COMPUTING LOGARITHMS IN GF (2")’

LF. Blake!, R.C. Mullin?, S.A. Vanstone®

!Department of Electrical Engineering
University of Waterloo

Waterloo, Ontario, Canada

N2L 3G1

Department of Combinatorics and Optimization
University of Waterloo

Waterloo, Ontario, Canada

N2L 3G1

1. The Probiem.

Consider the finite field baving ¢ elements and denote it by GF{g). Let a be a generator for the
nonzero elements of GF(g). Hence, for any element b#0 there exists an integer x, 0<xr=<qg—2, such that
b=a”. We call r the discrete logarithm of b to the base a and we denote it by x = log, b and more simply
by log b when the base is fixed for the discussion. The discrete logarithm problem is stated as follows:

Find a computationally feasible algorithm to compute log b for any b€GF(g), b#0.

Several cryptographic schemes have been proposed which base their security on the intractability of the
discrete logarithm problem for large q.

In 1976 Diffic and Hellman [7] proposed the following public key passing scheme. Let A and B be two
parties who wish to share a common key K. The finite field GF(q) and a generator a are stored in a public
file. Party A generates a random integer ¢ and computes a®. Party B generates a random integer b and
computes ®. A sends to B the ficld element af and B sends to A the field element a®. A computes
(a®)?=a® and B computes (a%)®=a®®. A and B now share the common key K =a®.

Recently, ElGamel [8] has proposed a public key cryptosystem and an authentication scheme which is
based on discrete exponentiation. We describe only the public key system here.

Consider GF (q) generated by a. The message space M will consist of all nonzero field elements. Par-
ty A generates a random integer a and stores a“ in a public file. Suppose party B wishes to send a message
mto A. B generates a random integer k and computes (a”)* (since a? is made public this is possible), af
and ma®. B sends A the pair (a*,a®m). Since A knows a he can compute (at)®=a®, and, hence, obtain
m from a®m. This scheme and the Diffie-Hellman method appear to have the same degree of security. It
remains an open problem as to whether or not the security of these systems is entirely dependent on comput-
TResearch supported in part by the Department of Communications under contract # 20ST 36001-4-0853,

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPTO *84, LNCS 196, pp. 73-82, 1985.
© Springer-Verlag Berlin Heidelberg 1985



74

ing discrete logarithms.

A number of special purpose algorithms for computing discrete logs have appeared in the literature
(see, for example, [2], [9], [11], [14]). In this article we address only the most general methods currently
available.

In the next three sections we describe three subexponential algorithms for computing logs. The algo-
rithms of sections 3 and 4 are variants of the one presented in section 2. These algorithms are referred to as
the index-calculus algorithms in an excellent and in-depth article on the subject by Odlyzko [13].

For the purposes of this paper we restrict our discussion to GF(2"). (The algorithms of sections 2 and
3 apply more generally.) We think of the elements in GF(2") as polynomials of degree at most n—1 over
GF(2) and multiplication is performed modulo some fixed irredudble polynomial of degree n over GF(2).
The examples cited in this paper refer to GF(zm) as it has been of some interest recently. (See, for exam-
P]e! [15]: [17])‘

2. Adleman Algorithm

The basic ideas involved in the following subexponential algorithm for computing discrete logarithms
are due to Western and Miller [16]). Adleman [1] independently discovered the algorithm and partally
analysed its computational complexity.

The algorithm consists of two parts. The first part requires the construction of s large database of loga-
rithms. This database only needs to be constructed once for GF(2"). Part 2 of the algorithm computes indi-
vidual logarithms.

Part 1 (Database).

Find the logarithms of all irreducible polynomials of degree at most b where b is a fixed positive in-
teger determined by GF(2").

Part 2.
To find the log of an element g(x)€GF(2"), g(x)#0, gencrate a random integer a and compute
h{x)=g(x)a’%(x) where a(x) generates GF(2"). Now, factor
1 “
hix) = l'Il py'(x).
-

If each irreducible factor p;(x) has deg p;(x)=<b then

log g(x) = z' e; log pi(x)—a

it

which can easily be evaluated by looking up Jog p;(x), 1=<ist, in the database. If not all p;(x} have

deg p;(x)=b then generate another random integer and repeat.



