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ABSTRACT 

This paper presents the results of a simulation of an analog 
encryption scheme. The scheme, introduced in 1979 by Aaron Wyner of 
Bell Telephone Laboratories, provides secure, accurate scrambling of 
speech waveforms, while conforming to the bandlimitedness of a 
telephone channel. The simulation confirms the scheme's theoretical 
properties, based on numerical measures and on listening to encrypted 
and decrypted waveforms. 

INTRODUCTION 

Security in communications is increasingly important. While the 
thrust of research is in digital encryption methods, analog encryption 
is also of growing interest. Such encryption is useful, for example, 
in transmission to mobile telephones in automobiles, and to Cellular 
radios. 

Analog encryption for telephone speech poses special problems. 
Unlike digital encryption, it must be performed in real time. The 
result of encryption must conform to the bandwidth of the telephone 
channel, so that no information is lost. And it must be secure. 

A scrambling scheme introduced by Aaron Wyner of Bell Telephone 
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Laboratories CWyner, 1979a and 1979bl answers a theoretical question: 
Are bandlimitedness and security mutually exclusive? The answer is a 
theoretical "yes"; we present here a practical "yes," as confirmed by 
a software simulation of the scheme. 

Let us now define a scrambler, since it is a term we will use 
frequently. One may view a scrambler as a black box whose input is an 
element of one space, and whose output i s  an element of another. The 
black box computes a one-to-one mapping from the input space to the 
output space, based on some secret quantity, or key. 

Associated with the scrambler is a descrambler, a black box that 
computes a one-to-one mapping from the output space to the input 
space. The mapping is the inverse of that of the scrambler, when the 
secret quantity or key is the same. Without the key, however, it is 
computationally difficult to compute the inverse. 

The input and output spaces may be bit-strings of a given length, 
or a given number of samples of an analog signal. Although the 
samples of an analog signal can be considered as bit-strings (for 
instance, by concatenating the bits representing the samples), we 
choose to differentiate between analog and digital scramblers, based 
on the interpretation of the inputs and outputs. 

A n  practical scrambler, digital or analog, must have two 
characteristics: security and speed. An analog scrambler must also 
be accurate. With regard to the model here, such a scrambler must 
conform to the bandlimitedness and noise properties of a telephone 
channel. Speed also is critical, because an analog scrambler for 
telephone communication must operate in real time. 

RESULTS OF THE SIMULATION 

The simulation of Wyner's speech scrambler gives good results. 
Accurate decryption and secure encryption are shown to be achievable 
with reasonable processor power. In particular, a signal-to-noise 
ratio of about 13 dB is possible with a processor that can perform a 
multiply-and-add in 4 us. 

Several parameters define the operation of the scrambler. These 
parameters are adjusted to conform to the characteristics of the 
telephone channel, the quality of output desired, and the available 
processor power for the scrambler. A set of parameters that provides 
high-quality output and requires reasonable encryption speed for a 
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typical telephone channel is the following: 

o block size -- 32 points 

o samplinq rate -- 8000 per second 
o input band -- CO, 27003 
0 output band -- C300, 32003 

The significance o f  each of these parameters is described below. 

The main test of the scrambler is the encryption and decryption 
of an utterance of the word "potato." A qualitative, and somewhat 
subjective, analysis of the scrambler provides encouraging results. 

The decrypted signal sounds clear and accurate, with little 
difference in quality from the original signals. The transmitted 
signal, as expected, resembles white noise. One is able, however, to 
identify vowels when hearing the waveform. The signal sounds like 
"zhuh-zhuh-zhuh," one "zhuh" for each vowel. This problem, a result 
of orthogonality in the scrambler, is discussed below. 

Figures 1 and 2 show the waveforms and spectrograms for the 
transmitted and decrypted signals. The figures are hardcopies of a 
Lisp machine display using a speech analysis system called Spire, 
which was developed at the MIT Speech Laboratory. 

The transmitted signal's spectrogram is distributed nearly 
uniformly across the desired band, but not across time. Note that its 
short-time energy resembles that of the decrypted signal. The 
decrypted signal's spectrogram looks very much like speech, with the 
vowels (0 and A) clearly visible. 

The results, although favorable, are not complete. Certain 
simplifications in the software model lead to results perhaps better 
than those attainable in practice. Nonetheless, high quality with 
reasonable processor power is still possible. The simplifications are 
explained below. 

CHOICE OF PARAMFllERS 

Four parameters determine the operation of the scrambler. Their 
values determine the running time of the scrambling algorithm, the 
accuracy of transmission, and the level of security achieved. 
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Figure 1 -- Spectrogram of trasmitted waveform 
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Figure 2 -- Spectrogram of decrypted waveform 
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o block size -- m e  scrambler operates on blocks of samples, 
producing N outputs for every N inputs. The block size 
determines the security, and also the speed requirements. 
Typical values might be 32, 64, or 96. We choose 32 to 
minimize speed requirements. 

o samplinq rate -- A new sample of the input waveform is taken 
every T seconds. For speech, a rate of 8 kHz (T = 125 US) is 
about the minimum to avoid aliasing. Higher rates are 
generally not required, but they may improve the quality of 
the decrypted signals. 

