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1. I n t r o w  

Recently Ong, Schnorr, and Shamir [OSS I, OSS21 have presented new public key 

signature schemes based on quadratic equations. We w i l l  refer t o  these as the OSS 

schemes. The security o f  the schemes rest  in part on the dif f iculty of finding SOlUtiOnS 

to 

X2 - KY2 E M (mod n). ( 1 )  

where n i s  the product of t w o  large rational primes. I n  the original 05s scheme [OSSI], 
K, M, X, and Y were t o  be rat ional integers. However, when this version succumbed t o  an 

attack by Pollard [PS,Sl I ,  a new version was introduced [05521, where M, X, and Y were 

t o  be quadratic integers, i e. elements o f  the ring Z [ f i l .  In this paper we w i l l  show 

that the OSS system i n  Z [ a l  is also breakable The method by which we do this 1s to 
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reduce the problem of solving the congruence over the r ing Z[nI to the problem of 

solving the congruence over the integers, fo r  which we can use Pollard's algorithm. 

The OSS signature scheme described in  [OSS2] was intended to  provide a method by 

which a person can sign messages w i t h  the assurance that no one, including the 

receiver, can forge the signature, and so that anyone can easily veri fy the val idity of 

both the signature and the message. It works as follows: Party A generates two 

rational primes p and q each about 300 b i ts  long, using the same care as in  the key 

generation for  RSA to  ensure that n = pq cannot be easily factored by known methods. 

Party A also chooses random integers d, to, and t 1 such that (n,t&dt 12) = 1,  and 

publishes n. d, and K = (to + t 

they took K E Z, but we w i l l  show that the scheme is  insecure w i th  K E Z[nI). The 

messages consist o f  pairs o f  integers (M0,Ml) from the interval [l,n). In  order t o  sign a 

message, party A uses the secret key (tO,tl) t o  construct a solution to  the congruence 

X2 - KY2 = Mg + M , n  (mod n). The receiver of the message can easily verify that the 

message was the one signed by party A In order for the scheme to be secure, the 

receiver should have some assurance that no one can forge the signature without 

knowledge of the secret key K 

(mod n), keeping to, t p, and q secret. ( In  [OSS21, 

I t  was presumed that i t  would be hard to solve congruence ( 1  1 without knowing the 

secret keys, in part because Z[nl is not in general a Euclidean domain, and Pollards 

algorithm resembles the Euclidean algorithm i n  some ways. In this paper we w i l l  show 

that the problem of solving ( 1  1 over Z [ a ]  can be reduced t o  the problem o f  solving 

( 1  1 over Z. Pollards algori thm can then be used t o  solve the problem over Z, giving 

then also a solution over Z [ n ] .  Because we use Pollard's algorithm, the method 

constructs a solution to  the congruence without necessarily producing the secret keys. 

The most general OSS scheme was based on a polynomial congruence modulo a 

composite integer. Even though both of the quadratic OSS shemes have now been broken, 

i t remains an open question whether the most general form of the OSS scheme can be 

broken. 

In this paper, when we wr i t e  x o + x ~ n = y ~ + y l f i ( m o d n )  we mean that 

xo =yg(modn) and XI = y l h o d  n). In general, an element X of  the r ing Z [ a I  w i l l  

be wr i t ten as X = X o + X , f i ,  and we w i l l  wr i te N(X) for the norm of X, namely 



5 

N(X) = X$-dX 12. I f  X E Z[nl and (N(X),n) = I ,  then X is invertible modulo n, and we 

wr i te  = + F l a  for  the inverse. Note that 

= XoN(X)-I (mod n), 

f-1 -XlN(X)-I (mod n), 

and these can be calculated using the Euclidean algorithm, even though Z [ a l  may not 

be a Euclidean domain. 

To begin, w e  consider four computational problems: 

Problem I 

INPUT 

OUTPUT X, Y E Z such that X2 + AY2 = M( mod n). 

A, M, n E Z, (n,A) = (n,M) = I ,  

Problem I1 

INPUT 
PUTPUT Either a) or b): 

A, 13, C, M, n E Z, n$A, n@, n$(C2-AB), n$M 

a) X, Y f Z such that AX2 + BY2 + 2CXY = M (mod n). 

b) m E 2 such that 1 ( m c n and m I n. 

