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1 Introduction 
In securing packet switched digital communications, it is possible to add the security measures 

at almost any layer of the Open Systems Interconnection (03) model of network functioning. At 
one extreme, security may be supplied either by physical protection of the communication links 
(with no impact at all on network communication protocols) or by independent encryption of the 
traffic on each link of the network (with little protocol impact). Solutions or this sort are called link 
aeeuritg and, although widely employed, have the disadvantage of requiring the users to  place a 
high degree of trust in the network. At the other extreme, it is possible, using cryptography, to add 
security to each individual user level application. This has the advantage of minimizing the user’s 
need to trust the network and thus providing e n d - b e n d  aecurity, but also has the disadvantage 
of requiring a multiplicity of implementations. 

A natural compromise is to attempt to place the security measures a t  the lowest point of full 
end-to-end communications, thereby achieving the benefits of end-bend security with a single 
mechanism. As the provider of reliable end-bend communications, the transport layer is the 
obvious choice for this location. 

In this paper, we will pursue the transport layer approach by examining an existing transport 
protocol, the U. S.  Department of Defense Transmission Control Protocol (TCP), and considering 
the ways in which this protocol could be made secure. 

Our proposals will occur at three levels of compatibility starting with full compatibility with 
existing T C P  and progressing through an upward compatible extension to the possibility of related 
but incompatible protocols. 

2 Overview of TCP 
This section provides an overview of the functioning of TCP and is largely drawn or 

paraphrased from the TCP specification4. As in that document, the abbreviation “TCP” will 
be used to denote both the protocol itself and programs used to implement that protocol. 

The Transmission Control Protocol (TCP) is intended for use a s  a highly reliable host-to-host 
protocol between hosts in packet-switched computer communication networks, and especially in 
interconnected systems of such networks. It was explicitly designed for use with the DoD Internet 
protocol3, but in principle, TCP should be able to operate above a wide spectrum of communication 
systems ranging from hard-wired connections to  packet-switched or circuit-switched networks. 

2.1 Facilities 
To provide its service on top of a less reliable “networkn level communication system requires 

facilities in the following areas: Data Transfer, Reliability, Flow Control, Multiplexing, and Con- 
nection Management. 

H.C. Williams (Ed.): Advances in Cryptology - CRYPT0 ’85, LNCS 218, pp. 108-127, 1986. 
0 Springer-Verlag Berlin Heidelberg 1986 
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Data Transjer 

The TCP is able to transfer a continuous stream of octets in each direction between its users 
by packaging some number of octets into segments for transmission through the network. In this 
stream mode, the TCPs decide when to block and forward data at their own convenience. 

The sender can override the asynchronous character of the data transfer by setting the push 
flag in the TCP send command. This will make the sending TCP transmit all buffered data and 
set the push flag in the final resulting segment. The receiving TCP on seeing the push flag follows 
suit by forwarding all buffered data  to its user. 

TCP also provides a mechanism for communicating to the receiver of data that at some point 
further along in the data stream than the receiver is currently reading there are urgent data. T C P  
does not attempt to define specifically what the user should do upon being notified of pending 
urgent data, but the general notion is that the receiving process should take action to read through 
the urgent data quickly. 

Reliability 

Reliability is a complex issue that cannot be completely encompassed within a transport layer 
protocol. Redundant routing in the network, use of jam resistant communication links, and forward 
error correction all play a part in a comprehensive program of reliability. 

Guarantees of reliability can be divided into two categories of which the second is a necessary 
building block of the first. 

1) Assurance that the data will arive intact. 
2) Assurance that the receiver will know whether the data have arrived intact or not. 

A reliability mechanism providing some elements of each aspect is provided in TCP by the 
use of sequence numbers and acknowledgments (ACK’s) to deliver data undamaged and in order 
at the destination. Conceptually, each octet of data is assigned a sequence number. The sequence 
number of the first data octet in a segment is the sequence number transmitted with that segment 
and is called the segment sequence number. Each segment also carries an acknowledgment number 
which is the sequence number of the next data octet the receiver expects to arrive. When the 
TCP transmits a segment, it  puts a copy on a retransmission queue and starts a timer; when 
the acknowledgment for that segment is received, the segment is deleted from the queue. If the 
acknowledgment is not received before the timer runs out, the segment is retransmitted. At the 
receiver, the sequence numbers are used to order segments received out of turn and to eliminate 
duplicates. 

TCP’s acknowledgment and retransmit mechanism is augmented by adding a checksum to 
each segment transmitted, checking it a t  the receiver, and discarding damaged segments. 

It is important to note that an acknowledgment by TCP does not guarantee that the data 
have been delivered to the end user, but only that the receiving TCP has taken the responsibility 
for doing so. 

Flow Conlrol 

TCP provides a means by which the receiver can govern the amount of information transmitted 
by the sender. This is achieved by returning a “window” with every ACK indicating a range of 
acceptable sequence numbers beyond the last segment successfully received. This window specifies 
an allowed number of octets that the sender may transmit before receiving further permission. 
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Multiplezing and Connections 

To allow many processes within a single host to use the communication facilities simul- 
taneously, the T C P  provides a set of addresses or ports within each host. The concatenation 
of a port number with the host address from the network communication layer is called a socket. 

The reliability and flow control mechanisms require that TCPs maintain certain status infor- 
mation for each data stream. This information, including sockets, sequence numbers, and window 
sizes, is called a connection and is uniquely specified by the pair of sockets it connects. A connec- 
tion is de6ned by a pair of sockets, regardless of the processes plugged in to those sockets and 
TCP places no restrictions on a particular connection being used over and over again. Each new 
instance of a connection will be referred to m an incarnation of the connection. A local socket 
may participate simulaneously in connections to various foreign sockets and all connections are 
full duplex. 

When two processes wish to communicate, their TCP’s must first establish a connection 
(initialize the status information on each side). When communication is complete, the connection 
is terminated or closed to free the resources for other uses. 

The binding of ports to  processes is handled independently by each host. However, it  is 
convenient to attach frequently used processes (e.g., a file server or timesharing service) to  fixed 
sockets which are made known to the public. These services can then be accessed through the 
known addresses. Establishing and learning the port addresses of other processes may involve more 
dynamic mechanisms in higher protocol layers. 