75

We define p(n,b) to be the probability that a randomly chosen polynomial of degree exactly n has all of
its irreducible factors with degrees of at most b. If N(»,b) is the number of polynomials of degrees exactly
n such that each has all of its irreducible factors with degree at most 5 then

p(n.b) = ﬂ;ﬁﬂ-
and the expected runtime of the second part of the algorithm should be approximately p(n,b) L. Odlyzko
[1] shows that
a+o1) g
p(n,)"1= [%]

and that the asymptotic running time of the entire algorithm is exp (c;(n log n)%).

Let S be the set of all irreducible polynomials of degree at most . In order to find the logarithms of
all elements in § we set up a system of | S| linear equations in |§| unknowns where the unknowns are the
logarithms. We can find this system of equations by applying part 2 of the algorithm to each element of §.
The resulting system must be solved over the integers modulo 2"—-1. The number of iterations of part 2 to
produce the necessary equations is approximately | §|p(n,5) ). For GF(2'?") this quantity is minimized by
b=23. Since there are 766,150 irreducible polynomials of degree at most 23 then we require this many
equations. A random polynomial of degree at most 126 will factor into the database with b=23 with proba-
bility .000138. This means that to produce the desired set of equations will require about 5,549 10° itera-
tions of part 2 of the algorithm.

The next section gives a variant of the Adleman algorithm which improves the situation for GF(2127).

3. The Waterioo Algorithm

This algorithm (see [3]) differs from the former algorithm in two ways. In part 2 where the polynomial
h(x)=g(x)a’%(x) is factored this algorithm applies the extended Euclidean algorithm to the polynomials k(x)
and f(x) (f(x) is the irreducible polynomial of degree n which defines GF(27).) so that we can write

where (s(x),t(x))=1 and deg 1(x),deg 1(1)5%. One observation we can make at this point is that every po-

lynomial h(x} of degree at most » (» odd) can be written uniquely as a quotient of polynomials where each
n
2
readily computed by table lookup.

has degree at most — and which are relatively prime. If both s(x) and ¢(x) factor into § then log g(x) is

The advantage to this algorithm over the previous one is that it is more probable for two polynomials of
n
2
number of pairs of relatively prime polynomials (A(x),B(x)) such that deg A(x)=i,deg B(x)=j and both are
smooth with respect to 5. (By smooth we mean that the polynomial factors into irredudbles all of whose de-
grees are at most b.) For each irreducible polynomial 5(r) with degree k=<b define the enumerator of b(x)
by

degrees at most - to factor into the database than it is for one polynomial of degree n. Let N(b,i,)) be the



76

A4y e o2y ),
Letting 7; be the number of irredudble polynomials of degree & we obtain the generating function for the
N(b,i,j)as

- - I(k)
F(y.2) = ﬁ [2 W+ z"‘]

k=1 =0 =1

= [Qla~-yya-yha-Ar®

= E(y)E(zVE(yz)

where E(y) is the generating function for one smooth polynomial. The probability that an ordered pair of

relatively prime polynomials (A(x),B(x)) each of degree at most = are both smooth with respect to b is

2
p*(n,b) = { 3 N(b,i,j)}/‘z".
nsus%
In the case of GF(2!%") Coppersmith [6] has evaluated this expression for =17 and found
p*(127,17) = ﬁ In order to simplify calculations we approximate p*(n,b) by [p(s,5)%. For GF(22"),

27,172 = ﬁ-

In the following table we list these probabilities for  ranging between 1 and 30 and also we list the
probabilities associated with the Adleman algorithm. The table also includes the expected number of itera-
tions to produce enough equations to construct the database for each value of b in the given range.

We see from the table that the number of iterations for the database is minimized by 5=20. For our
implementation we selected b=17 in order to keep the system of equations manageable.

