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1. TheProblcm. 

Consider the finite field having q elements and denote it by G F ( q ) .  Let a k a generator for the 
nonzero elemena of CF(q).  Hence. for MY element b+O there exisa an integer J. Osrsq-2. sauh that 
b=a'. We call x the discrete logarithm of b to the base a md we &note it by x = bg,b and more rimply 

by log b when the base is fued for the dircrudon. Ibc k e t e  logarithm problan is stated as folluws: 

F i d  a camputationally feasible algorithm to compute &gab for any bCGF(q). b+O. 

Several cryptographic schemes have been proposed whicb basc their d t y  0x1 the intraaability of tbc 
discrete logarithm problem for large q. 

In 1976 Diffie and HcIlman [A proposed tbe following public key passing scheme. Let A and B be two 

parties who wish to share a mmmm key E. 'Ibe f ~ t e  field GF(q) and a generator a are 5tored in a public 
file. Party A generates a random integer u and computes a'. Party B generates a random integer b and 
oornputes ab. A rends to E the field element a' and B sends to A the field element a6. A computes 
(a*)'=a& and B computes A and B now h e  the commun key K=a*. 

Recently, ElGamel [8] has proposed a public key cryptosystem and an authentication scheme whicb b 

based on discrete exponentiation. We describe only the public key ayatem here. 

consider GF(9) generated by a. Ibe mesaage 5 p e a  M wil l  &t of aLl nonzero field clcmtntr. Par- 
ty A generates a random integer u and stores a"h a public file. Sqpnc parry B wisher to rend a message 
m to A .  E generates B random integer k and computes (b a" is made public this b possible), a' 

md mad.  B sends A the pair ( a k , a d m ) .  sina A knows a he can compute (av=ad, and. hence, obtain 
m from adm. Tbis d t m e  and the I)iffic-&llman method appcar to have tbe same degree of d t y .  It 
remains an open problem as to whether or not the security of these systems is entirely dependent oil comput- 

TRMardlrupporredinpan by& Depamax ofbmmrna 'cadm UDder cunrr~~ # 2G5T W1-4-0853 

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPT0 '84, LNCS 196, pp. 73-82, 1985. 
0 Spnnger-Verlag Berlln Heidelberg 1985 



74 

ing discrete logarithms. 

A number of sp&ial plrpow algorithms for computing discrete bga have appeared in the litushut 

(sec, for example. [2] ,  [9], [ll]. [l4]). In this utide we address only  ti^ most general methods amcntly 
available. 

In the next three Kctionr we deraibe three rubexponential algorithrm for mmputing lop.  Thc algo- 

nthnu of Sections 3 and 4 are variana of the one presented in section 2. 'Ihese algorithm JUC referred to u 
the index-calculw a l g O r i W  in an ualht and in-depth d d e  011 th~  rubw by O~I*O [13]. 

For the purposes of this paper we restrict ow discusion to GF(2"). (The algorithm of &om 2 md 

3 apply more generally.) We t b k  of the elemma in GF(2') u polynomhh of degree at most n-1 over 

GF(2) and multipljcatim is performed modulo lome fixed irredudble polynomial of degree n o v a  GF(2). 
 he examples attd in this paper refer to ~ ~ ( 2 ' 2 ~ )  u it has btcn of lomt interest rcantly. (see, for uam- 
ple, [IS], D71). 

2. AdlrmlnAlparithm 

The basic idea\ involved in the following aubexponcntial algorithm for amputing discrete logarithm 
are due to Western and Miller [16]. Ameman [l] independmtly dimvncd the algorithm and partially 
analysed its computational complexity. 

The algorithm consists of two pertr. Tke fint part repuira the QmstNEtion of n Inrge database of loga- 
rithms. This databare only m d ~  to be wtruacd OIKT for GF(2"). Part 2 of the algorithm computes indi- 
vidual logarithms. 

P u t  1 @.tabalw). 

Find the logarithms of all irreducible polynomials of degree at most b where b is a fued positive in- 
teger determined by GF(2"). 