Problem 111 

INPUT d, n E Z, K = K o + K 1 n ,  M = Mo+MlJTj, (N(KM),n) = I ,  ntM1, n#d. 

OUTPUT Either a), b), o r  c) :  

a) X, Y E Z[J;j-], c E 2 such that (c,n) = 1 and X2 - KY2 I cM (mod n l  

b) m E Z such that 1 ( m < n and m I n. 
c) S E Z[nI such that S2 = K (mod n). 

problem I v 
INPUT: 

OUTPUT: X, Y E Z[J;?] wi th  X2 - KY2 = M (mod nl 

d, n E Z, K, M E Z[nl, (N(KM),n) = 1. 

We shall prove: 
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Iheorem L Problem I1 i s  solvable in polynomial time with an oracle for Problem I. 

Jheorem 2 Problem 111 is solvable in polynomial time with an oracle for Problem I1  

Theorem 3 Problem I V  i s  solvable in polynomial t ime with an oracle for Problem 111. 

The security of the original OSS scheme was based on the di f f icul ty of solving 

Problem I when N = pq, the product of two large primes. Pollard produced an algorithm 

for Problem I which is believed t o  run in deterministic polynomial time, and as a 

consequence was able t o  break the original OSS signature scheme. The details of his 

algorithm should appear in a jo in t  paper of Pollard and Schnorr IPS], where they W i l l  

prove under the assumption of an extended Riemann hypothesis that Pollards algorithm 

for Problem I runs in random polynomial time. I t  should be mentioned that in th is paper 

they also outline a method simi lar  to ours for solving Problem 111, having made th is  

discovery independently of the authors. 

Three of the authors (A,, E. and Mc.) have recently discovered a variation of  

Pollards algorithm that al lows us to  prove that Problem I i s  solvable in random 

polynomial time, removing the assumption of the extended Riemann hypothesis in 

Pollard and Schnorr's result. Our variation of Pollards algorithm i s  not a practical 

procedure for breaking the OSS scheme, but i t  has the advantage that one can rigorously 

analyse i t s  running t ime without any hypothesis. The details of this w i l l  appear i n  a 

later paper. 

As a consequence of these results, i t  fol lows that Problem I V  i s  solvable in 

random polynomial time, and therefore that the OSS signature scheme over Z l o l  i s  

insecure. 

Several remarks are i n  order here before we proceed. 

I .  The assumption that (N(KM),n) = 1 i s  made primarily for convenience. I n  the OSS 

signature scheme, n was taken to be the product of two large primes, and the 

scheme is compromised if the factorization of n can be discovered. Therefore 

values of N(K) and N(M) which have a nontrivial factor in common wi th  n are not 
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o f  any interest 

I f  n is not squarefree, then our algorithm for solving ( 1 )  may not work i f  

1 ( (N(M),n) < n. The reason for th is i s  i l lustrated by the example n = t2, where t is 

Composite, and t lM Our algorithm might detect the factorization n =  t2, and t r y  

to  use Hensel's lemma t o  construct a solution modulo t2 from a solution modulo 

t. Modulo t. however, the congruence reduces to  X2 - KY2 = 0 (mod t). Without 

knowing the factorization o f  t, the only solution we can construct i n  this case 1s 

the t r i v ia l  one w i t h  X = Y  =0, and th is  solution w i l l  not work i n  Hensel's lemma. In 

fact, Rabin [Rl has observed that any algorithm which produces solutions to  

X2 - KY2 3 0 (mod n )  can be used as a probabalistic algorithm for factoring n. This 

provides a reason for believing that ( 1 )  may be hard to  solve i f  (N(KM),n) > 1. 

In the OSS scheme, K was assumed t o  be a square modulo n, and part of the secret 

key used t o  sign messages was *(mod n). I t  turns out that this information i s  

not necessary fo r  signing messages in  polynomial time 

I f  n i s  odd, then a solution to ( 1  ) exists i f  (N(KM),n) = 1 .  I f  n is even, then not a l l  

messages M can be signed, even i f  (N(KM),n) = I .  In  particular the message M = f i  
i s  not signable i f  K l  i s  even, (where K = K o + K ~ f i ) ,  so f i  i s  not signable i f  K i s  a 

square. Our method w i l l  produce a solution t o  ( 1  1 i f  such a solution exists. 