Precedence and Security 

In addition to the above features, T C P  is also described as providing precedence and security. 
This, however, is security in the sense of computer operating system security and provides no 
protection in itself. I t  is only an option label passed through to the underlying network com- 
munication layer, which is expected to operate in a link secure environment. The security label is 
used by both the ends of the connection and any intermediate nodes to guarantee that classified 
segments will not be routed either to hosts with inadequate clearance or along paths with inade- 
quate protection. 

2.2 The Host Environment 

The TCP specification assumes that T C P  is a module in a computer operating system and 
that processes access the TCP much as they would access the file system. The TCP may call on 
other operating system functions to, for example, manage data structures. The actual interface 
to the network is assumed to  be controlled by a device driver module. The TCP does not call on 
the network device driver directly, but rather calls on the network level datagram protocol module 
which may in turn call on the device driver. Despite this assumption the mechanisms of T C P  do 
not preclude implementation of the T C P  in a front-end processor, but in such an implementation, a 
host-to-front-end protocol must provide the functionality to support the type of TCP-user interface 
described above. 

In the environment of a verifyably secure operating system, implementation of TCP within 
the system itself would be perfectly acceptable from a security veiwpoint. In the absence of this 
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- 
Source Port Destination Port 

Sequence Number 
1 

as yet unavailable technology, it is more desirable to isolate TCP together with the cryptographic 
machinery in a front end computer. 

2.3 TCP InterJaces 

The TCP/user interface provides for calls made by the user on the TCP to OPEN or CLOSE 
a connection, to SEND or RECEIVE data, or to  obtain STATUS about a connection. These calls 
are like other calls from user programs on the operating system, for example, the calls to  open, 
read from, and close a file. 

The TCP/network layer interface provides calls to send and receive datagram addressed to  
TCP modules in hosts anywhere in the internet system. These calls must have parameters for 
passing the address, type of service, precedence, security, and other control information. 

2.4 The Structure of the TCP Segment 

Data 
Offset Wicdow Reserved 

Checksum Urgent Pointer 

Figure 2.1 T C P  Header Format 

Options 

The TCP header block carries the sixteen bit names of the source and destination ports, but 
not the full socket names, which are carried in the underlying network layer datagram. It devotes 
thirty-two bits each to the sequence number of the first data octet in the segment and, if the ACK 
bit is set, to the value of the next sequence number the sender of the segment is expecting to 
receive. 

A four bit data offset field specifies the length, in 32-bit words, of the T C P  header. Six bits 
are reserved for possible use in future versions of TCP. Eight control bits explain the segment’s 
purposes: 

URG: Urgent Pointer field significant 
ACK: Acknowledgment. field significant 
PSH: Push Function 
RST: Reset the connection 
SYN: Synchronize sequence numbers 
FIK: No more data from sender 

The 16-bit window field gives the number of octets beginning with the one acknowledged that the 
sender is currently willing to accept. The checksum field contains a checksum of the entire segment 
plus a pseudo-header containing data from the network layer. This checksum was designed for 
simplicity and makes no attempt t o  detect intentional tampering. If the URG bit is set, the urgent 
pointer contains the sequence number of the first octet following the urgent data. 

The option field is of variable length and contains any selected options. Each option consists 

Padding 
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of either one octet, for a fixed length option, or an option octet, an option length octet, and the 
option data. Following the options, the header is padded out to an integral number of 32-bit words. 

2.5 Establishing and Clearing Connectiona 

Since connections must be established between unreliable hosts and over a potentially unreli- 
able communication network, a handshake mechanism with clock-based sequence numbers is used 
to avoid erroneous initiation of connections. 

A connection, as mentioned earlier, may be opened and closed repeatedly by a variety of 
different processes. The problem that arises from this is how to identify duplicate segments from 
previous incarnations of the connection, a problem that is apparent if the connection is being closed 
and reopened in rapid succession, or if the connection is broken (with loss of memory) and later 
then reestablished. 

A connection is specified in the OPEN call by the local port and foreign socket arguments. In 
return, the TCP supplies a (short) local connection name by which the user refers to the connection 
in subsequent calls. There are several things that TCP must remember about a connection and 
this information is stored in a data structure called a Transmission Control Block (TCB). 

The OPEN call specifies whether connection establishment is to be actively pursued, or to  be 
passively attended. A passive OPEN request means that the process wants to accept incoming 
connection requests rather than attempting to initiate a connection. Often the process requesting 
a passive OPEN will accept a connection request from any caller. In this case a foreign socket of 
all zeros is used to denote an unspecified socket. 

A connection is initiated by the rendezvous of an arriving segment containing a S Y N  and a 
waiting TCB entry created by a user OPEN command. The matching of local and foreign sockets 
determines when a connection has been initiated. The connection becomes “established” when 
sequence numbers have been synchronized in both directions. 

The procedure used to establish a connection is called a thrce-way handshake. This procedure 
is normally initiated by one T C P  and answered by another. This simplest threeway handshake 
is shown below. Segment contents are shown in abbreviated form, with sequence number, control 
flags, and ACK field. Other fields such as window, addresses, lengths, and text have been left out 
in the interest of clarity. 

TCP A TCP B 
I. CLOSED LISTEN 
2. SYN-SENT --> <SEQ=lOO><CTL=SYN> --> SYN-RECE1vF.D 
3. ESTABLISHED <-- <SEQ~300><ACX~lOl><Cn=SflJ,ACK> <-- SYN-RECEIVED 
4. ESTABLISHED --> < S E Q = l O l > < A C K = 3 0 L > < C = A C X ,  --> ESTABLISHED 
5 .  ESTABLISHED --> <SEQ=10l><ACK=30L><C~ACK><DATA> --> ESTABLISHED 

Figure 2.2 Basic &Way Handshake for Connection Synchronization 

The three way handshake also works if two TCP’s initiate communication simultaneously. 
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TCP A TCP B 
1 .  CLOSED (SLOSED 
2 .  SYN-SENT --> <SEQ=lOO><CTL=SYN> . . .  
3. SYN-RECEIVED <-- <SEQ=300><CI'L=SYN> <-- S Y N - m  
4 .  . . .  <SEQ=IOO><CTL=SYN> --> SYN-RECEIVED 
5 .  SYN-RECEIVED --> <SEQ=IOl><ACK=301>(C=ACK> . . .  
6. ESTABLISHED <-- <SEQ=30l><ACK=lOl><C?Z=ACK> <-- SYN-RECENED 
7 .  . . .  <SEQ=lOl><ACK=301><C?Z=ACK> --> ESTABLISHED 

Figure 2.3 $Way Handshake for Simultaneous Connection Synchronization 

The examples above do not show connection synchronization using data-carrying segments, 
b u t  this is perfectly legitimate, so long as the receiving TCP does not deliver any data to the user 
until it is clear the data are valid (i.e., until the connection reaches the ESTABLISHED state). 