P u t  2. 

TO find the log of an clement g(x)€GF(2").  g ( x ) # O ,  generate a random integer u and compute 

h ( r ) = g ( x ) a " ( x )  where a(.) generates GF(2'). Now, factor 

h(1) = Ii P l l ( 4 .  
1-1 

If each irreduable factor p i ( r )  has d q  p i ( x ) s b  then 
I 

g ( x )  = B ci b g P i ( x ) - a  
1- I 

which can easily be evaluated by looking up b g p i ( r ) ,  lsisr, in the database. If not all pi(.) have 

dcg p i ( r ) s b  then generate another random integer and repeat. 
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We define p ( n ,  b )  to be the probability that a randomly chosen polynomial of degree exactly n har all of 
its irredudble factors with degrees of at most b.  If N(n.b) h the number of polynomialr of degrcu exactly 
n such that cach has all of it, irreducible fenon with degree at most b then 

and the erpeaed runtime of the d part of the algorithm rbould bc lpprodmately p(n,b)- ' .  Odlyzko 

[l] shows that 

and that the asymptotic mmhg time of the entire algorithm is u7, (cl(n bg n)"). 

Let S be the set of all irreducible polynomials of degree at most b.  In order to find the logarithms of 
dl elementi in S we set up a system of IS1 lineax equations in IS1 unknowns whae the unknuwnm are the 
logarithms. We can fiid this system of cguations by applying part 2 of the algorithm to & elanent of S. 

The resulting system must be solved ova the intcgm modulo 2"- 1. The number of iterations of part 2 to 

produce the neccsEary equations is approximntcly ISlp(n,b)-'. For GF(21n) this quantity is min imid  by 
b=23. Since there are 766,150 irreducible polynomids of degree at most 23 then we r@ tbh many 
equations. A random polynomial of degree at most 126 will factor intn the databasc with b=23 with probe- 
bility .000138. This means that to produce the desired set of equations will require abut 5,549X106 itera- 
tions of part 2 of the algorithm. 

 he next section gives a variant of the  mem man algorithm which improves the situation for GF(P~).  

3. The Waterloo Algorithm 

This algorithm (see [3]) differs from the formu algorithm in two ways. In part 2 whae the polyxlomial 
h(x)=g(x)a ' (x)  is factored this algorithm applies the extended Eudidean algorithm to the polynomiab h(x)  

and f ( x )  cf(r) is the irreducible polynomial of degree n which defimes GF(Z").) so that we cau write 

h(x)  = dil 

where (s(.z),r(x))=l and deg s(x),deg r ( x ) s E .  One o h a t i o n  we can auke at this point is that every p- 

lynomial h(r) of degree at most n (n odd) can bc wrinm uniquely as a quotient of polynomials where each 

has degree at most !! and which are relatively prime. If both S(X) and r(x) factor into S then log  g(x) is 

readily computed by table lookup. 

2 

2 

The advantage to this algorithm over the previous one is that it ia more probable for two polynomials of 

degrees at most = to fectur into the database than it is for one polynomial of devte n. Let N(b, i , j )  be the 

number of pain of relatively prime polynomials (A (x ) ,B(x ) )  such that &g A(x)=i,&g B ( x ) = j  and both are 

smooth with rcspact to 6 .  @y smooth we mean that the polynomial fecton into irredudblcs all of whose de- 
grees are at most b . )  For each irredudble polynomial b(x)  with degree i s b  &fie  the enumerator of b(x) 

by 

2 
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(l+yk+y2+ * * * +#+P+ . * - ). 
Letting Ik be the number of irredudble polynomialr of degree It we obtain the generating function for the 

N ( b , i d  as 

where ECy) is the generating function for one mmth polynomial. T b  probability that an ordcred pair of 

relatively prime polynomia~s ( A ( x ) . E ( ~ ) )  tam of degree at most 2 are both smooth with rwpact to b is 
2 

p*(nd~)  = (-5; W A A ~ .  