2. Proof of Theorem 1 

The proof of Theorem 1 is elementary, requiring only that we complete the square. 

To begin, i f  1 ((A,n) or I < (B,n) or 1 < (M,n) or  I < K,n) < n, then the Euclidean 

algorithm w i l l  produce a nontrivial factor of n. I f  1 = (A,n) = (B,n) = (M,n) and nlC, then 

solving the congruence in question i s  equivalent to  solving 

X2 + BA-lY2 = MA-l (mod n) 
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An oracle for  Problem I now produces a solution. The only case remaining is  i f  

(A,n) = @,n) = (C,n) = (M,n) = 1. By completing the square we get 

Substituting Z = Y and W = X + CA- l Y  gives 

By assumption n .+ [(CA-1)2-(BA-1)1, so either (n , C2-AB) gives a nontrivial factor of 

n or else an oracle fo r  Problem I produces a solution W, Z t o  (3). In the latter case, 

Y = 2 and X = W - CA-lY i s  a solution t o  the original congruence. 

3. Proof of Theorem 2 

I f  1 < (MI, n) < n, then the Euclidean algorithm gives a nontrivial factor of n, So 

we may assume that (MI,") = 1 Since (N(M),n) = 1 ,  i t  follows that M i s  invertible 

modulo n, and w e  can use the Euclidean algorithm to  calculate fi = M o + M I ~  such that 

Mi? = I (mod n). I f  we now want to  solve 

- -  

then i t  suffices to  solve 

where ro+r 

of the congruence ( 5 )  becomes 

= (&)+E, &i)(KO+K ln). Setting YO = 1 and Y 1 = 0, the le f t  hand side 
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8y our assumptions we have that (Rl,n) = 1 ,  n]Kl d, and n$ti?02-dfl12). Therefore 

using an oracle for  Problem 11, we either get a nontrivial factor of n or a Solution Xo, 

X I  to  the congruence 

Let c = i;i0Xo2 + fiodXl* + 2dfilXoX1 - ro. I f  (n,c) = I ,  then 

giving an output o f  type a). If nlc, then 

giving an output of type c). i f  1 <(n,c)cn, then we get a nontrivial factor o f  n. 

4. Proof of Theorem 3 

We now show how t o  solve Problem I V ,  i.e. how t o  find solutions of the congruence 

where (N(KM),n) = 1 .  The method uses two appeals to an oracle for  Problem 111, 

essentially to replace K and M by integers. There are however several possible outputs 

from Problem 111, and we must show how t o  solve the congruence (6) i n  each case. 

Let us f i r s t  observe that i f  n = 2anl, where n l  i s  odd, then it suffices t o  solve the 

congruence separately modulo 2a and modulo n1, since we can then use the Chinese 

Remainder Theorem to construct a solution modulo n. In order t o  construct a solution 

modulo 2a when a I 3, we can simply t r y  all of the f in i te number o f  possible values 

for X and Y. 
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I f  a > 3, then we first construct a solution modulo 8 ( i f  i t  exists). We will  now 

show how t o  use Hensel's lemma t o  l i f t  the solution modulo 8 to a solution modulo Za. 

Let X = XO + X l f i  and Y = Y O  + Y 

X2 - KY2 = M(m0d2~1, where b > 3. We want t o  choose Z, W f Z [ d l  such that 

be a solution of  the congruence 

Since b 13,  th is i s  equivalent to  

X 2  - KY2 - M + 2b(XZ - KYW) E 0 (mod 2b+1). 

Let ~ 2 -  K Y ~ -  M = Z ~ R ,  w i t h  R E z[,/Tl. Then it suffices to find z and w satisfying 

XZ - KYW = -R (mod 2). (8) 

Since (N(KM),2) = 1, X2 E N(X) (mod 2) and Y2= N(Y) (mod 21, i t follows that either 

(N(X),2) = 1 or (N(KY),2) = 1 ,  so that  either X or KY is invertible modulo 2. I f  X i s  

invertible modulo 2, then a solution o f  (8) i s  given by 2 =-XR and W = 0. I f  KY is  

invertible, then we take Z = 0 and W = K Y R .  Since (7) i s  solvable, we can l i f t  the 

solution modulo 2b to  a solution modulo 2b*1. 