The clearing of a connection also involves the exchange of segments, in this case, segments 
carrying the FIN control €lag. 

3 Meaning and Scope of Transport Layer Security 

In attempting to provide a secure transport layer protocol, we must answer two fundamental 
questions: 

(1) 

(2) 

The answer to the former question, as always, is that transport layer security is the combine 
tion of privacy (protection against disclosure of message contents to unauthorized parties) and 
authentication (a guarantee that the receiver knows the identity of the sender and that the mes- 
sage has arrived unaltered and without undue delay). In implementing secure transport protocols, 
however, it is valuable to refine this taxonomy. 

What does it mean for communications in the transport layer to be secure? 

What does it mean for this security to have been applied by the transport layer? 

As viewed from the transport layer, the opponent in an internetwork environment has the 
power not only to intercept, record, and examine all data passing over any connection, but to insert 
or delete messages a t  will. Privacy protection can be viewed as an attempt to limit the amount 
of information that the opponent can derive from these activities. Authentication measures are 
an attempt to assure that the opponents intrusions into the communication channel do not go 
unnoticed. 

In the case of privacy, there is the possibility that even though an opponent is prevented 
from discovering the contents of any individual message, he is nonetheless able to make valuable 
deductions from an examination of the timing, length, and distribution of a variety of messages, a 
technique called trafic analysis. Protection for the contents of individual messages is called message 
privacy. Measures that prevent an opponent from studying the overall flow of communications are 
called t r a n ~ m i ~ s i o n  security. 

Authentication is more complicated and is closely tied to the second question. In specifying 
that the receiver knows the identity of the sender, we must ask in what terms this identity is to 
be given. A transport protocol provides process to process communication, but these processes 
are known to the transport layer only through their association with sockets. A guarantee of the 
identity of the source of a message from the transport layer viewpoint is thus a guarantee that 
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segments actually emanate from some particular socket. This guarantee will be called protection 
against unauthorized connection initiation. 

Given this limited view of the meaning of identity within the transport layer, it is reasonable to 
ask how socket identity is translated into the identities of entities in which trust is actually vested 
within the security system. This translation, however, takes place within higher level protocols 
that make use of the transport layer. The role of the latter is limited to supplying secure socket 
to socket connections. 

The second criterion for the authenticity of data is a guarantee that messages have not been 
surreptitiously altered during transit; this guarantee is called assurance of musage integrity or 
protection against message stream modification. 

In either of the above cases it is also possible to distinguish difTerent levels of quality in the 
evidence for authenticity. It is often the caSe that although the receiver of a message is able to 
assure himself that he knows the identity of the sender and the message has come through the 
channel unaltered, he would be unable to establish to a third party that he had not composed the 
message himself. If the reciever has the means of establishing the identity of the sender to the 
satisfaction of third parties, we say that  the message bears a digital signature. 

Some intruder actions may take the form, not of altering legitimate messages or even of 
sending new ones, but of delaying messages either for a limited period of time or indefinitely. The 
possibility that the intruder will delay messages sufficiently that their meanings have changed is 
called the threat of replay. 

When the intruder goes one step further and delays messages indefinitely, the legitimate com- 
municators are said to experience denial of service. This threat is often treated differently from 
others as it .is often said that denial of service cannot be prevented, but only detected by authen- 
tication measures. A closer examination reveals that this is true of all threats to authentication. 
An intruder cannot be denied the chance to work mischief on the communication channel, but 
only prevented from doing it surreptitiously. In the case of message stream modification, however, 
countermeasures come so directly to the receiver’s hand as to becloud the issue: A message that 
is recognizably inauthentic will be rejected immediately and the intruder will have achieved little. 
The practical effect of authentication is either to deter the intruder altogether or to convert all 
attacks into denial of service. 

The use of protection against message stream modification opens the question of why false 
connections must be prevented at  all. Data that come from illegitimate connections and data that 
started out from legitimate connections but were modified en route are, after all, indistinguishable 
to the receiver. Since each message must be authenticated before it is accepted, an unauthorized 
connection might be opened, but no useful data could be sent over it. 

The answer lies in the second question. In saying that security has been supplied by the 
transport layer, we are saying that the higher level processes that appeal to the transport layer 
must be placing their faith in it, that  the transport layer itself must be operating securely rather 
than merely serving aa the conduit for secure communications. Any authentication procedure 
required to guarantee segment correctness must therefore be carried out by the TCP’s. To limit 
authentication tests to the data alone and thus allow initiation of a connection (fail to check 
authenticity of SYN messages) even though no data from that connection would be accepted aa 
authentic, serves only to leave an opening for the opponent to tie up the network with unauthorized 
connections. 
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4 Securing TCP Cryptographically 

4.1 Cryptography 

The basic approach to securing T C P  will of course be to encrypt as much as possible of each 
TCP segment. In so doing, we need make only a few assumptions about the cryptographic system 
in use. These assumptions describe the operations of which it is capable2,6, including whether it 
has the public key capability, but say nothing about its strength or internal functioning. 

Puhlic Key and Conventional Systems 

In using cryptography to provide a secure transport service, either public key or conventional 
cryptosystems may be used. The  advantage of the former are an improvement in the security of 
key distribution2 and the availability of digital signatures. The latter have the advantage, a t  least 
for the present, of both higher performance and greater familiarity. 