The second difference in the Waterloo algorithm is in producing the equations for the database. We
did not rely entircly on Part 2 of the algorithm. A number of equations were readily obtained by several
techniques which make use of the fact that squaring is a linear operator in the field. Our principle technique
here is referred to as the generation of systematic equations.
We briefly describe this technique with regard to GF(2!2) generated by f(x)=xZ+x+1. Since f(z)
[
divides 128+ x24 1, it is easily shown that le. 0=i=126, can be written as e = 3, 11:2' where v,€{0,1} and

=0
s0 the log of any element of the form e can be readily found. Similarly the log of any element of the form

¢
Y+ 3 -ijzl where v,€{0,1}, —1=;=<6 can be found. This gives 31 equations where the maximum de-
=0

gree is 16. Related to this idea is the observation that if u(x) is any irreducible polynomial of degree d then
the degrees of all irreducible polynomials of w(u(x)) are divisible by 4. Using this method we obtained 142
linearly independent equations involving the 226 logarithms of irreducible polynomials of degree =10.



77

Probability and expected number of runs for the new and Adlexan algorithm, n=127.

New algorithm

Adleman algorithm

Total no. of Expected no. Expected no.

Degree irred. polys  Probability of runs Probability of runs

1 1 1.27141469E~32 7.8652544E+31 0.47772090E-34 0.20932720E+ 35
2 2 1.61023467E-30 1.24205499E+30 0.10391370E-32 0.19246730E+34
3 4 1.42003032E-27 2.81684126E+27 0.10686600E—-30 0.37430020E+ 32
4 7 1.15313844E-24 6.07038995E+24 0.16022050E—-28 0.43689770E+ 30
5 13 3.46321796E—-21 3.75373429E+21 0.12806100E-25 0.10151400E+28
6 22 2.43083741E~-18 9.05037906E+18 0.60489980E—-23 0.36369650E+25
7 40 1.75009226E—15 2.28559379E+16 0.58661830E—-20 0.68187380E+22
8 70 2.99279106E—13 2.33895379E+14 0.204026%0E-17 0.34309190E+20
9 126 2.39477444E—-11 5.26145586E+12 0.40463370E-15 0.31139250E+18
10 225 7.73424039E-10 2.90914154E+11 0.31781350E~13 0.70796220E+16
11 411 1.42517804E~08 2.88385022E+10 0.13612270E-11 0.30193290E+15
12 746 1.48157461E-07 S5.03518348E+09 0.29555160E-10 0.25240930E+14
13 1376 1.0660927E—-06  1.290694S1E+09 0.41129290E~09 0.33455440E+13
14 2537 5.46899677TE-06 463887639 0.37461550E-08 0.67722710E+12
15 4719 2.19028276E—05 215451634 0.24991280E-07 0.18882570E+12
16 8799 7.12191038E-05 123548311 0.12723630E-06 0.69154690E+11
17 16509 1.96662481E-04 83945854.4 0.52428530E-06 0.31488570E+11
18 31041 4.7101548BE-04 65902291.5 0.17992970E-05 0.17251720E+11
19 58635 1.0076467SE—-03 58190035.4 0.53284450E—-05 0.11004140E+11
20 111012 1.96260912E-03 56563479.1 0.13895770E-04 0.79888990E+10
21 210870 3.54177251E-03 59537985.4 0.32587350E—-04 0.64709140E+10
22 401427 5.96621694E-03 67283339.5 0.69740460E-04 0.57560100E+10
23 766149 9.45338803E-03 81044911.9 0.13806940E—03 0.55490060E+10
24 1465019 0142135998 103071637 2.25535770E-03 0.57373450E+10
25 2807195 .0204564492 137227872 0.44523690E—-03 0.63048900E + 10
26 5387990 .0283794933 189855046 0.73751900E-03 0.73054240E+10
27 10358998 .0381757153 271350462 0.11680410E-02 0.88686300E+ 10
28 19945393 10500248252 398709899 0.17773340E-02 0.11222780E+11
29 38458183 0640949758 600018684 0.26095230E-02 0.14737250E+11
30 74248450 .0805164802 922152208 0.33185230E-01 —

Another example of making use of the linearity of squaring is a method referred to as weight manipula-
tion {4] (for more details see [S]). Define p(x)=x"+g(x) where g(x) has degree k<<m. Define d to be
the largest integer such that 29m=n. Let s=n—2%m and consider

¢x)=x'p(x)"(mod f(x)).
It follows that
deg £(x)=max (k2% deg (f(x)+x™)}.

