
SOFTWARE PROTECTION:

MYTH OR REALITY?

James R. Gosler
Sandia National Laboratory

Division 7233
Albuquerque, N.M. 87185

Abstract:

Staggering amounts of commercial software are marketed to fulfill
needs from the PC explosion. Unfortunately, such software is trivial
to duplicate! From the vendors' viewpoint a way to protect profit is
needed. Typically, they have resorted to various schemes that at-
tempt to inhibit the duplication process.

Although protection of future profit is important, so is protection
against current loss. Commercial and business related software must
be adequately protected lest data be stolen or manipulated. However,
more important than any of these classes is protection of government
computer resources, especially classified and operational software
and data. L o s s of control in this realm could be detrimental to
national security.

This paper addresses current technologies employed in protection
schemes: signatures (magnetic and physical) on floppy disks,

*This work performed at Sandia National Laboratories,
supported by the Department of Energy under contract
No. DE-AC04-76DP00789.

H.C. Williams (Ed.): Advances in Cryptology - CRYPT0 '85, LNCS 218, pp. 140-157, 1986.
0 Springer-Verlag Berlin Heidelberg 1986

141

Software Analysis Denial (SAD), Hardware Security Devices (HSD), and
Technology Denial Concepts (TDC) are presented, with an emphasis on
SAD. Advantages and disadvantages of these schemes will be
clarified.

1.0 INTRODUCTION

Software piracy, unauthorized penetration and system
modification[l2,13] are areas of threat to government and business
computer systems, even the economic survival[6] of many software
vendors is in peril. Vendors are typically using three main
strategies to combat the piracy dilemma. The strategies[16], usually
used in combination, include marketing, legal, and technological. A
typical marketing strategy is to price software at an extremely
attractive figure in the hopes that each potential customer will
purchase it, especially to receive the required documentation and any
technical consultation. The legal ploy[7] includes sueing for
copyright or licensing agreement violations. These schemes by them-
selves have limited effect, but are useful in combination with other
strategies. Technological schemes are extremely varied in detail,
though they can be typically grouped into a few categories. The
effectiveness of these technical schemes vary substantially and this
is a major topic of the paper. The technological arena provides the
only substantial methodology to combat software threats in government
and business application fields.

Concerns other than just preventing duplication of software are
very important. For instance, software vendors may wish to protect
against disclosure of proprietary algorithms, banking executives must
prevent their system programmers from being able to examine or modify
bank accounts, and government entities must design defense systems
software with an intrinsic ability to prevent tampering of critical
components or information. There are many examples where the hiding
of critical information in software or detection of modified software
is desirable, possibly mandatory. These conditions are found in all

142

types of computer related applications, but have yet to receive the
attention they deserve. One of the greatest flaws current banking
and government computer security systems have in common is an im-
plicit assumption that the adversary does not have access to a
system. There are many recent examples that show this is not a good

assumption! Obviously, this assumption, concerning potential adver-
sary access, is not the case with copy protection schemes where the
system is essentially thrown into a den of **wolves**.

The overall intent of this paper is to discuss current
capabilities of both the defense and the threat, provide a comparison
between them, and suggest a set of goals for the ultimate software
protection system.

Examples used in this paper are fictitious, but at the same time
are representative of current copy protection techniques. However,
we will neither deal with the issue of how protection schemes impact
the end user nor address any specific defeat methodologies to com-
promise current security schemes. The IBM PC, used by the author,
will serve as a vehicle for examples.

2 . 0 FUNDAMENTAL CONCEPTS

We will provide some fundamental principles of copy protection
and relate these via an analogy before discussing some of the techni-
cal concepts associated with defense and threat.

There are two broad components in a copy protection scheme. The
first is a uniqueness associated with the system, which must be
difficult to reproduce. Typically this is done with an unusual
sector(s) on a floppy disk or by using a Hardware Security
Device (H S D) that is separately attached to the system. The other
component is special software that is usually embedded somewhere
within application software and it is responsible for interrogating
the presence of the uniqueness in the system. If present the special
software may also determine if the uniqueness is pristine or altered.