A public key system can perform all of the tasks of a conventional system, even though in 
some of these it can make no use of it3 public key capability. A single, public key, cryptosystem 
might therefore be used for all encryption within a network. At present, however, the low speeds 
and large block sizes of public key systems make them undesirable for any application in which 
their special capabilities are not required and a combination of public key and conventional systems 
is the most satisfactory arrangement. 

It is also possible to operate a conventional cryptographic system in the style of a public key 
system, thereby minimizing the effect on protocol structure of the decision to select one or the 
other. The user of a public key system employs one key (the other user’s public key) for sending 
messages and another (his own private key) for receiving them. The same approach can be adopted 
in the conventional case with each user employing one key to encrypt his outgoing messages and 
another to decrypt the incoming ones. 

It is important to remember that a conventional system operating in the public key style does 
not provide the public key functions; both keys must be treated as secret and no message can 
be regarded as digitally signed. It is equally important to note that this has little effect within 
the transport layer. At higher layers the distinction between conventional and public key systems 
affects the form of the protocols; in the transport layer, it affects only the quality of the protection 
provided. 

Cryptographic systems in the rest of this paper will always be described in the public key form. 
Each party will have both a sending key (other party’s “public key”) and a receiving key (his own 
“private key”). It is convenient for the lengths of keys to be powers of two. Keys for conventional 
systems are typically between 64 and 256 bits in length while public keys are at present somewhat 
longer, running from 256 bits up to about a thousand. 

M o d e s  OJ Operation 

All cryptographic systems to be used are assumed to be capable of operating in one of the 

(1) 

(2) 

following modes: 

Cipher block chaining mode (of which block m o d e  is a special case) with blocklength n- 

Cipher Jeedbock mode on chunks of text  of any size not longer than n. 



116 

(3) Synchronous modes such as counter driven mode or Output FeedBaek mode on chunks of 
text of any size not longer than n. 

The most common forms of cipher feedback operate on either a single bit a t  a time or on eight 
bits at a time. Because of the octet oriented structure of TCP, eight bit cipher feedback is the 
most natural choice for encrypting T C P  segments. In cipher feedback mode, however, a system 
can make no use of the public key property and cipher block chaining might therefore be selected 
for this purpose. 

Synchronous modes of cryptographic operation have been popular in communication systems 
because they do not propagate errors and thus offer good performance in the presence of noise. 
This feature has no direct effect on T C P  itself and is generally less applicable a t  the transport level 
of packet switched networks because of error correction at  lower levels. Nonetheless, there would 
be no disadvantage in using synchronous modes with TCP and this might in some cases provide a 
convenient compatibility with existing equipment. 

Me88 age In die alors  and Cryptographic Ch e c ksuma 

It is preferable for TCP segments to be independently decryptable, since tbe alternative 
requires that sufficient information be left in clear to allow segment ordering before decryption. The 
cost of this decision is additional information in each segment, telling the receiver the cryptographic 
state in which to begin decrypting the message. This information is variously called a meaaagc 
indicator or initializafion vector and should, for security’s sake, be no less than 64 bits in length. 

In both the cipher block chaining and cipher feedback modes of encryption, each item of text 
is encrypted or decrypted in a manner that depends not only on the key, but on some quantity of 
the preceeding cipher text. In these modes, the message indicator plays the role of this quantity. 

For authentication purposes, the cryptographic system must be capable of generating a cryp- 
tographic checksum for each segment transmitted. This checksum is of the order of 64 bits in 
length and depends on three different types of data: 

(1) Data included in the segment in encrypted form. 

(2) Data included in the segment, but not encrypted. 

(3) Data associated with the segment, but already known to the receiver and not transmitted. 

When a public key cryptosystem is employed, the cryptographic checksum can play the role 
of a digital signature. This can be accomplished either by applying the public key system directly 
to all of the data to be signed, or by computing a cryptographic checksum with a conventional 
system and then signing the checksum. 

Key Management 

Since key distribution is a process that is handled primarily above the transport layer, it will 
not be examined in detail here. For our purposes, i t  will be sufficient to assume that when a T C P  
connection is opened, keys specific to that connection have already been placed in position at  its 
ends. 
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4.2 Me8sage Privacy 

Message Privacy is accomplished by encrypting all data in the TCP segment and as much 
of the header information as possible. The amount of header information that can be protected 
depends on the degree of compatibility that  must be maintained between secure and unsecured 
TCP. If full compatibility (interoperability with existing TCP implementations) is required, all 
header data must be left in clear. On the other hand, in a network where all TCPs incorporate 
security and all segments are required to be encrypted, encryption can be extended to the header 
as a whole. In a network where both secured and unsecured TCP connections are permitted, some 
means must be provided for distinguishing between encrypted and unencrypted segments. 

Unlike the other elements of the header, the source and destination ports present a particularly 
difficult problem with respect to  encryption. Since connections occur between pairs of ports, 
port numbers are just the lowest order part  of the packet address and from this point of view 
should merely be passed in clear. This, however, although convenient, is undesirable and probably 
unnecessary. It is undesirable because the port numbers provide information of great value to  
a traffic analyst. It is unnecessary since the port numbers (unlike other parts of the address) 
distinguish between processes all of which are located within a single physically secured location. 

If the source and destination ports were encrypted in the connection specific keys, the receiving 
TCP would have no way of discovering for which of its ports an incoming segment was intended. 
Its only hope would be t o  decrypt the segment under the key associated with each possible port. 
Although procedures of this kind are suitable in some cases, the process would be too time 
consuming to be applied t o  each incoming segment. 

In order to avoid leaving the port numbers in clear there are two possibilities. Either all 
segments must be encrypted with a key associated with the host pair rather than the process pair 
or the port numbers alone must be encrypted with such a key. It appears preferable to  encrypt 
only the port fields using host pair keys, since associating keys solely with host pairs appears to 
present the same difficulties as having an additional host pair key and is made awkward by the 
fact that communication is synchronized on a connection basis. 