In the case of GF(ZE7) Coppmmith [a] har evaluated ibi.~ expression for b=17 nnd found 

p*(127,17) P 7000. In order to simplify calculations we approximatcp*(n,b) by [P(n,b)]*. For GF(ZU7). 

1 b(127,lq’ a - 5OOo‘ 

In the following table we list these probabilities for b rsnginll ktwtm 1 md 30 md dm we list the 

probabilities assodated with t&e Amanan algorithm. Ihe table also indudtr the erpccted number of itera- 
tions to product enough equations to oms- the database for  cad^ value of b in the given range. 

We see from the table that the number of iteratiom for the database is minimized by b=U). For our 
implementation we sel#ttd b= 17 in orQ to kcep the r y w m  of equations mnnageable. 

The second difference in the Waterloo algorithm is in producing the equations for the database. We 
did not rely entirely on Part 2 of the algorithm. A n u m k  of equations were readily obtained by several 

techniques whicb make w of the fact that quaring is a linear operator in the field. Our primiple technique 

here is refencd to as the generation of systematic equations. 

We briefly describe this ttrhnipuc with regard to GF(2=’) generated by j(x)=xm+x+1. Since f ( x )  

divides xm+x2+x, it is m y  shown that 2’. OSiSl26. can be written as c = 7 , ~ “  where y,C{O.l) and 

so the log of any element of the form c cun be r d y  found. Similarly the log of any dement of the form 

2 y,x’ where y,€{O,l}, - 1 S J s 6  am be found. This giva 31 equations where the maximum d e  

gee is 16. Related to this idea b the observation that if u(x) b any irredudble polynomial of degree d thcn 
the degrees of all irreducible polynomiah of w(u(x ) )  are divisible by d .  Using thir method we obtained 142 
linearly independent equations involving the 226 logarithmr of irredudble palynomialr of degree S 10. 

1’0 

J’O 
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prob.bility md ap#tsd numks of rum for tk new m d  Adlanm algorithm. s=127. 

New algorithm Adleman algorithm 
Total no. of Expected no. Expected no. 

Degree imed. polys Probability of mns Probabiliry of runs 

1 
2 
3 
4 
5 
6 
7 
8 
9 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

10 

1 
2 
4 
7 
13 
22 
40 
70 
126 
225 
41 1 
746 
1376 
2537 
4719 
8799 
16509 
31041 
58635 
111012 
210870 
401427 
766149 
146501 9 
28071 95 
5 38 7990 

19945393 
384581 83 
74248450 

10358998 

1.27141469E- 32 7.8652544E+31 0.47772090E- 34 0.20932720E+35 
1.61 023467E- 30 1.24205499E+ 30 0.10391370E - 32 0.19246730E+ 34 
1.42OO3032E- 27 2.81684126E+27 0.10686600E- 30 0.37430020E+ 32 
1.15313844E- 24 6.07038995E+24 0.16022050E-28 0.43689770E+ 30 
3.4632 1 796E- 21 3.75373429E +21 0.128061OOE-25 0.101 51400E +28 

1.75009226E- 15 2.28559379E+ 16 0.58661830E-20 0.68187380E+22 
2.99279106E- 13 2.33895379E+ 14 0.20402690E- 17 0.34309190E+20 
2.39477444E- 11 S.26145586E+ 12 0.40463370E- 15 0.31139250E+ 18 
7.73424039E - 10 2.909141 54E+ 1 1 0.31 781350E - 13 0.70796220E + 16 
1.42517804E-08 2.88385022E+ 10 0.13612270E- 11 0.30193290E+15 
1.481 57461 E-07 5.035 18348E+09 0.29555 160E - 10 0.2S240930E + 14 
1.0660927E-06 1.29069451 E + 09 0.41 129290E -09 0.33455440E + 13 
5.46899677E-06 463887639 0.3746155OE-08 0.67722710E+ 12 
2.I9028276E-05 215451634 0.24991280E-07 0.18882570E+ 12 
7.12191038E-05 123548311 0.1272363OE-06 0.69154690E+ 11 
1.96662481E-04 83945854.4 0.5242853OE-06 0.31488570E+ 11 
4.7 10 1 5 4 8 8 ~  - 04 6590229 1 .s 0.17992970E-05 0.17251720E+ I1 
l.OO764675E- 03 58190035.4 0.53284450E-05 0.11OO4140E+I I 
1.96260912E-03 56563479.1 0.13895770E-04 0.79888990E+ 10 
3.541 77251 E-03 59537985.4 0.32587350E-04 0.64709140E+ 10 
5.96621 694E-03 67283339.5 0.69740460E-04 0.57560100E+ 10 
9.45338803E-03 81044911.9 0.13806940E-03 0.55490060E+ 10 
.0142 135998 103071 637 2.25535770E-03 0.57373450E+ 10 
.0204564492 137227872 0.44523690E-03 0.63048900E+ I 0  
,0283794933 189855046 0.73751900E-03 0.73054240Et 10 