143

A security or copy protection system of this type can be beaten
by two general methods; by duplicating the unique signature as-
sociated with the system or by modifying the software (application or
system) in such a manner that application software will operate
without the unique signature being present. The adversary need use
only one of the above methods and generally the easiest is chosen.

Thus, not only must the defense design a difficult to duplicate
unique signature but, must also make it hard for an adversary to
analyze and/or modify the software. Interestingly, many software
packages, which employ some form of copy protection, do nothing to
make analysis and/or modification of software difficult for the
adversary -- these schemes are easily defeated. Importantly, it is
this component of a good security scheme that has many applications
outside the field of copy protection.

Another way of looking at the analysis and modification problem
is by analogy using a burglar alarm. Suppose that a valuable asset
must be protected and to do this we place the asset in a vault and
surround it with an alarm system having many different types of
sensors. These sensors are responsible for detecting changes to the
normal operating environment. Upon detection, the alarm will be
triggered, guards will appear, and the burglar will be permanently
detained. In this analogy the valuable asset could be special
software that checks for the presence of the unique signature. The
sensors could also be special software which attempts to determine if
the operating environment has been modified due to the use of, for
instance, dynamic analysis tools by the adversary. Finally, the
alarm might be anything from displaying an DNAUTHORIZED DUPLICATE
message to implanting a WORM (software which will cause harm to the
system) in the software.

For the software case it is feasible that an adversary has
analysis tools with special properties that will not alter the
monitored environmental parameters. Thus, the software can be
analyzed easily without detection. In most cases even if detection
occurs nothing terrible happens. Guards do not appear nor are worms
implanted. The adversary, therefore, has an unlimited try capability
and through repeated experiments will eventually win.

144

3 . 0 THE DEFENSE

A vendor wishing to protect his system will want duplication of
the unique signature to be difficult for an adversary. He will also
want it to be difficult to analyze or modkfy the software, which
could bypass the need to duplicate the unique signature. Even the
necessity of hiding proprietary algorithms may be appropriate.
Government system software designers have similar objectives, but for
different reasons. In order to prevent the adversary from having a

working model of the system with which he can perform analysis at his
leisure, designers want duplication to be difficult. However, the
most important objectives are to make it extremely arduous to modify
the system in a way that bypasses critical features (checks) and to
obtain sensitive information (e.g. crypto variables). For both cases
the objectives of the defense are threat scenario dependent. As
such, designers must consider the ways in which their systems are
vulnerable to an adversary and then take steps to thwart or nullify
adversarial intrusion.

It is apparent that software developers with diverse applica-
tions have similar needs from the realm of software protection
although the reasons they need protection are as diverse as the
applications.

How can the defense achieve his objectives? As a vehicle to
unveil techniques and concepts, we will employ an IBM PC as the
system and copy prevention as the objective.

3 . 1 UNIQUE SIGNATURE

To make duplication of software difficult there must be an
additional component(s) included in the system specifically to
provide trouble for an adversary to reproduce. This component(s)
usually falls into one of two categories in the commercial world.

The first category is comprised of a unique signature on the
floppy disk itself. Typically, this comes in both a physical and a

145

magnetic form. The physical signature involves removing a small
amount of magnetic material from the floppy disk surface with a
laser. The scheme is implemented by software that writes some infor-
mation to this damaged area and then reads the information from the
same area back into memory. If the information read is the same as
that which was written, then clearly there was no laser damage on the
disk at the proper location. We can conclude the software/disk
combination is not the original.

A magnetic form of floppy signature involves altering the stan-
dard IBM System 34 (double density) [11,18] recording format. Besides
end u6er data, each track contains address marks, gap bytes (sync
fields), sector ID fields, Cyclic Redundancy Check (CRC) bytes, and
clock bytes. A l l of this information must be present and correct in
order for the Intel 8272A floppy disk controller (FDC)[9,14] to
properly process the end user data. It is quite possible, by alter-
ing this standard format[5], to cause the FDC to return an error
status message back to the microprocessor (Intel 8088)[9,14,15] as a
result of a disk operation. Examples of typical errors are bad CRC,
sector not found, and address mark not found. For the system to
determine that the unique signature is present, the software need
only perform a disk operation(s) and then determine if correct error
status is returned. It is also possible to create a non-standard
disk format by issuing an unusual sequence of commands to the FDC or
by using special hardware which bypasses the FDC and its inherent
limitations.