If p(x) and £(x) are smooth with respect to b then we obtain an equation. For example, in GF (2127) gen-
erated by f(x)=x127+x+1 take p(x)=1+1" and d=7 then s=15. This gives

C(x)=xu(1+x7)16=1+x+xu'

Clearly, both £(x) and p(x) are smooth with respect to 5=17. A similar result can be developed for



78

769 L

Coppersmith [6] has extended the idea behind these techniques and has obtained striking improvements
in the index calculus methods. We should mention that asymptotically the Waterloo algorithm is of the same
order (exp (co(n log n)¥)) as the Adleman algorithm but for fields GF(2") of practical interest it gives much
better running times. The Coppersmith algorithm is described in the next section.

The database for GF(2127) was constructed at Denelcor using their HEP computer [12]. A HEP con-
sists of from one to sixteen process execution modules and each is a pipelined processor with a depth of 8.
Since the HEP can run a given program in parallel with itself, the index-calculus algorithms are ideally suited
to this architecture. Several copies of the algorithm were run in parallel to produce linear equations which
when added to those found systematically and by weight manipulation would yield 16,510 linearly indepen-
dent equations in the 16,510 unknown logs. Sixteen copies of the algorithm in paralle! appeared to be op-
timal. The database took about 7 hours to build and computing individual logs using Part 2 takes under 1
second on the HEP. Having the database our implementation on a VAX11/780 takes about five minutes per
logarithm.

As mentioned in the previous paragraph, the index calculus algorithms are ideally suited to parallel pro-
cessing. If we run n copies of the program in parallel then the logarithm is obtained from the copy which
finishes first. We compute the expected number of iterations to find the logarithm of an element given that
n copies of the algorithm are running simultanecusly. Let p be the probability that an iteration will succeed
in computing the logarithm and let g=1—p. Suppose i of the processes complete on the k¥ iteration and the
remaining n—i do not. The probability of this event is

.
~1
and the probability that at least one of the processes finishes on the £ jteration is
3 (pa* 11 Spe’ 1P )
Since p é @71 = 1-g% (%) equals g* D*1—¢"). To compute the expected number of iterations we

~1

evaluate
3 kg D1 -gM=(1-g") 7
k=1

Since g=1-p then it follows that (1—q")‘15(m:v)'1 as one might expect. This expected number of itera-
tions did occur when we made experimental runs on the HEP.



79

4. The Coppersmith Algorithm

The algorithm described in this section makes extensive use of the linearity of squaring in GF(2"). The
method applies also to p? powers in GF(z") for n>1.

Coppersmith’s modification [6] of this basic index-calculus algorithm of section 2 improves substantially
the performance of both parts 1 and 2. Let's first consider part 1. '

The algorithms of the previous sections and the algorithm given here rely cn the fact that polynomials
of degree k tend to factor into polynomials whose degrees are “small”. In order to generate encugh equa-
tions to construct the database for GF(2") select pairs of polynomials (a(x},5(x)) such that dega(x)=d and
degb(x)=<d where d<b and the ged of a(x) and b(x) is 1. It is easily seen that there are precisely 2%4+1 guch

pairs. Let k be a power of 2 near Vn/b andduoosehtobethe]eutintegcrgreatcrthan-’;-. Suppose also

that the generating polynomial for the field has the form f(x)=x"+g(x) where g(x) has low degree. Let
h(x)=xM=g(x)x" " and define
c(x)=x"A(x)+B(x)
and
d(x)=[c()]t.