0 input band -- This is the frequency band used to determine 
the basis vectors for scrambler input (and hence descrambler 
output). It is generally selected to maximize the amount of 
input energy included. For small N, much energy appears as 
DC, so a low end of 0 is chosen. The high end is at 2700 to 
provide a bandwidth narrower than that of the output. 

0 output band -- This is the band used to determine basis 
vectors €or scrambler output and descrambler input. It is 
generally wider than the input band, and conforms to the 
characteristics of the telephone channel. We use C300, 
32003, corresponding to the simulator's channel model. 

Design of most of the scrambler depends not on the actual 
frequencies--such as C300, 30003--but on their discrete equivalents, 
those scaled by the sampling period. With the parameters above, the 
equivalent band would be C.0375, .3753. In the discussion that 
follows, both input and output bands are loosely referred to as CW1, 
W23, where W1 and WZ are in the range CO, .53. The quantity W 
represents the bandwidth, or W2 - W1. 

HOW THE SCRAMBLER WORKS 

The bandlimitedness of the telephone channel constrains the 
output space of the black box scrambler model. Only those outputs 
resembling speech in bandwidth may be produced. Similarly, only those 
inputs of such form should be expected. 
speech-like subspaces of the sets of all samples must be provided. 

Thus a mapping between the 

We can approximate those subspaces by saying they correspond to 
the band CW1, W23 within the frequency spectrum on K O ,  . 5 3 .  Thus, 
while the spaces obtained from N independent samples may have 



dimension N, the subspaces--constrained to be near zero outside the 
selected band--really have dimension 2HN. With the parameters above, 
this quantity is about 22 for the input band, and 23 for the output 
band. 

The definition of bandlimited also includes indexlimited in the 
context of a speech scrambler. Each block of samples, if Considered 
alone with samples in all other blocks set to zero, should be 
bandlimited for sufficiently large N. This means the discrete-time 
Fourier transform (that is, the transform from an infinite set of 
discrete values to an infinite, continuous waveform) of the block 
considered alone, should be roughly limited to CW1, W23. 

Assuming that the subspace we want is of dimension 2wN, we must 
find a way to describe it. A naive description involves the discrete 
Fourier transform (that is, the transform from a set of discrete 
values to a set of discrete values). Perhaps the subspace is all sets 
of samples whose DFT is zero, except at those 2wN points in the 
desired band. Since the transform is one-to-one, the subspace would 
be the correct size. 

The solution is not quite so simple. We seek sequences that are 
both indexlimited and bandlimited. Those whose DFT is zero, except at 
certain points, include sine waves. Certainly these are not 
indexlimited. 

Mathematical physics has a set of functions called prolate 
spheroidal waveforms. These waveforms are the only eigenfunctions Of 
the finite Fourier transform (that is, the transform from a 
continuous, infinte waveform to a continuous waveform over LO,  1) ). 
Recall that eiqenfunctions are those that, when transformed, are but 
scaled over a certain range--in this case, LO, 1). 

The discrete counterparts of the waveforms--discrete Prolate 
spheroidal sequences--are similarly related to the discrete-time 
Fourier transform. Here the relationship is somewhat different. The 
sequences are "eigensequences" not of the transform itself, but of 
bandlimiting and of indexlimitinq. 

Specifically, when a sequence, defined by parameters N, W1 and 
W2, is bandlimited to CW1, W23, it is only scaled in indices C1, N3. 
The scaling is by the eigenvalue corresponding to the eiqenvector. 

Recalling digital signal processing, it is seen that to bandlimit 
a sequence is the same as to convolve the sequence with the 
non-causual impulse response of an ideal filter. For applying the 
response to a finite set of points, this is equivalent to 
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multiplication by a matrix derived from the impulse response. The 
eigenvectors of such a matrix are the eigensequences above. 

The key result is that the eigenvalues fall into three 
categories: those close to 1, those close to 0, and others between 1 
and 0. The eigenvalue represents the amount energy in the desired 
band CW1, W23. The majority of values are close to 1 or 0; 2HN*such 
values are close to 1. The corresponding 2W eigenvectors are the 
basis of the subspace. 

An example of prolate spheroidal sequences is given in Figure 3 .  

The sequences, their discrete-time Fourier transforms and their 
eigenvalues are shown, with N = 8 and band C.0375, .3751. Notice the 
high concentration of the first four sequences, and the low 
concentration of the last two. 

It remains to be shown how to use these discrete prolate 
spheroidal sequences to scramble speech. Since 2WN sequences form an 
approximate basis for the desired subspace, we can compute for some 
set of N samples a weight corresponding to each sequence. The weights 
are easily found by dot-products. 