The second category of unique signature consists of a hardware
security device (HSD)[17], which is currently being used in many of
the more expensive software packages. The HSD can be connected
externally to the PC via the RS 232 port, the parallel port, or even
placed in series with the keyboard. It is rarely connected inter-
nally since it typically requires use of a valuable card slot.

The manner of HSD implementation within a system also varies.
In its simplest form the system will send a fixed value to the HSD
which then responds with a fixed value. The software will compare
the response with a stored value to deternine if the HSD is present.
In more sophisticated versions, the system will send to the HSD and
receive from it a variable value, and possibly even have part of the

146

software encrypted and stored in the HSD. HSD advantages (from a
security point of view) are that it is more difficult to duplicate
than a floppy signature and it is not as obvious to an adversary when
the system is looking for the unique signature.

The HSD is much more expensive, which constitutes its primary
disadvantage, and therefore is usually not used in cheaper software.

3.2 SOFTWARE ANALYSIS DENIAL (SAD)

What is currently being done in commercial software to make
adversarial analysis and/or modification of the software more
difficult?

In the copy protection game, it does little good to have a
unique signature, impossible to duplicate, if the adversary can
easily modify software such that the signature need not be present
for proper operation. Consequently, it is imperative to have a well
balanced protection scheme -- the difficulty of duplicating the
signature should be comparable to analyzing and modifying the
software.

since the most common tool used by an adversary is a software
debugger, we Will limit remarks to techniques the defense can employ
to make analysis from this source more difficult. However, we will
also address some techniques being used to make modification of
critical or non-commercial software difficult.

Given that the defense knows what tool(s) the threat will likely
use, he must determine how the normal operating environment w i l l be
altered by use of these tools. For the case of a debugger, there are
available several modifications to the environment.

The first and most obvious change is that the debugger must
reside in the same memory space as the application, thus, a foreign
presence can be checked for. Typical debuggers depend heavily on
certain interrupt vectors to single step and breakpoint the applica-
tion software. Application software then could easily integrate the

147

use of these vectors into the application itself and thereby create
difficulty in using the adversary debugger. Quite often in the
analysis effort, it is convenient for the adversary to modify
registers and/or memory locations to help in understanding of the
software. Difficulty can be enhanced by making the proper execution
of software highly sensitive to not only memory location and
registers used, but to all memory locations and registers available.
Finally, the application should have code which is timing sensitive
because analysis of the software will alter its correct timing.

Assuming that the adversary can, through analysis, determine
what he needs to modify, then the defense needs to employ techniques
to make the desired modification difficult. The most common tech-
nique seems to be through use of checksums. If the defense realizes
where an adversary will likely modify the software then they will
perform checksums on this area of code hoping that any change to the
critical code will alter the value of the checksum. Encrypting the
critical software is another technique. If the adversary, through
analysis, examines the decrypted form of the critical code and deter-
mines what needs modification, then he also must determine how to
alter the cipher text that will yield the desired result. Public key
cryptography is useful in this area. For example, if the algorithm
used to encrypt the critical software was RSA and only the decrypt
key was stored in the system, then the adversary would have an ex-
tremely difficult time determining how to change cipher text to
achieve the desired plain text.

Numerous other techniques are currently being used in the corn-
mercial world, such as executable software movement, searching for
breakpoint instructions and taking advantage of the Intel 8088 pre-
fetch queue.

3.3 TECHNOLOGY DENIAL CONCEPTS (TDC)

Assuming acquisition of a working system, it is imperative to
keep the adversary f r o m performing dynamic analysis on it in an
interactive fashion. If he is allowed to perform this interactive

148

dynamic analysis, he will eventually be able to locate and bypass all
of the SAD features discussed in 3 . 2 .