I both c(x) and d(x) are smooth with respect to b, then we obtain an equation for the database. In the case
n=127 we take b=17, k=4, h=32 and d=10. The polynomials c(x) and d(r) have degrees =42, Cop-
persmith [6] shows that the 2 million possible pairs (a(r),b(x)) yield about 47,000 equations in the 16,510
unknowns. The above procedure is a variant on the weight manipulation method of the previous section. A
more direct application of weight manipulation can be described. We illustrate the technique in the case
GF(2'%") generated by f(s)=x12"+x+1. Select pairs of polynomials (a(z),5(x)) which are relatively prime
and such that deg a(x)=7 and deg 5(x)s8. Form the polynomials c(x)=a(x)x’!+5(x) and d(x)=x3[c(z)]*
where deg c(x)=<38 and deg d(x)=<35. If ¢(x) and d(x) are smooth with respect to b=17 we get an equa-
tion.

We now describe part 2 of the algorithm. Let g(x) be a field element whose log is to be found. Sup-
pose t=deg g(x). Let k be a power of 2 close to V/t and A be the least integer greater than n/k. For ex-
ample, if rn=127, b=17 and 1=33 then choose k=2 s0 that A=64. Finally select d close to
(t+Vrib)log n)/2. In our example we take d=23. Choose a relatively prime pair of polynomials a(x) and
b(x) each of degree =<d such that g(x) divides c(x)=x"a(x)+b(x). The choices for a(x) and b(x) can easily
be determined by solving a linear system of equations over GF(2). Let d(x}={[c(x)}. If both c(x) and d{x)
are smooth with respect to the bound 5(1)=AVb/n then we have at most 2¢ irreducible factors of degree at
most 5(1), For each factor with degree >b we iterate this procedure and reduce the bound 5! with each
iteration. That is, at iteration i, b(i)=h(b/n)_2‘. If not both of c(x), d(x) are smooth then choose a new
pair a(x), b(x) and start again.

2

1 2
3 (tog m)?)

The asymptotic running time of this algorithm is computed by Coppersmith [6] to be exp (cn
which improves the results of the previous two sections.



80

We have implemented part 2 of Coppersmith’s algorithm. The following table displays test results of 8
samples each consisting of 100 randomly generated polynomials of degree at most 126. The degree bound &
is always 17 but for cach sample we varied the Coppersmith degree bound 5" and the value of d. We have a
column labelled “Total Number of Basic Iterations”, This refers to the number of iterations required to ob-
tain smoothness with respect to 5°. The column labelled *“Total Number of Coppersmith Iteration” is the to-
tal number of iterations to obtain smoothness with respect to degree bound 17 for those polynomials with de-
gree between 17 and b’. We also found that in this case a single step reduction of the Coppersmith reduc-
tion was optimal.

Total
Total number Average

number of time

of basic | Coppersmith | insec
b’ | 4’ | iterations iterations per log
201 121 99,496 6,731 57
201 13| 72,519 7,262 44
21§12 | 98,245 9,087 49
21 | 13 39,327 9,995 19
22 | 13| 38,390 11,859 28
2114 24,741 16,299 28
23 [ 14 | 20,296 20,726 27
23| 15 12,857 27,045 47

From the table it appears that b'=23 and d=14 is optimal. With these values we ran a sample of 500
randomly generated polynomials with the following result. The column headings are the same as in the pre-
vious table.

(23714 | 120,661 | 101,563 | 26.6]

For GF(21?7) we refer to an equation of the form
[C@I* = [AG):2+80))

as a Coppersmith equation. As a direct generalization of the weight manipulation technique discussed earlier
we consider equations of the form

@ = 2T YAt + B

and refer to these as underflow equations. With the degree of A(x) and B(x) at most 9 in the Coppersmith
equations we generated 19461 equations for the database in 8.1 hours on the VAX. With the degrees of
A(x) and B(x) at most 8 we obtained 7777 equations in 2.23 hours. The following table lists results when
underflow equations were used. The columns labelled deg A and deg B refer to the highest degree used for
A and B respectively. For polyncomial A we require that it has a constant term 80 that no Coppersmith equa-
tions are generated this way and the equations obtained from distinct rows are all different.