I t  now suffices t o  show how t o  solve the congruence ( 6 )  in the case n i s  odd. 

Consider f i r s t  the case that nld. In this case (6 )  reduces t o  the system of 

congruences 

Since (N(K),n) = 1 and (N(M),n) = I ,  it follows that (K0,n) = I  and (M0,n) = I ,  so that an 

oracle f o r  Problem I w i l l  produce a solution XO, YO t o  the f i rst  o f  these congruences. 

Furthermore, a t  least one of 2X0 and 2K0YO w i l l  be relatively prime t o  n since 

(Mg,n) = 1 and n is odd. Hence the second congruence above can be solved using the 
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Euclidean algorithm. 

Next we consider the case n odd and ntd. One of the possible outputs from 

Problem 111 i s  a factorization n = n 1 9 ,  I f  (n1,n22) = 1, then we can solve the congruences 

X2-  KY2 = M(mod ni) and combine the results w i th  the Chinese Remainder Theorem to  

get a solution of (6 ) .  This spl i t t ing procedure w i l l  be required at most O(logn) times. 

I f  in  the factorization n = n1n2 we have (np22) > 1, then l e t  G = (n1,n22), n = G2H,, and 

GI = (G,H1). If G I  = 1 and H1 = 1, then we have a relatively prime factorization and can 

use the Chinese Remainder Theorem. I f  G I  > 1, then wri te n = G2GlH2, and l e t  G2 = (G,H$ 

Continuing i n  th is manner, since the Hi's are decreasing, w e  either arrive at a value 

Hi = 1, or else we f ind G, = 1 which produces a relatively prime factorization o f  n. If 

Hi = 1, then it is easy t o  see that p ln  i f  and only i f  PIG. Hence we can run the algorithm 

w i th  n replaced by G, and later use Hensel's Lemma to  construct a solution modulo a 

sufficiently large power of G that i s  divisible by n. It should be remarked that the 

computations required to  apply both Hensel's Lemma and the Chinese Remainder 

Theorem can be carried out in  deterministic polynomial time. 

know S E Z [ 6 1  w i t h  S2 = K (mod n), then as in [OSS2] we get the factorization 

X2 - KY2 = (X - SYXX + SY). It then suff ices to solve the linear system 

Another possible output from Problem 111 i s  a square root of K modulo n. If we 

X - SY 3 1 (mod nl, 

X + SY = M (mod n). 

Notice that S i s  invert ible mod n, and also that 2 i s  invertible mod n since we have 

assumed that n i s  odd. Hence the solution t o  the linear system is provided by 

X = (M+ 1 )/2 (mod n) 

Y 3 (M- 1 M 2 S )  (mod n). 

We may now disregard the cases in which the output from the oracle for  Problem 

111 i s  not of type a). The f i r s t  step i n  solving (6) is to  reduce to solving 
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where c EZ. I f  nlMI, then (6 )  is already i n  the desired form. I f  ntM1, then use an 

oracle for Problem 111 t o  obtain XO, XI, YO, Y 1, c E Z, such that k,n) = 1 and 

(The procedure i f  the oracle returns a type b) or c )  output has already been dealt 

with.) Using an idea from Pollard's original algorithm (see [SI or [PSI) i t  i s  now enough 

to solve (91, since we can use the composition of binary quadratic forms to construct a 

solution t o  (6). By the observation of Lenstra (see [OSS21), the roles of K and c are 

interchangeable, so t o  solve (9) i t  suff ices to solve 

By the same reasoning that led us to the problem of solving (9), we can use an oracle 

for Problem 111 in order to  reduce ( 10) to the problem of solving 

(X + Y n I 2  - c(W + Z f i ) 2  = b (mod n), ( 1  1 )  

where b E 2 satisf ies (b,n) = 1 .  Finally we use an oracle for Problem I t o  solve ( 1  1 )  

over the rationals. 
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