For this reason the adversary must be made to pay a penalty each
time he is detected by SAD sensors. This penalty could be anything
from destroying critical system components that would disallow fur-
ther testing with that particular system to subtly altering the
system in such a way as to provide disinformation, which is of no
pertinent value, to the adversary.

Unfortunately, from the pure security viewpoint any commercial
product containing or even suspected of containing TDC will suffer
exceedingly due to consumer abhorrence and consequent economic
leverage. This was typified by the irate consumer response directed
against several software security vendors who boldly announced the
intended use of worms in a future release of their products.

4 . 0 THE THREAT

Adversarial objectives of the threat are diverse. They encom-
pass pirating commercial programs, subverting banking or government
software, and stealing software-based proprietary algorithms. For
example, suppose that companies A and B both produce and market an
RSA encryption program. Further suppose that B ' s product is substan-
tially slower than A ' s version primarily due to the speed of the
algorithm responsible for finding large prime numbers. Company B ' s

programming analyst could acquire a copy of A ' s program, reverse
engineer the software, and then "borrowll the faster algorithm.

For government and perhaps business applications, the adver-
sary's objectives are similar. Suppose the military has a computer
based weapon control system. Part of its system software, respon-
sible for access control, is password protected. To access the
control system that will allow use of the weapon system without
knowledge of a legitimate password, or to deny use of the weapon
system to an authorized user the adversary must acquire tools to

149

duplicate the software and then deternine what modifications would be
necessary to alter the control system.

Before we discuss tools with which the threat attempts to ac-
complish his objectives, we need to provide a working definition of
the adversary. The threat can be subdivided, in general, into in-
sider and outsider categories with authorized access being the main
difference between the two. The insider threat could be anyone from
the designer of the system to an authorized end user of the fielded
system. Thus, the insider threat can be broken into two categories:
those intimately knowledgeable with the system, such as the design
team, and those with little or no knowledge but having authorized
access. However, this paper will not address the problem associated
with the threat being part of the design team.

Since access control is typically a separate security issue, the
outsider threat scenario considered will usually be under the assump-
tion that the threat has already gained access to the system. Thus,
for the purposes of this paper, a conservative approach is taken in
that both the insider and outsider threat are considered essentially
equivalent.

4 . 1 THREAT TOOLS

Adversarial t o o l s that threaten commercial and perhaps other
software fall into two main categories: tools used to duplicate the
unique signature or its effect, and tools used to analyze software
and hardware. They vary from no cost to $loOK+ and are readily
available.

If the unique signature is an unusual magnetic encoding on a
floppy, then there are many commercial products available that will
analyze the floppy and attempt to replicate the signature. However,
these software tools share one deficiency: all utilize the FDC for
their analysis and duplication effor ts . But, there exists unique
signatures that are currently' being used that were not created using
the FDC and all its limitations. For example, some vendors use
special hardware that will generate "weak bits". These b i t s are

150

impossible to duplicate using the FDC and are thus felt to be more
secure by the vendors. unfortunately, there are also available
products[3] of separately encoding each bit cell on a track
and at a variable flux density. Such products make duplication of
all magnetically encoded unique signatures on floppy disks effec-
tively trivial.

capable

Even if the signature is a result of physical damage to the
disk, the adversary has several options. First, with appropriate
equipment, he can attempt to duplicate the physical damage, which
could be difficult even with expensive equipment. However, depending
upon the motivation and resources of an adversary, it is certainly
feasible. A simpler and cheaper approach would be to alter the
system so that software which checks for damage is "fooled" into
thinking that the damage is present. This might be done by front-
ending certain interrupt vectors which are tied to the FDC. Such
front-end software would change the status of the FDC command to the
correct and expected values.

If an HSD is installed as the signature then attacks similar to
the physical damage case could be employed. Usually it is a
straightforward task to alter software that is communicating with the
HSD using a technique that renders the HSD needless. A much more
complicated technique for defeat would be to duplicate the H S D .
However, this addresses the tools and techniques of analyzing and
duplicating microcircuitry, which is beyond our scope.