.0~0024a252 398709899 0.17773340E-02 0.11222780E+ 11 

.0640949758 60001 8684 0.26095230E-02 0.14737250E+ 11 

.0805164802 922152208 0.33185230E-01 - 

2.43083741~- 18 9.05037906~+ 18 o.m489980~-23 0.36369650~+2~ 

.038 1 7571 53 271350462 0.1 16804 ~ O E  - 02 0.813t%36300~ + 10 

Another example of making ILK of thc linearity of quaring is I method referred to m weight manipula- 

tion [4] (for more details ste [S]). Define p(x)=x'"+g(x) where g(r) ha, degree k<<m. Define d to bc 
the IaTgat integer 8uch that 2 d m  1s n . Let I = n - Zdm md consider 

4 (I) =+.J(.IP(.I.d f ( r ) ) .  

&g C(x)=mCur {k2d,dcg V(x)+f)l. 

It follows that 

If p ( x )  and C ( X )  are 8mootb with respect to & then we obtain an equation. For c~ample, in GF(Zu7) gtn- 
crated b y f ( x ) = x u 7 + x + 1  takcp(1)=l+x~andd=7thens=15. Thisgives 

=xu(1+~7)16= 1 +=+xu. 

Clearly, both t ( x )  and p(x) are smooth with respect to 6=17. A similar result can be dtveloped for 



Coppersmith [6] has ertendtd the idea behind these techniques md har obtained striking bnprovrmtntr 
in the index calculus methods. We l o u l d  mention that asymptotically the Waterloo algorithm is  of the L B ~ C  

order (q (ct(n log n)?) es the Ameman algorithm but for fields GF(2") of practical interest it gives mucb 

The database for GF(2U7) was amstnutuI at Dcnclmr using the& HEP computer [12]. A HEP con- 

sists of from one to sixteen procrss ascution modules and each is a pipelined p~xeuor with a depth of 8. 
Sine the HEP can w a given program in pardel with iculf. fhc inda-calculw algorithm art ideally auited 

to this arrbitccture. 

when added to those found systematically and by weight manipulation would yield 16.510 linearly indepcn- 

dent equations in the 16,510 unknown logs. Siaetn copies of the algorithm in parallel appeared to be ap 
timal. The database toak about 7 houn to build and computing individual logs using Part 2 takes under 1 
mxmd on the HEP. Having the database OUT implcmcntation on a VAXllnsO taka about five minutes per 

better rumling times. 'Ibe GJppcrddl algorithm ir describedinthenaleetion. 

sevcral copies of the algorithm were run in parallel to jKuducc linear tquatiDns whi& 

logarithm. 

kc mentioned in the previous paragraph. the inda dculw algorithms are ideally suited to parallel pre 
assing. If we run n oopies of the program in parallel then the l ogar ih  is obtained from the which 
finishes fmt. We compute the expected number of iterations to frnd the logarithm of an element given that 
n copies of the algorithm are running mimultanecusly. Let p be the probability that an iteration will s d  
in computing the logarithm and let q= 1-p. Suppoac i of the proccsser complete on the kh iteration and the 

remaining n - i do not. The probability of tbb event is 

and the probability that at least one of the proassts finishes on the iteration is 
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4. TheCopparmlthAltorttbm 

ThC algorithm descn'bad in thir &on maka crtmak use of the linearity of quaring in GF(2"). The 
method appliw ~LUI t o p p k  p e n  in C F ( ~ * )  for n>1. 

