable,
while the extra relators {5, = ¢] might simplify things so that there 1s an efficiently
solvable word problem for &°. This general decryption method would work both for the

owner of the PKC and for an opponent attempting cryptanalysis. This method is a
standard way in group theory to show that two elements are not equivalent.

42 CRYPTANALYSIS.

We now list possible cryptanalytic attacks on this type of cryptosystem. Assume

that a finitely presented group & is given along with two special inequivalent words w,

ang Wy for the public key. We regard the quotient group 5~ or the extra 5, =8 relators

as the secret key. One of w; or W, is chosen and encrypted to form a word y
Attack (a) Find a tractable algorithm which decides the word
problem in 6. With this algorithm, one directly decides which of w, or
is equivalent to y Gilles Brassard has pointed out that there is always a

simple but impractical constructive algorithm that works for two words (or

finitely many words). just try all possible sequences of replacements in
parallel on w; and W, producing the word y in a finite amount of time. Thus
as we have mentioned before, in no sense is cryptanalysis undecidable.
However, one hopes that with a good choice of & there will be no tractable

algorithms for direct attacks of this sort.
Attack (b) Find extra relators (s; = e} with quotient group 6,

so that S wy) is not equivalent to N wy) and so that there Js a

tractable algorithm in G to decide the word prodiem. This is just
the general method mentioned in section 4.1. These particular extra relators
do not need to be the same as In the secret key -- just So the other conditions
are satisfied. Guarding against this bothersome attack is the main reason for

27

the complexity of sectfon 5.

Attack (c): Use a brute-force attack on a PKC, In which one
decrypts the ciphertiext under each possible secrel ey, This attack
would succeed and shows that cryptanalysis is in the class NP. However,
unlike the situation with a traditional PKC, here there is no fixed bound on the
size of the smallest secret key that would work for decryption. There might
be infintely many possible candidate secret keys to try, and success might
take arbitrarily long. (The specific system described in section S has only
finitely many possible secret keys for each public key.)

Attack (d): Regard the system as a conventional cryptosystem,
and use a brute-rorce known plaintext altack in which the plain-
text Is encrypted under each possible key. This attack is almost
hopeless, since even with the correct key the ciphertext is not determined,
and since there is no bound on the number of keys to try.

4.3. DETAILS.

in order to construct a specific trapdoor, we propose choosing the additional

relators { 5; = e} so that each of the r; = € becomes trivial. The words 7, are also

chosen to facilitate this. Consider extra relators of one of three forms:

Type (Si): (£/imination of agenerator)
X; = ¢, for some specific / (Thus any occurrence of x; just

drops out.)

Type(S2): (Co//apse of two generators to one)

Xy xj“ = e,or x;x; = e for specific / and /. (Any

reference to x, can be repiaced by x, or by x71)
Type (S3). (Commutator of two generators)

-1 p-la oy x cei ,
x,-xjx,- xj e,orx,-xj xjx,,forspemflc:/andj.

(x; and X commute.)

Such extra relators might greatly simplify the 7, words. In fact we will choose

the r, and the i in such 2 way that each ,, in conjuction with ali the Sy, will reduce

28

to the empty word o. After eliminating and collapsing generators, the group &° will
have on/y relators of type (S3) (the commutators). Thus &° will be a free group in
which certain pairs of generators commute. There is a simple (polynomial-time)
algorithm which decides the word problem for such a group. (See section 5.) Notice that
in &' the special words w, and w;, must stili not be equivalent.

This method for inserting a trapdoor could also be as an attack by an opponent, a
special case of Attack (b) of the previous section.

Attack (D' F/nd extra relators {s; = e} of types(S1), (S2) and
(S3) such that

() each r; word becomes trivial, and
(1) even with the extra (s, = e} relators, the words w,
and w., are still not equivalent.

We propose to choose the special words w; and #, so that for "most” choices of
5; = e relators, condition (11) will not be true. Here Is our approach in outline form.
Given a large collection of r; = e relators the opponent or PKC originator must introduce

many commuting pairs of generators in order to make all the 7, trivial. So in the

simpliffed group G°, most pairs of generators will commute. The PKC originator will
have a small (secret) subset of non-commuting pairs.
It is fairly easy to construct arbitrarily many inequivalent words that reduce to &

if any one of aset of pairs commutes. For a single pair (X, xz), just use the word

x 260 U or g (592 ™Y (%712, ete. For arecursive general definition, assume
v is a word that reduces to ¢ in case any one of a set ¢ of pairs commutes. Assume v
and V have the same property. Then the word ¢ v 7' v will reduce to & in case any
one pair commutes from the union of the sets ¢ and V.