81

Value of | Number of
deg A { deg B | i | Equations | (Hours)
8 9 31 7891 2.89
9 8 30 7193 2.88
10 7 29 5975 2.80

If we use the Coppersmith equations with the degrees of A(x) and Bl(x) at most 8 and we use the underflow
equations given in the first two rows of the table we get 22,851 equations in 8 hours or onc equation every
.3499x 1073 hours. This is approximately a 16% improvement over collecting the 19461 equations using the
Coppersmith equations with deg A(x), and deg B(x)=9. This data was obtained by running our program on
a VAX11/780 at the University of Waterloo. The program is written in Fortran 77 with the ged routines in
assembler.

5. Conclusion

We have described the basic index-calculus algorithm and two variants of it. The basic algorithm and
the Waterloo algorithm both carry over to GF(p), p a prime. Using the Euclidean algorithm for integers it
is easy to show that given an integer @, 1sa=sp-—1, that there exist integers s and ¢ such that aswt(mod p)
and 1=|s], t<p—-1.

As for GF(27) it is clear that for n=127 this ficld is insecure and should be avoided in aryptographic
schemes. In [13] Odlyzko analyses the performance of the Coppersmith algorithm for various values of »
running on various types of equipment. The conclusion scems to be that an ambitious effort might be able
to produce the necessary database for n=<1280.

References

[1] L.M. Adleman, A subexponential algorithm for the discrets logarithm problem with applications to
cryptography, Proc. 20th 1IEEE Found. Comp. Sci. Symp. (1979), 55-60.

2] B. Arazi, Sequences constructed by operations modulo 2”1 or mod 2" and their application in
evaluating the complexity of a log operation over GF(2"), preprint.

{3] LF. Blake, R. Fuji-Hara, R.C. Mullin and S.A. Vanstone, Computing logarithms in finite ficlds of
characteristic two, SIAM J. Alg. Disc. Methods, Vol. § #2 (1984), 276-28S.

[4] LF. Blake, R. Fuji-Hara, R.C. Mullin and S.A. Vanstone, Finite field-techniques for shift registers
with applications to ranging problems and cryptography, Final Report Project #106-16-02, Department
of Communications (1983).

[S] LF. Blake, R. Fufi-Hara, R.C. Mullin and §. A. Vanstone, An attack on the discrete logarithm prob-
lem in GF(21%7), Progress Report, Project #106-16-02, Department of Communications (1982).

[6] D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, JEEE Trans. Inform.
Theory, (July 1984), 587-594.

{71 W. Diffic and M_E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, IT-22
(1976), 644-654.



82

[8] T. ElGamel, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE
Trans. Inform. Theory. to appear.

[9] T. Herlestam and R. Johanneson, On computing logarithms over GF(27), BIT 21 (1981), 326-334.

{10} D.E. Knuth The Art of Computer Programming: Vol. 2. Seminumerical Algorithms, 2nd ed. Addison-
Wesley 1981. '

[11] D.L. Long and A. Wigderson, How discreet is the discrete log? Proc. 15th ACM Symp. Theory of
Computing (1983), 413-420.

f12] R.C. Mullin, E. Nemeth and N. Weidenhofer, Will public key arypto systems live up to their expecta-
tions? HEP implementation of the discrete log codebreaker, preprint.

[13} A. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, Eurocrypt-84 (to
appear).

{14) S.C. Pohlig and M. Hellman, An improved algorithm for computing logarithms over GF(p) and its
cryptographic significance, IEEE Trans. Inform. Theory IT-24 (1978), 106-110.

[15] B.P. Schanning, Data encryption with public key distribution, EASCON Conf. Rec., Washington D.C.,
October 1979, 653-660.

[16] A.E. Western and J.C.P. Miller, Tables of indices and primitive roots, Royal Society Mathematical
Tables, Cambridge University 9 (1968).

[17] K. Yiu and K. Peterson, A single-chip VLSI implementation of the discrete exponential public key dis-
tribution system, Proc. GLOBECOM-82, IEEE (1982), 173-179.