Host pair keys must either be provided by the key distribution mechanism along with the 
session keys or derived therefrom by the communicating TCP's. Any scheme presents some 
bookkeeping problems: When a second connection is opened between the same pair of hosts, the 
corresponding TCP's must cooperate in either maintaining the first host pair key or (probably 
better, but more difficult) switching t o  the second. This task cannot be borne by the Key 
Distribution Center unless there is only one KDC in use by the two hosts and this KDC is required 
to maintain awareness of all connections in progress. 

4.3 Transmission Security 

Even when the whole segment, including the entire header, is encrypted, the lengths, timings, 
and host addresses of segments will be visible to traffic analysts. This is a problem that ffi not 
readily attacked in transport layer protocols. 

The essence of transmission security is concealing traffic patterns from an opponent by sending 
dummy messages. The role of cryptography in this process is vital but limited: it prevents the 
opponent from distinguishing real messages from dummies. 

Transmission security measures can readily be applied at the link level in circumstances where 
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the cost of communication does not depend on the volume of traffic. In this case, the link is kept 
constantly busy with a stream of encrypted data whether there are real messages to send or not. 

It is also possible to apply transmission security measures in the network layer of broadcast 
networks. Under these circumstances, the origins and destinations of messages can be concealed 
by using cryptography & the addressing mechanism. All messages are encrypted and a station 
recognizes the messages addressed to it by finding that it can decrypt them successfully. The 
existence and lengths of messages are harder to  conceal. Dummy messages can be sent at little 
intrinsic cost, but they must be managed very carefully to avoid congesting the network. 

Applying transmission security on an end-bend basis in point to point networks (where 
addressing information is needed by the intermediate nodes) is extremely difficult and may properly 
belong to the network layer rather than the transport layer. In order to conceal all traffic flow 
information, messages must be transported by flood routing: The point to point network mimics 
a broadcast network by routing all messages to all possible addresses. This, of course, is feasible 
in only the most exceptional circumstances. It may, however, be possible to increase the traffic 
analyst’s burden’s, at acceptable costs, by sending only a moderate number of additional messages, 
particularly if resources are dedicated to relaying messages’. 

4.4 Secure Connection Management 

Security gives meaning to  the concept of connection above and beyond that already present 
in TCP. A secure connection is the fundamental service provided by a secure transport protocol 
and is characterized by the use of a particular set of cryptographic keys. In this light, the TCP 
concepts of “connection“ and “connection instance” deserve further examination. 

In TCP a connection is defined entirely by a pair of sockets. Intuitively, this concept is 
overbroad, failing as it  does to distinguish between two quite difierent cases. In the former, two 
processes, each of which owns a particular port, repeatedly open and close the TCP connection 
between them. In the latter, a connection is opened used and closed by a pair of processes, then 
at a later time the same pair of sockets, hence in TCP terms the same connection, is employed by 
a new and unrelated pair of processes. For TCP’s purposes, these cases are indistinguishable; its 
concern is solely to be able to  to discern and reject segments that are not intended for the current 
incarnation. 

We will use the term session to  distinguish connections of the former type, connections unified 
by the use of a single set of cryptographic keys. This term reflects the fact that these connections 
are arranged by key distribution protocols operating in the session layer of network architecture. 

It is still necessary to be able to distinguish one incarnation of the connection from the next 
and so we will further distinguish between session keys and incarnation  key^. The former are 
supplied by a higher level key distribution mechanism, while the later are arranged locally by the 
corresponding TCP’s in the course of opening the connection. 

It is also possible to take the more restrictive view that each incarnation of a connection is 
a distinct entity and thus to require old keys to be discarded each time a connection is closed 
and new keys to be distributed each time a connection is opened’. We will adopt the viewpoint 
above as being closer to  that  of unsecured TCP. Note however, that while a closed unsecured T C P  
connection leaves no trace in the participating TCP’s, a closed secure connection requires a key to 
be preserved for later use either by TCP or by some closely associated mechanism. 
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In many applications a secure connection will be limited to a single incarnation. The procedure 
in this case, however, is the same as for the multi-incarnation case: an incarnation key is derived 
from the connection key during the open. 

Establishing a Secure Connection 

Secure connection initiation requires the addition of a challenge and response authentication 
procedure to the three way handshake. Before connection initiation can begin, keys must have been 
delivered to the corresponding TCP’s. In the fundamental case, where one process is initiating 
a connection to another, the key distribution mechanism will also provide each TCP with a 
specification of both sockets. Once this has occurred, the “calling” TCP begins an active open 
sequence and the “called” T C P  begins a passive open. The basic structure of such an exchange 
follows; the issue of how the data  are incorporated in TCP segments depends on the degree of 
compatibility with unsecured TCP that is required and is discussed in later sections. As described 
earlier, all keys will be presented in pairs in the public key form. 

The calling TCP,  A, constructs a SYN segment to which a challenge has been added. 

TCP-A-+TCP-B: {A’s challenge}B’sptr61ickea, 

When the called TCP,  B, receives this segment it returns a SYN packet to A both answering A’s 
challenge and presenting a challenge of its own. 

A’rpublic kcy I TCP-B~TCP-A ~ ’ s  response { A ’ S  ehallenge}B’aPrivaLC 13’s challenge { 
Using TCP B’s public key, T C P  A can decrypt the first half of this message to verify that its 
challenge has been answered correctly and can recognize the latter part as a challenge to which it 
must respond. 

TCP-A4TCP-B: { B’8 ~ h a l l e n g e } ~ ’ ~ ~ ‘ ~ ~ ~ ‘ ~  

This exchange, in addition to unsecured TCP’s synchronization of sequence numbers, 
demonstrates to each party that the other is the party to which it had been referred by the 
key distribution mechanism. At the same time its serves to exchange pieces of information (the 
challenges) that will serve as the keys for the current incarnation. 

The requirement in unsecured T C P  that sequence numben be generated in a non-repeating, 
clock dependent, manner is replaced by a similar but more exacting mechanism for generating 
the incarnation key This allows the sequence numbers themselves always. to begin at zero, 
since segments from previous incarnations can be recognized as being encrypted under outdated 
incarnation keys. 