In this form, w; and w;, would still not work in a public key. Before publishing

them, they must be encrypted as we have described, so that the set of commuting pairs
will no longer be recognizable.

29

5. AN EXPERIMENTAL IMPLEMENTATION.

We have chosen specific parameters, relators, and special words and have written
a computer program to implement an example cryptosystem. We should emphasize that
we are only attempting a rough implementation to demonstrate the feasibility of this
system, and to stimulate further research. Much more work will be required before
anyone could rely on the security and practicality of any cryptosystem similar to this
one.

The relators 7, = ¢ are chosen so that for each generator i appearing in s, there

is a corresponding xj". Then it is easy to make each 7, trivial by allowing certain

pairs to commute, i.e,, adding reiators of type (S3) (section 43). Adding relators of

types (S1) and (S2) will give alternative ways to make the 7, trivial. The basic idea is

to present an opponent with a very large number of ways to get rid of the ry relators.

we might hope that the opponent would have to search for the secret subset of non-
commuting pairs in order to break this system.

After some searching around, we have settled on relators of three types for the

original [r; = e}, where below x,

b Ko X and x, stand for arbitrary generators or

inverses of generators.

Type (RIX: ¥, x; x, ¥, X! xj-" xl=e

Type R2): x, x; x, X7 xj“ x; 1= e and

Type R3): x, ¥, x, X7Vl x/.“ =@
we mostly use relators of type (R1) with some of types (R2) and (R3). We do not know
the complexity of the word problem for a group made up of relators of these forms, so

that Attack (a) of section 4.2 might succeed. (It would be better to start with a group &

with an undecidable word problem.)

Type (R1) has the advantage that there are seven distinct ways to make such a
relator vanish using a minimal number of extra relators of types (S2) (co//apsing) and
(S3) (commutators). (Type (S1)e/imination) relators are rather too drastic to use

much, if at atl.) For example, suppose we use an extra collapsing retator

30

X, = = -l
X; Xp=e or x; =xjl,

and three extra commutators

‘1 1: =
XNp Xy X5 0 Xy €, or Xy Xy X‘,X,-,

=1 -1 = =
A}- X xj Xy e, or xj Xp =X X, and
-1 12 "
XeXp X xpl=8, 00 X, X, =X, X,
The original relator simplifies as follows
‘I ’l ’] 'l =
Xy Xy X Xp X0 X070 X7 x;

. Rl BEV50 BV BEVEd R
K e N

i x Vet a s a xh = e
There are four other very similar distinct methods to make this relator vanish. In
additon, just setting x; = x, makes everything drop out and making five of the six
possible pairs commute aiso makes the relator vanish.

Along similar lines there are three ways to make a relator of type (R2) vanish and

two ways for a relator of type (R3). Of course any of these relators will vanish if one
just allows all relevant pairs to commute, with no need to include the pair (x;, Xe)in
types (R1) or (R3).

in making up a specific PKC we have chosen four non-commuting pairs and made up
special words (at least 64 symbols long) that would vanish if any one of the four pairs

commuted. These pairs were chosen so that for each pair there is a specific 7, = ¢
relator so that ail but one way of making the word 7; trivial will also make the given

pair commute. Thus if an opponent uses Attack (b') of section 4.3, then in making each 7

vanish, he will very likely make one or more of the crucial pairs commute, and so the
special words will also vanish. (In order to keep the special word from degenerating, it
was necessary to add extra non-commuting pairs.)

Applications of the replacement rules (i) through (iv) are more complicated than

one might expect. For example, suppose we have arelator

31

NenBHBNy5%5=°
and a word

W=x5%4%
Then in the equation /; = ¢, multiply on the left by x,~! A?]-‘ and on the right by X! to
get

K5 Xy 5= o7t g
Taking the inverse of both sides gives

R A
Thus in a group with the relator 7y = ¢, the word w = &3 X X % is equivalent to the
word

2 gt !
(The process given above can be redone using just Rules (i) through (iv) in a formal
fashion.)

in general we can write the generators of a relator clockwise in a circle, and any
clockwise connected string can be replaced by the inverse of the complementary string,
plus inverses of these repiacements. The relator of length 6 above allows 72 different
possible replacements, and a relator of length /7 allows 277 Our computer program
attempts to look for replacements where the string being replaced is as long as possible.
This kind of string matching can be done fairly efficiently using a variation of the
Knuth-Morris-Pratt algorithm [Aho74].