The adversary will make use of two general classes of tools in
h i s analysis effort: static and dynamic. Assuming he has acquired
use of the system, the adversary will use these tools against the
binary form of software. For example, static tools can be used to
locate all branching instructions and/or all occurrences of an INT
13H (disk operation) instruction. These classes of tools can often
provide a good starting point f o r application of dynamic analysis
tools. Actually, the more structured the programming methodologies
the more straightforward it is to use these tools. This situation is
certainly better f o r the adversary.

Dynamic analysis tools are the real workhorses for the
adversary. They include software debuggers[l,2,4], in-circuit

emulators (ICE)[8,lO], and simulators. We have determined that the
software debugger and ICE type tools are particularly useful for
analyzing software systems.

These dynamic tools allow the adversary to execute the software
in a controlled fashion. That is, the software.can be executed one
instruction at a time (single step). Then between instructions the
analyst can examine/modify registers and/or memory locations. In
addition to the single step mode, the analyst can also stop process-
ing as a function of several other types of events. For example,
execution could be halted and the environment exarnined/modified when:

1. Instructions are fetched or executed
2 . Operands are fetched or modified
3 . 1/0 ports are referenced
4 . Mernory/register contents reach predetermined values

Simple but powerful tools such as these give the adversary an
enormous amount of information and consequently, it becomes a nearly
straightforward task for the analyst to wade through the software to
achieve his objective. The only difficulty that the analyst must be
aware of is modification of the operating environment in a way that
will trip a security sensor. Fortunately, for the adversary, even if
he trips a sensor there will not be a debilitating penalty in most
current systems. Thus, through an iterative process he will even-
tually work h i s way through or around all the sensors on the path to
his objective. If the adversary's tools modified the environment in
a detectable fashion and a significant penalty were imposed then the
adversary is forced to proceed at a far slower pace. He must execute
smaller blocks of code before hitting a breakpoint and he must also
attempt to fix any environment modifications. Depending on the
payoff, however, the adversary may well be willing to pay this extra
price to analyze systems using penalties.

5 . 0 THREAT VS. DEFENSE

We have briefly discussed the objectives, tools and techniques
of the two players. Our purpose here is to point out some strengths
and weaknesses of the schemes currently being used commercially.

152

Many advantages in this game reside with the threat. A s always,
the adversary plays his cards last and thereby gets to attack a
static security design. Beyond this there is another major obstacle
for any cryptographic solution to the security dilemma. Even though
the defense uses cryptographic schemes to scramble the executable
software he must include not only the decryption algorithm but also
all of the necessary cryptographic keys as part of the system.

The weakest characteristic of these schenes is the fact that the
adversary never has to pay a penalty and in effect has an unlimited
number of tries in order to achieve his objectives. To make matters
worse some schemes typically broadcast to the outside world that a
security violation has occurred. They will usually provide for the
adversary a detailed road map to the sensor location. This weak
characteristic alone makes defeat of these security schemes sig-
nificantly easier!

Currently, many systems use a security front-end to their ap-
plication software. This is done for several reasons, one of which
is that it does not require modification to the application software,
which makes the addition of protection easier for the vendor.
Unfortunately, these front-ends are typically very easy to completely
remove leaving the adversary with the unprotected application. Also,
due to the proliferation of security schemes numerous software ven-
dors purchase and use the same security package. Consequently when
one package is defeated the rest will fall in short order and with
minimal effort.

As previously stated, it appears t h a t all of the more advanced
security schemes rely on the use of clever programming tricks to
detect an adversarial presence. This tends to make the reverse
engineering process more difficult. It is not cLear, however, as was
pointed out in Smmons[19j, how effective these defensive tricks can
be designed to preclude or significantly delay the adversary from
ultimately achievir.g his objectives.