TCP allows the possibility that  both ends of a connection may attempt to open simultaneously. 
Although this is unlikely at the beginning of a secure connection, it can occur when a connection 
is reincarnated. The only effect of independent opens is that the second message above will appear 
as two distinct messages rather than one combined message. 

Passive Open with Unspecified Foreign Socket 

The secure connections discussed above all take place between fully specified socket pairs; 
unsecured TCP, however, allows the possibility of a passive open with an unspecified foreign 
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socket. Among secure TCPs, this event can only occur in limited cases, but these cases are very 
important. This mechanism both impinges on the domain of key distribution and is required by 
the key distribution center. 

When a listening T C P  receives an encrypted SYN from an unpredetermined foreign socket, it 
must determine what key to use. This problem is dramatically simplified if the connection keys are 
public keys, in which case the session key will be a public key for the listening process regardless 
of the identity ol the calling process. Using conventional keys, however, this determination is more 
complex. 

If the calling process is always assigned the same port by its local TCP, then the listening 
TCP can determine the correct key from the foreign socket. This is probably the most generd 
possibility that can be allowed since in any other case the contacts, although between the same 
two processes, are not in the T C P  sense the same connection. 

Measage Integrity 

Message integrity is gained by adding a cryptographic checksum (also about 64 bits in length) 
to the segment. This checksum covers the pseudeheader, header, and data and must be correct 
in order for a segment to be acknowledged. 

This mechanism also extends the sender identification established during connection initiation 
by demonstrating that the sender of the segment knows the incarnation key that was agreed on 
during the challenge and response. 

4.5 Detection of Replay 

Unsecured T C P  provides a mechanism for recognizing and rejecting segments from previous 
incarnations that have been lost long enough in the network to be mistaken for segments from 
the current incarnation. Secure T C P  must reject in addition segments held for arbitrarily long 
periods, and subsequently replayed, by an opponent. Fortunately, the cryptographic techniques 
used to provide security also provide a simpler and more reliable means of making this distinction. 

There are two fundamental means for judging the timeliness of messages. If the sender and 
receiver have synchronized clocks, a message whose integrity is guaranteed can also be authenti- 
cated as timely by examination of an included time field. This time field can be expressed either 
in hours minutes and seconds or, as with TCP’s sequence numbers, in terms of the amount of data 
sent and received. If synchronized clocks are not available timeliness can be verified by a challenge 
and response procedure. Data will be recognized as current if they are tied to  the response to a 
current challenge. 

Secured TCP uses both of these mechanisms. The incorporation of a challenge and response 
procedure in initiating the connection guarantees the timeliness of the SYN segments. These in 
turn serve to synchronize a clock (the sequence numbers) in terms of which the timeliness of all 
later segments is verified. 

Replayed segments will be detected as inauthentic either because they come from earlier 
incarnations of the connection, and are thus encrypted in the wrong incarnation key, or because 
they come from earlier in the same incarnation, and thus have the wrong sequence number. 
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4.6 Detecting Denial of Service 

Some protection against denial of service is built in to TCP through the acknowledgment 
mechanism: a sending T C P  cannot remain unaware that a segment has failed to reach its destina- 
tion. A TCP that is not transmitting, however, but merely waiting for a message from the other 
end of the connection has no way of knowing if this message has been blocked or merely has yet 
to be transmitted. 

To counter this possibility, a TCP that has not received a segment in some time can challenge 
the other end of the connection to demonstrate its availability and authenticity. This exchange is 
similar to that used to initiate an incarnation and can be used to change the incarnation key at 
unpredictable times during the session. This procedure can be used not only to detect denial of 
service, but to counter subtle vulnerabilities that make the use of a public key system to exchange 
conventional incarnation keys less secure than the use of public keys throughout2. 

5 Full Compatibility-An Added Layer of Protocol 

Full compatibility with T C P  does not permit encryption of the header or even any changes or 
additions thereto. Any action that is to be taken must consist solely of additions to and encryption 
of the user data. These additions, furthermore, must take place prior to, and therefore in ignorance 
of the actions of TCP. This renders such otherwise plausible acts as adding a cryptographic 
checksum of the entire T C P  segment. infeasible. 

The effect is of the addition of an extra layer of protocol at the upper edge of the transport 
layer. A host adopting this approach will present to the world an entirely correct T C P  appearance 
and may even have unsecured conversations with standard TCPs. A process requiring a secure 
connection, however, must make use of TCP not directly b u t  through the added security layer. 

Under these circumstances some of TCP’s functions are difficult or impossible to  duplicate 
without building almost full transport layer functioning into the added security layer. 

5.1 Data Privacy and Authentication 

From TCP’s point of view, the security layer is a user process and TCP will therefore hand it 
data that T C P  believes to be damage free and in proper order. This allows the security layer to 
protect the privacy of the data by encrypting them as a single cipher chain and frees the security 
layer from the need to add a message indicator to each segment. The result is a reduction in 
overhead when transmitting ordinary data. 

One price that is paid for this reduction in the normal case is increased overhead in transmit- 
t ing urgent data. When the security layer hands TCP a buffer with the urgent flag set, it must 
incorporate a message indicator as the first element. When the security layer receives urgent data 
from TCP, it must treat the first portion as a messagp indicator and decrypt the data accordingly. 

For authentication, the security layer must also compute cryptographic checksums on both 
the data and certain information from the TCP header and pseudo header. These are added by 
the sending security layer and used by the receiving one to test for alteration. In order to verify 
timeliness, these checksurns must cover some equivalent of the sequence number; in order to detect 
segments maliciously routed back to the sender, they may need to cover the full socket pair. 

Fortunately, although the elements of the header generated by TCP are not available to  the 
security layer, the information given to TCP in the  OPEN or SEND calls is. Requests to open or 
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use a secure connection are made to the security layer and passed thereby to TCP; this gives the 
security layer access to both socket addresses, although not the sequence number, acknowledgment, 
or window. To replace the sequence number to which it lacks acces, the security layer generates 
a sequence number of its own by counting octets. 

For the sake of generality, it  is desirable that authentication be accomplished without imposing 
any structure on the data  beyond the segmentation carried out by T C P  itself. This, however, 
presents a difficult problem. On transmission, the cryptographic checksum can be attached to  
the data given to T C P  by the security layer. Recognizing these checksums in the received data 
is another matter. The security layer is not only unable to get TCP header information, but on 
receiving, it is unable to distinguish the data comprising individual segments. 