Coppcnmith's modification [6] of this basic indcx-calculus algaithm of d o n  2 improves substantially 

the perfomma of both par0 1 and 2. Let'a first d d e r  part 1. 

The algorithms of the prcvi~w rections and the algarithm given here rely cn the fact that polynomials 
of degree k tend to factor into polynomials whose degrees arc "mnll". In order to generate enough qua- 
tionr to construct the database for GF(2") ~elcct peirS of poIynomialr (a(r),b(x)) auch that &ga(x)sd and 
&gb(x)sd  where d<b and the gcd of a(x) and b(r) is 1. It ir easily aecn that there arc precisely ZUc1 rueh 

pain. Let t be a powa of 2 near andrboase L to b e t h e l w t  integer greater than t. Suppose also 

that the generating polynomial for the field ha8 the form f (x )=x"+g(x )  where g(r) has low degree. Let 
h(x)=fi=g(x)E&--. and dcfic 

C(J) = 2 ~  (I) + E  (I) 

d(.)+(=)I'. 

and 

If both c ( x )  and d ( x )  are sxnooth with respect to b. then we obtain m equation for the database. In the case 
n=127 we take b=17, t = 4 .  h=32 and d=10. T~IC polynomialr c(x) .nd d(x)  have degrees ~ 4 2 .  Cop- 
p & t h  [a] shows that the 2 million possible paira (u(x),b(x)) yield h u t  47,000 equations in 16,510 
unknowns. The above procedure is a variant on the waght manipulation method of the previous d o n .  A 
more direct application of waght manipulation am be daaibcd. We iuustrate the technique in the case 
GF(Zu') generated by f ( ~ ) = x ~ ' + x + l .  Select pain of polyndalr  (a(x) ,b(x))  which are relatively prhc 

and such that deg u(x)s7 and deg b ( x ) s 8 .  Form the polyndala c ( x ) = a ( x ) ~ ~ ~ + b ( x )  md d ( ~ ) = x ~ [ c ( x ) ] ~  

whne deg c(x)s38 and dtg d(x ) s35 .  If c(x)  md d(x)  are smooth with rtspsa to b=17 we get M qua- 

tion. 

We now describe part 2 of the algorithm. Let g(x) be a field elanent whose log is to be found. Sug 

ample, if ~ ~ 1 2 7 ,  b=17 md r=33 tben chanc k = 2  m that h=&. Fdy =lea d d- to 
( r + G ) l o g  n w .  ~n our u a m p ~ e  we takt d = ~ .  a relatively prime pair of po~ynomials a(x) and 
b(x) Cam of degrw S d  r d  that g ( x )  divides c(x)=2a(x)+b(x). 'Ibc dmicts for o(x) and b(x) c ~ l l  d y  

arc smooth with resped to tbe bound b(')= h m  then we have at mmt 2 irrGduciblc factors of degree at 

most bfl). For each factor with degree > b  we iterate thic pmcuhrc and redua the bowd b(') with  cad^ 

iteration. That ia. at iteration i ,  b( i )=h(b/n) - i .  If not both of c(x), d(x)  are unmth then doox a new 
pair ~(1). b(x)  and s ~ a r t  again. 

r-deg g(x). Let t bc B power of 2 d~ to and h be the lwt iatcga pcatcr then dk. For a- 

bc &terminad by W h k g  a linear SyS- Of CqwtiOnr Over GF(2). Let ~ ( x ) s [ c ( J ) ] ~ .  If both C(X)  E d  d(x) 