Fortunately, there are several techniques that could be enployed
t o make software analysis/modification more difficult. Mosr imgor-
tantly, the ac?versary must be made tc pay for his mistakes. A

suitable penalty in the commercial world would simply be to make the

153

application software nonfunctional. The best way to alter the
software to a nonfunctional state is to cause the software to fail
intermittently with subtle problems. For example, suppose the XYZ
corporation produces and markets a CAD/CAM program. Upon detection
of an adversarial presence the penalty to be invoked might be to
alter the software so that the drawings sent to a plotter will ran-
domly miss pen strokes. In the case of spreadsheet software, the
numerical calculation associated with the spreadsheet co1umr.s could
be subjected to random errors.

With proper implementation of this type of penalty the adversary
will not be tipped off that he has been caught. Later when he or h i s

customer is using the application software there is a good chance
that he will not associate the sporadic (flaky) operation to the
pirated copy. This sort of tactic prevents another and perhaps more
intensive attack on the target software.

Many other techniques could be used to inprove the security of
software using current methodologies. However, we feel they, at
best, provide very limited protection from a sophisticated opponent.
The security of the system should not depend heavily on how cleverly
the designer implemented his tricks. An enormous need exists for
software security systems that provide a high degree of predictable
protection. What we really need are methodologies whose security is
comparable to that of a good cryptographic system.

6 . 0 RESEARCB GOALS

Research applications in this area will inpact software based
systems in four distir.ct domains: 1) seccrity level 2) cost
3) reliability 4) perfomance. Obviously, the optimum objective of
SAD/TDC is to provide maximum security at minimal cost, with no
impact on system reliability or degradation of system performance.
This is an impossible task. However, depending on the application,
the above optimum objective could be relaxed and. realistic require-
ments could still be achieved.

154

Ideally, the level of security provided by SAD/TDC is equivalent
to security associated with modern cryptographic based systems. That
is, the compromise of a system should be dependent on the adversary
dealing with the computational complexity issue. As mentioned,
however, all SAD/TDC currently being employed involve the use of
clever tricks and attempts to conceal information from the adversary.
After refinement, perhaps even these techniques may be adequate for
limited situations. For example, suppose our secure system, which we
have control over, is one in which the unique information (a special
algorithm perhaps) can be made obsolete within one week after detect-
ing loss. If so, a security system which provides at least two weeks
of delay to the adversary may be adequate, In the limit then our
secure system could have its uniqueness changed inside the cycle time
of an adversary.

Costs of these sorts of systems can be broken into three
categories: 1) development 2) production and 3) administration.
Development, that is the cost to design and integrate the security
subsystems into the applications, is a one-time item and thus, this
cost increase will usually have the most latitude. However, addi-
tional production costs will be incurred for each system produced and
as such, may receive much closer scrutiny from management. On the
other hand, in an extremely high security application, as is the case
with control for nuclear weapons, costs become of secondary impor-
tance, so an increase of perhaps a few thousand dollars for the
security system becomes acceptable. Administrative costs are as-
sociated with maintaining system security requirements, such as the
need for key management. Costs such as these are recurring and
potentially substantial. The security designer should always be
attentive to this area.

Many of the application systems that need added security have
requirements f o r extremely high reliability. For this reason the
security designer must be very careful with use of certain techniques
such as timing tricks. Mar,y tines a secarity system undergoes an
independent review process, which is designed to determine if subver-
sive features (trapdoors , troj an horses, etc.) are present.
Unfortunately, it may be more difficulr, to detect designer icdaced
subversive constructs due to current techniques being used by the
designers to improve system security.

155

Based on this current state of affairs, if the software designer
were a covert agent, then he could compromise the integrity of the
system while appearing to increase its security!

Finally, the issue of system perfornance can be of overriding
importance depending on the application. The key idea is to minimize
or eliminate such adverse effects. If an application is the guidance
subsystem software €or a defensive missile then performance degrada-
tion could not be tolerated. For instance, tie systems reduced
capability to update the missiles parameters nay result in an unac-
ceptable reduction of kill ratio.