We know that any combination of the 2WN sequences will remain 
bandlimited. Hence the weights computed may be scrambled in any 
fashion, and a new set of samples produced. Scrambling the weights by 
an orthogonal transformation is most accurate, because any error in 
computing the weights is not increased. 

The security comes from the orthogonal transformation. 
Multiplying the weights, represented as a 2WN-element vector, by a 2WN 
x 2WN matrix, is equivalent. The matrix may be constructed randomly, 
based on a sequence of random numbers initiated by a secret key. The 
receiver, knowing the key, generates the same sequence of random 
matrices, and hence can reverse the orthogonal transformations. 

One unfortunate result of the orthogonality is that the 
short-time energy of the output of the scrambler is the same as that 
of the input. This allows an adversary to differentiate between 
vowels and consonants. This problem is easily solved by adding a 
dummy waveform to the output to maintain a constant energy. 

Considering the scrambling scheme as a series of matrix 
multiplications, we can estimate a running time. The transformation 
to prolate spheroidal weights is a 2WN x N matrix by N x 1 vector 
product. The 2MN x 2WN matrix by 2WN x 1 vector product follows, then 
reconstruction using a N x 2WN matrix by 2i-N x 1 vector product. 
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Figure 3 -- Prolate spheroidal sequences for N = 8 
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The serier of multiplications is equivalent to an N x N matrix by 
N x 1 vector product. This requires N2 multiply-and-add operations 
for  every N samples. Hence one such operation is required each T 1 N 
seconds, giving the 4 us timing above. 

The simulator, of course, is not so constrained. It operates 
about 4000 times more slowly than a real-time scrambler. To scramble 
"potato" took several hours. 

SIMULATING A MODEL OF THE SCRAMBLER 

Notice the description of the scrambler above said very little 
about its role in a complete transmission system. Here we describe 
the way in which the black box is connected to the world--the input, 
transmission, and output processing. 

Figure 4 contains a block diagram of a model given by Wyner and 
used in the simulation. The diagram has eight components. The 
scrambler and unscrambler are those described above. The channel is a 
typical telephone transmission channel; the equalizer is typical 
tapped delay-line used to compensate for linear distortion in the 
channe 1. 

input 

signal 
-------- 

I 
V 

transmitted 
signal 

I 
V 

+---------+ 
1 - 1  

I 
V 

+--------- + 
+--------- + 
I SAMPLER I 

I 
V 
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The model of the scrambler naturally lends itself to 
object-oriented programming. Each module may be represented by a 
unique data type; indeed, even the signals and prolate spheroidal 
eigenvectors may be data types. Such an implementation is easily 
accomplished. 

A Lisp Machine--a minicomputer designed specifically for 
programming in Lisp--is used for the simulation. Its system of 
"flavors" allows construction of the data types to make a block 
diagram, and its graphics capabilities are useful for viewing 
waveforms and sequences as they pass through the block diagram. 

While the Lisp Machine is a sequential processor, the 
"transmission" of signals between modules is like that of a parallel, 
multiprocessor data-flow network. A driver passes input signals to 
the first module, which transmits to other modules, and so on, until 
the signals propogate to modules with no successors. 

It should be noted that the test environment is incomplete. The 
simulated equalizer is built knowing the response of the telephone 
channel. In practice, the equalizer would not be able to compensate 
as well for linear distortion, and errors would be larger. In 
addition, most calculations in the simulator are performed with 
high-precision floating point numbers. In practice, fewer bits map be 
used, and quantization errors in sampling will be present. These 
factors are not included in the simulation. 

WERE CRYPTOGRAPHY FITS IN 

It may appear that the scrambler is based more on signal 
processing than on cryptography. The selection of scrambling 
matrices, however, is a problem of current interest in cryptography. 
A good overview of present methods for creating scrambling matrices is 
found in CSloane, 19833. 

Two general methods for selecting the random matrices come to 
mind. Precomputation with random selection from a set of such 
matrices is fast; computation at run-time is secure. In either case, 
some sequence of random numbers is needed. The "key" to the black box 
determines this sequence. 

The simulator uses precomputation, since the matrix selected has 
little effect on the accuracy of the system. A set of matrices is 
computed by the Gram-Schmidt algorithm--by orthogonalizing matrices 
containing normally-distributed random elements. 
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Hadamard matrices (that is, those of size m x m, orthogonal, with 
all elements either 1 I m or -1 I m), are best suited for run-time 
calculation. Random permutations and sign changes, all quickly done, 
further increase the security. 

CONCLUSION 

A faster implementation of the scrambler is necessary for further 
study, given the slowness of the software model. The slowness I s  due 
primarily to the object-oriented implementation, which is ideal for 
detailed, step-by-step testing, but impractical for system testing. 
Since construction of a hardware unit in a short time period would be 
difficult, use of a processor with a floating-point accelerator is a 
logical next step. 
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