In order to make the segment structure of received segments visible to the security layer 
markers must be placed in the data stream where they will be passed through by TCP. Since 
TCP provides a transparent channel, any code reserved for this purpose can be expected to make 
occasional independent appearances in the data. Preventing such patterns from causing disruption 
requires use of bit or character stuffing techniques to alter the reserved pattern whenever it is seen 
by the sending security later. 

In the event that inauthentic data are detected by the receiving security layer, its options are 
quite limited. It has no meaningful way to reject the segment, which has already been accepted 
by TCP, unless it duplicates the entire acknowledgment and retransmission mechanism. On the 
other hand, data that have already been accepted by TCP yet are found to be inauthentic must 
have been intentionally manipulated and the security layer can reasonably respond by sending an 
alarm message back to the user process and a reset to the TCP connection. 

5.2 Connection Initiation 

Use of a separate security layer means that the triple handshake of TCP must be completed 
and then mirrored in a similar cryptographic handshaking procedure by the security layer. At first 
glance, it would appear that these two processes could be at least partially combined by making use 
of the data carrying abilities of TCP SYN segments. This approach fails, however, because T C P  
will not deliver the data  in these segments to its user (the security layer) until its own connection 
setup process is complete. 

5.3 Detecting Denial of Service 

The separation of the security layer from TCP deprives the former of the level of denial of 
service protection supplied by TCP.  The security layer can check arriving data for integrity, but 
would require a full acknowledgment mechanism of its own to be sure that data it sent had arrived. 
Implementation of more refined denial of service detection, however, is straightforward and mimics 
the initial authentication exchange. 

6 An Upward Compotihle Eztensian o/ TCP 

An upward compatible extension of TCP simplifies the introduction of security by allowing 
the security mechanism direct access to the structure of TCP segments. This permits tiie segment 
as a whole, including almost all of the header information to be encrypted. The exceptions are 
a ,  bit indicating whether or not the segment is encrypted and perhaps the local and foreign port 
addresses. 

The problem of encrypting the port addresses has been touched on in an earlier section. They 
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Source Port 

cannot be encrypted in a connection specific key since they are used precisely to distinguish between 
the various possible connections. They can, however, be encrypted in a host pair key. This has 
little effect on the principal functions of T C P  and presents primarily a problem of installing and 
changing these keys a t  suitable times. 

In most cases, the receiving T C P  does not need to distinguish between encrypted and un- 
encrypted segments because it will have been informed by the key distribution mechanism that 
an encrypted connection is to  be created between specified local and foreign sockets. Aside from 
the possibility that encrypted and unencrypted segments may be allowed in the same session, the 
principal circumstance in which T C P  might be required to distinguish is that of a passive open 
with unspecified foreign socket. 

Since the receiving TCF' must be able to read the "encrypted" bit before decrypting the 
segment, this bit must be located in a fixed position relative to the segment's beginning, a constraint 
that precludes the use of the option area. The best solution appears to be using one of the 
reserved bits to indicate an encrypted segment. T h i s  assumes that the receiving TCP has only one 
cryptographic system at its disposal or that it has been informed by some other means of which 
system to use. This, however, is a natural assumption, since any other approach would be open to 
criticism on transmission security grounds. 

Encrypting the whole segment requires that decryption be carried out before segment reor- 
dering and therefore that each segment must be independently decryptable; this in turn mandates 
the addition of a message indicator to each segment. Since the receiving TCP cannot decrypt the 
segment correctly unless it is able to locate the message indicator, this item, like the 'encrypted" 
bit must occur in a fixed position, even though it only occurs in encrypted segments. 

One more item must be added to the segment: a cryptographic checksum. Unlike the message 
indicator, this need not be locatable prior to decrypting the segment. This allows greater freedom 
in its placement, but it seem clean and convenient to put it directly after the message indicator. 

Destination Port 

Checksum Urgent Pointer 

Options 

Figure 6.4 Encrypted Segment Header 

Padding 

The checksum occurs in every encrypted segment and is calculated from the entirety of the 
pseudo header, the header, and the data with the exception of the checksum itself, which may 
either be omitted from the calculation or replaced by zeros. In encrypted segments, the function 
of the 16 bit, non-cryptographic checksum in determining segment acceptability is supplanted by 
use of the cryptographic checksum. 
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In segments with the SYN flag set, additional data must be incorporated for the challenge 
and response aspect of the handshaking. These are probably best included in option fields, and we 
will add the two options CHAL and RESP. This permits these options to be used by themselves 
for various reinitializations of the incarnation key. 

6.1 Privocy, Reliability, and Authenticity 

Except during the opening of a connection, TCP’s many functions operate protected, but 
barely affected, by encryption. An opponent examining intercepted segments can observe that 
their encrypted bits are on, and can confirm this observation by attempting to read the data, 
but can observe nothing more than the total length of the segment. The connection to which the 
segment belongs, the segment’s data, and the various fields that would reveal how many octets have 
been sent, how many acknowledged, and whether the segment is a SYN, FIN, or retransmission 
are all concealed. 

The acknowledgment and retransmission mechanisms of secured and unsecured T C P  operate 
in exactly the same way except that the cryptographic checksum replaces the non-cryptographic 
in deciding whether to  accept a segment. An opponent can neither alter the subscribers’ data nor 
affect the connection’s behavior by inserting phony control segments, since any segment received 
is first judged for authenticity by its checksum and then for timeliness by its sequence number. 

0.2 Secure Connection Initiation 

The unsecured three way handshake assures both participating TCP’s of the timeliness of 
the connection and allows them to reject stray segments from previous incarnations with high 
reliability. Each side chooses an initial sequence number for the current incarnation, sends this 
sequence number to the other TCP and recieves in return an acknowledgment of this choice. 
Each T C P  must both have acknowledged the other’s starting sequence number and received an 
acknowledgment of its own before it will regard the connection as open and accept data for passage 
to its user. 