Now, we would like all parameters of a secnrity subsystem skewed
in our favor in an optimal fashion, but realistically this does not
seem feasible. Compromises will need to be aade with the security
design as a function of application systes requirements so that an
optimum balance is achieved.

7 . 0 SUMMARY

Considerable effort and resources are expended to prevent
"hackers" or outsiders from attaining illegal access to computer
systems. The same is not true, unfortunately, concerning the insider
adversary having access to a computer systen. Partial or complete
access can lead to unauthorized duplication or modification of the
systems software.

Current defense methodologies are not adequate to prevent or
even significantly delay an insider adversary from achieving unethi-
cal to illegal objectives. Many software applications in both
business and government sectors are in dire need of effective tech-
niques to thwart an insider or outsider (who has acquired access)
attack. Although the level of security offered through current
methodologies can be enhanced to some degree, the results will still
be unsatisfactory because the problem stass from these marginal
methodologies.

156

We must provide new developments that, for example, explore the
world of cryptology and exploit the limits of nunerical complexity to
the extent the security of a system is provable, or at least predict-
able. With this sort of focus perhaps, the myths of software
protection and security can be transformec? to reality.

8 . 0 REFERENCES

1.

2 .

3 .

4 .

5.

6.

7 .

0 .

9.

10.

11.

12.

13.

14.

S. Armbrust and T. Forgeron, "Zntymological Explorations",
Tech Journal, vol. 3 , no. 1, (Jan. 1985), pp. 88-109.

S. Annbrust and T. Forgeron, IIUntangling Problems", PC Tech
Journal, vol. 3 , no. 4, (Apr. 1985), pp. 81-95.

COPYIIPC Option Board Manual, Central Point Software, (1985)-

D. Daftwyler, "Professional Debugging", PC Tech Journal, vol. 3 ,
no. 3 , (Mar. 1985), pp. 60-73 .

Disk Mechanic Technical Manual for the IBM Personal Computer,
MLI MICROSYSTEMS , (May 1985) .
D. Gabel, tqCopy Protection1', FC Week, vol. 2, no. 3 4 , (Aug.
1985), pp. 35-37.

G. Gemaise Davis 111, Esq., Software Protection: Practical and
Lecral Stews to Protect and Market Corr,wuter Proqrams, Van
Nostrand Reinhold, New York, (1985).

HP 64000 Logic Development System Model 6462019 Logic
State/Software Analyzer Reference Manual, P/N 64620-90903,
Colorado Springs, HEWLETT-PACKARD, (1982).

IBM Personal Computer Technical Reference Manual, IBM, (Apr.
1983).

I'ICE Integrated Instrumentation and In-Circuit Emulation System
Reference Manual, P/N 163252-003, INTEL, (1984).

ISBC 204 Flexible Diskette Controller Hardvare Reference Manual,
P/N 9800563-02, INTEL, (1979) .
B. Landreth and H. Rheingold, Out of the Inner Circle: A
Hacker's C.;ide to Corncuter Security, Microsoft Press, Bellevue,
Washington, (1985) .
S. Levy, Uackers Heroes of the Cona-ter Revolution, Anchor
Press/Doubleday, Garden City, New York, (1984).

Microsystem Componerts Handbook: Kicroprocessors and
Peripherals, vol. 1&2, P/N 230643-002, INTSL, (1985).

157

15. S. Morse, The 8086/8088 Primer: An Introduction to their
Architecture, Svstem Desisn, and Proqrammi?.g, Hayden, Rochelle
Park, New Jersey, (1982).

16. D. Parker, Fishtins Computer Crime, Charles Scribner's Sons, New
York, (1983).

17. W. Rosch, "Internal SecurityIf, PC Week, v o l . 2, no. 18, (May

18. Shugart OEM Manual: SA 810/860 Single/Double-Sides Half-Height

19851 , pp. 89 -108 .

Diskette Storage Drives, (1982).

19. G. Simmons, "HOW to (Selectively) Broadcast a Secret",
Proceedinus of the Symposium on Security ar,d Privacy, Oakland,
California, (Apr. 22-24, 1985), pp. 108-113.