In actual runs of our experimental implementation, we tried #» =25 and 7 = 50
generators. (We think the latter size might provide moderate security against attacks
we can visualize.) The special words w; and , are first made up as described in
section 4.3, and then must be “pre-encrypted™ before public release to hide the

non-commuting pairs used in making them up. Actual public encryption just consists of
more of the same kinds of replacements. Table 1 shows sets of parameters for two

cryptosystems.

32

Table 1. Parameters for two experimental cryptosystems.

Number of Generators 25 50
Number Type R1 34 153

of Type R2 6 21
relators Type R3 6 20

iné Total 46 194
Pairs of gener— Total 300 1225
torsin 6 Non-commut. 19 29
Number of Type St 0 0
additional Type 52 3 3
relators Type S3 220 1067
in & Total 223 1070
Length of Original 64 64

special word Encrypted “124symbol 172 symbol
per replacem. per replacem.

Public key size (bits) ~1000- ~10000
2000

Expansion factor (minimum) 4 ~50-500 ~100-1000

The replacements used for public encryption pose interesting problems. There
need to be many random choices in the invocation of these replacements, but we do not
want things completely random because we want the lengths to stay within reasonable
bounds. It is also necessary that all parts of the original word get acted upon. Finally,
we do not want a replacement to just undo the action of a previous replacement. To help
with these goals, we maintained a "ghost™ string in parallel with the real string being
encrypted. The ghost keeps track of which string symbols have been replaced, using
which relator. The replacement strategy was to choose a string location and relator at
random, and to definitely use that relator for a replacement, trying first near the chosen
location. But the algorithm was given some leeway to try to achieve the above goals. We
performed thousands of replacements on the special words to get an idea of the

33

asymptotic behavior. With SO generators, the last of the original symbols of the special
word was replaced after about 1000 replacements. The encrypted special words were
growing at the rough rate of half a3 symbol per replacement.

(After 2000 replacements, the special words were about 1100-1200 symbols long,
though the rate of increase seemed to be slowing down.) With a better choice of the set

of relators {7, = @] or with more of them, encryption might not have a lengthening

effect at all. We hope there is a clever way to do the design so that cryptanalysis is
provably equivalent to some standard probiem from combinatorial group theory, just as

other systems have been proven equivalent to factoring (see section 1).

For decryption in &°, we need to solve the word problem for a free group with
some commutators. The algorithm converts any word to a standard form in two phases.
First consider any substring of the form ..xyx™'.., where x is a generator, y is a string,
and x commutes with every generator in y. In such a case we cancel x and ¥ '. Such
cancellations are repeated until no more are possibie. (One needs to argue that any
choices along the way do not affect the final outcome.) The second part of the algorithm
uses a bubblesort-type method to make sure any adjacent commuting pairs are in a
standard order.

In constructing these experimental cryptosystems, most relators were just chosen
at random a/ter deciding on the trapdoor. With more care, one could create the trapdoor
after the relators. In this way the public relators could be represented pseudo-randomly,
greatly reducing the public key size.

As part of the experiment, we simulated one simple attack by the opponent. For
each type R1 relator we made five of the six pairs commute so that the relator would
vanish, and similarly for types R2 and R3. Then of course several of the crucial pairs
used in the special words commuted, so that these special words just reduced to ¢. We
hope that it would be an intractable problem for the opponent to achieve any other resuit.
There are various brute-force searches that the opponent could try, but each such search,

for 50 generators, seems to involve more that 10% possibilities.

34

6. CONCLUSIONS.

We have made 2 case for basing cryptosystems on problems harder than
NP-complete. As an illustration, we have used the undecidable word problem for groups
to design a public-key cryptosystem. Public encryption is straightforward, but trapdoor
insertion requires further study. An experimental system was implemented and seems
resistent to initial cryptanalytic attacks. This system has a large key size and
encryption time, and an excessively large expansion factor, at least 100 to 1.

ACKNOWLEDGMENT.

Dorothy Denning pointed out Brassard's work, and Jim Anderson suggested looking
at homophonic ciphers. Mark Cain gave valuable help with the programming. Whit Diffie
and Gilles Brassard made comments during the presentation that are incorporated into
this paper.

REFERENCES.

[Adle83] L. M. Adleman, “On breaking the fterated Merkle-Hellman public- key
cryptosystem,” Agvances in Cryptology: Proceedings of Crypto 82,
ed. by D. Chaum et al., Plenum, 1983, pp. 303-308.