2 - 1 - 
The asymptotic rurming time of thic algorithm h comput#1 by coppenmith [6] to be ccp ( c n 3 ( l o g  n I 3 )  

which improves the results of the prcvioua two sections. 
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Total 
number 

We have implemented pat 2 of coppersmith’s algorithm. The following table &playa tat nrulta of 8 
s a q l w  each &ring of 100 randomly generated polynomials of degree at most 126. ’Ibe degree bound b 

h always 17 but for ceeh q 1 e  we varied the W t h  degree bound b‘ and the value of d. We have a 
column labelled “Total Number of Basic Iterations”. Thir r c f m  to the number of iterations required to o b  
tain smoothness with respect to b‘. The coIumn lnbcllcd “Total Numbcr of Coppenmith Iteration” is the to- 
tal number of iterations to obtain smoothness with respect m degrtt bound 17 far thore polynomials with & 
gree between 17 and b‘. We a h  found that in thi3 case a mingle step reduction of the Coppcnmitb reduc- 
tion WBS optimal. 

Total 
number Average 

of time 
I I ofbasic Icoppenmithl in= I 

b’ I d’ I iteratiom 1 it&tiom I pcrlog 
20 I 12 I 99.496 I 6.731 I 57 

From the table it appeart that b‘=23 and d-14 ir optimal. With these values we ran a sample of 500 

randomly generated polynomiah with the following result. The column headings are the aamc as in the pre- 
vious table. 

[ 23 I 14 I 120,661 I 101,563 I 26.6 I 
For GF(Z1”) we r e f a  to an equation of the form 

[C(x)14 = [ A ( Z ) X ~ ~ + B ( X ~ ] ‘  

IU a Coppersmith equation. As a direct generalization of the weight manipulation technique discus4 earlier 
we consider quatiom of the form 

X“C(X)]4 = $7-4’ [A(.t)r‘+B(r)14 

and refer to thue as yndcljl41v equations. With the degree of A ( x )  and B(x)  at m a t  9 in the C0PptrSmth 

equations we generated 19461 equations for the database in 8.1 houn on the VAX. With thc degrua of 
A(x) and B ( x )  at most 8 we obtained 7777 quatiom in 2.23 horn. Ihe follawing table lista rralta when 

underflow quatiom were used. Thc columnr labelled drg A and drg B refer to the bighest degree used for 
A and B rcspcdvely. For polynomial A we require that it hss a amstant tcrm BO that no coppCrrrnim equa- 
tions are generated this way m d  the cquationr obtained from distinct rows are all different. 



Valucof Numberof 

7193 2.88 

I f w e ~ t h e C o p p e r s m i t h ~ t i ~ w i t h t h e & g r e a o f A ( x ) a n d B ( ~ ) a t m o r t 8 . n d w e u s e t h e u n d e r f l o w  
cquatiom given in the frnt two m a  of the table we get 22,861 equations in 8 hours or one equation every 

.3499x houii. Thir is approximately a 16% improvement ova collatinp the 19461 cquatim using the 

CoPpmmhh equations with I g  A(x ) .  and &g E(x)S9. Thir data WYIU obtained by running our program on 
a VAXllnsO at the University of Waterloo. The program b written ia Fortran 77 with the gcd routina in 
assembler. 

5. Coadarlon 

We have described tbe basic hdex-caladus algorithm and two variants of it. 'Tbe basic algorithm and 
the Waterloo dgOrithm both carry over to GF(p) ,  p a prime. Using t& Eudidcan algorithm for integers it 
is easy to show that given an h t ~ g n  a, I s a s p - 1 ,  that there exist integaa r md t w d ~  that ~ t - t ( d p )  

and l s l s l ,  rsp-1.  

As for GF(2") it h dear that for n=127 thh field is insa*m and &odd be avoided in cryptographic 
demes.  In [13] Odlyzko analyses the performance of the copperrmith algorithm for various v d u a  of n 

running on various ~ ~ I X S  of equipment. me mmlusion scans to bc that im ambitious effort might k able 
to produx the ncccsary database for ns1280. 
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