The initiation of secure T C P  connections follows this pattern in form and extends it in 
objectives, verifying the timeliness of the connection as well as the more fundamental fact that the 
participating parties share a compatible set of cryptographic keys. 

Rather than agreeing on initial sequence numbers, secure TCP’s agree on a set of keys for 
use in the current incarnation. This allows segments from previous incarnations to be detected 
not on the basis of bad sequence numbers, but on the inability of the receiver to decrypt them 
and derive a correct cryptographic checksum. This procedure is less prone to accidental failure 
than the unsecured version since keys are never less than twice as long as TCP’s 32-bit sequence 
numbers and accidental repetitions are correspondingly less likely. It also frees the participants 
from the need to select random starting points in the sequence number space and allows both to 
begin at zero. 

In a secure connection, sequence numbers can never be permitted to cycle during the use of 
a single key since this would not allow new segments to be distinguished from old (played back) 
segments with the same sequence number. In fact, keys are not expected to remain in use for 
nearly this long, but rather are changed periodically by a mechanism to be discussed in connection 
with detecting denial of service. 

In the most common case of secure connection initiation! one end of the connection, which we 
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SEQ = 0 AcK = 1 CTL = ENC, SYN, ACK 
Message Indicator 

B's challenge 

B's response = {At$ challenge}B''PriY"LCkey 

B+A [+,I Cryptographic Checksum 

I 

will denote as A, starts proceedings with an active OPEN while the other, B, makes itself receptive 
to an arriving segment by doing a passive OPEN. 

A+B : 

B'apublic key 

Cryptographic Checksum 

Once B has checked A's signature on the challenge, both processes are in an ESTABLISHED 
state and are willing to accept and acknowledge data. As with an unsecured handshake, the 
synchronization messages can carry data,  but  these data must not be accepted and passed on to 
the user until the handshake is complete. 

Throughout connection initiation, the segments exchanged are encrypted in the correspon- 
dents' session keys. Once the TCP's enter the ESTABLISHED state, however, they will switch to 
using an incarnation key, manufactured from the exchanged challenges, for the duration of the 
incarnation. There are various ways to produce such an incarnation key, but we will adopt the 
convention that  the challenges are treated as exchanged public keys, regardless of whether a public 
key or conventional system is in use. Each side of the connection will t h u s  transmit in one key and 
receive in another. 

The switch from the session keys to  the incarnation keys opens the possibility of doubt on 
the receiving TCP ' s  par t  about which key to use in decrypting an incoming segment. Once 
an incarnation key bas been selected, this will become the key of choice and most segments 
otherwise encrypted will represent errors. If, however, a segment fails to decrypt correctly using 
the incarnation key, the session key can be tried. 

6.3 Detecting Denial o j  Service 

Denial of service can be reliably detected by the sender of messages, say A, through its failure 
to receive acknowledgments. After a number of attempts that will  vary with circumstances, it will 
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respond by sending a trouble report to its user. An intruder cannot defeat this strategy by sending 
phony acknowledgments because he is unable to make his phonies cryptographically acceptable. 

The prospective receiver, B, on the other hand has no way of knowing that segments intended 
for him are being prevented from reaching their goal. If B is to discover this, he must send messages 
to A that will provoke a response. 

The same challenge and response mechanism used in establishing the connection is suitable 
for this purpose. Either party may at  any time during the connection, whether it feels deprived 
of incoming data or not, send a new "public key" to the other party and expect a satisfactory 
response. This challenge can be given a segment to itself or combined with user data. This latter 
possibility helps to prevent an opponent from distinguishing such messages from data and allowing 
only the former to pass. 

It is interesting to note that challenges posed in this manner arrive in segments encrypted 
with the current incarnation key, but must be signed with the receivers private key. A correct 
response therefore guarantees that the responder knows both. 

After a key change, arrival of legitimate data encrypted with the old key is not unlikely and 
the receiver must be prepared to hold it until all segments sent before the key change have been 
received and acknowledged. The sender is under no such obligation and can freely retransmit 
unacknowledged segments in the new key rather than the old. 

As noted earlier, this mechanism not only serves to detect denial of service but to prevent 
recycling of sequence numbers. 

7 Incompatible, But Re[ated, Protocols 

TCP is best suited to establishing connections across which substantial amounts of data will be 
transferred asynchronously in both directions; it is inefficient for transmission of small amounts of 
data such as remote procedure calls and, due to its insistence that every segment must be received 
undamaged and acknowledged, ill suited to carrying real time data such as voice. 

TCP's inefficiency in transmitting small amounts of data has a direct effect on its suitability 
for communication between a KDC and its clients since key exchange requires only very short 
messages and, unless each client maintains a constant connection with the KDC, TCP will add 
substantial overhead. The specialization of TCP has a more profound effect, however, on its utility 
as the common denominator of secure communications and the primary location for the network 
security mechanism. This utility is dependent on the assumption that all processes above the 
transport layer will make use of TCP and can thus relay on it to provide security. If instead, there 
must be several secure transport layer protocols, not only must security be incorporated in all of 
them, but each must be provided with access to cryptographic hardware. 

TCP segments are best viewed as "programs that are mostly data" and TCP as an interpreter 
for executing these programs. In this view, an effort to make TCP more flexible would probably 
change it from a language with a nearly fixed length instruction set to one with a variable length 
instruction set. Instead of requiring that all of the various fields: acknowledgment number, 
checksum, window, etc. be present in every segment, the segment header would begin with the 
control bits and incorporate additional fields as needed. 



127 

- 

Reserved 
Data 
Offset 

~~~ 

Sequence Number 
Acknowledgment, Window, etc. (as needed) 

Options and Padding 

Source Port 

1 Data 

Destination Port 

Figure 7.5 Possible Alternative Header Format 

In a configuration analogous to that presented in the previous section, a security control bit 
would be set. This would indicate that the segment must be decrypted and that the acceptance 
test would be cryptographic. In this case a checksum control bit would not be present and no non- 
cryptographic checksum would be performed. The present T C P  layout in these respects would be 
modeled by turning the secure bit off and the checksum bit on. In a local area network that wa3 
considered to be both reliable and secure neither bit might be set. 
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