[Aho74] A V. Aho, J. E. Hopcroft, and J. D. Uliman, 7he Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974,

[Blum83] M. Blum, "How to exchange (secret) keys,” AL/ Transactions on
Computer Systems 1,2 (May 1983), pp. 175-193.

[BoonS9] W. W. Boone, “The word problem,” Anna/s of Math. 70 (1981), pp. 207-265.

[Bras79] G. Brassard, "A note on the complexity of cryptography,” /E££
Transactions on /nformation Theory, IT-23, 2 (Mar. 1979), pp.
232-233.

[Bras81] 6. Brassard, "An optimally secure relativized cryptosystem,” Advances in
Cryptography: A report on CRYPTO &/, ed. by A Gersho, ECE REPT. No.
82-04, Dept. of Elect. and Computer Eng,, Univ. of Calif., Santa Barbara, pp.
54-58.

[Crow63] R.H.Crowell, and R. H. Fox, /ntroguction to Knot Theory, Blaisdell,
1963.

(Diff76]

(Gary79]

[Horo78]
[Lynd77]

[Magn66)

{Merk78]

[Novis5]

[Ong84]

{RabiS8]

[Rabi79]
[Rive78]

[Rive79]

[Rive83]

[Rotm73]

[Sha83a]

[Sha83b)

35

W. Difffe, and M. E. Heliman, “New directions in cryptography,” /£££
Transactions on /nformation Theory \T-22, 6 (Nov. 1976), pp. 644-654.
M. R. Gary, and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, 1979.

E. Horowitz, and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, 1978. '

R. C. Lyndon, and P. E. Schupp, Combinatorial Group Theory, Springer,
1977.

W. Magnus, A Karrass, and D. Solitar, Combinatorial Group Theory:
Presentations of Groups in Terms of Generators and Relations, J.
wiley (Interscience), 1966.

R. C. Merkle, and M. E. Hellman, "Hiding information and signatures in
trapdoor knapsacks,” /ELE Transactions on /nformation Theory 1T-24,
S (Sept. 1978), pp. 525-530.

P. 5. Novikov, "On the algorithmic unsolvability of the word problem in group
theory,” 7rugy /Mat. /nst. Stek/ov 44, 143 (1955).

H. Ong, C. P. Schnorr, and A. Shamir, "An efficient signature scheme based
on quadratic equations,” Proc. or the Sixteenth Annual ACH
Symposium or Theory of Computing, ACM 1984, pp. 208-216.

M. 0. Rabin, "Recursive unsolvability of group theoretic probiems,” Anna/s
or Math 67 (1958), pp. 172-194.

M. 0. Rabin, "Digitalized signatures and public-key functions as intractable
as factorization,” Technical Report No. TR-212, MIT Lab. for Computer
Science (Jan. 1979).

R L. Rivest, A Shamir, and L. Adleman, "A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM
21, 2 (Feb. 1978), pp. 120-126.

R. L. Rivest, "Critical remarks on ‘Critical remarks on some pubiic-key
cryptosystems’, " £/7 19(1979), pp. 274-275.

R. L. Rivest, and A T. Sherman, "Randomized encryption techniques,”
Advances in Cryptology: Proceedings of Crypto 82, ed. by D. Chaum
et. al,, Plenum, 1983, pp. 145-163.

J. J.Rotman, 7Theory of Groups: An Introduction, Second Edition, Allyn
and Bacon, 1973.

A Shamir, "A polynomial time algorithm for breaking the basic
Merkle-Hellman cryptosystem,” Advances in Crypto/ogy: Proceéedings
of Crypto 82, ed. by D. Chaum et al., Plenum, 1983, pp. 279-288.

A Shamir, "The strongest knapsack-based cryptosystem?” (presentation at
Crypto 82).

36

[ShaB3c]l A Shamir, "On the generation of cryptographically strong pseudorandom
sequences,” ALYT Transactions on Computer Systems 1, | (Feb. 1983),
pp. 38-44.

(Tarj83] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, 1983.

[wWagn84] N.R. Wagner, "Searching for public-key cryptosystems,” Proceedings of
the 1984 Symposium on Security and Privacy, \EEE Computer
Society, pp. 91-98.

{wilig0] H. C. williams, "A modification of the RSA publickey encryption procedure,”
IEEE Transactions on Information Theory, 1T-26, 6 (Nov. 1880), pp.
726-729.

