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ABSTRACT 

Two simple redundancy schemes are shown to be inadequate in securing RSA signatures 
against attacks based on multiplicative properties. The schemes generalize the requirement that 
each valid message starts or ends with a fixed number of zero bits. Even though only messages 
with proper redundancy are signed, forgers are able to construct signatures on messages of their 
choice. 

1. INTRODUCTION 

The basic notions of redundancy in signatures and multiplicative attacks are introduced for 
completeness in this introductory section, along with an example which is used in subsequent sec- 
tions. Next the two redundancy schemes are presented briefly. An algorithm is then described 
and used to construct attacks on the two schemes. Finally, a second kind of attack is presented 
which also compromises the two redundancy schemes. 

1.1. THE NEED FOR REDUNDANCY 

RSA used in its raw form does not protect against a forger choosing an integer S, with 
0 < S, < nA, and computing M, = (Sc)e" mod n~ from it. where n~ and eA are A s  public 
modulus and exponent in an RSA system. Subsequently, the forger could claim that S, is the 
signature on Mc.  Since exponentiation modulo n acts as a kind of one-way function when +(n) is 
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unknown, this chosen signature attack can be used for finding signatures on “random” (ie., 
unpredictable) messages only. Thus, it may be said that only the signer can form signatures on 
chosen messages, but anybody can determine which message corresponds to a chosen signature. 

To prevent these unpredictable messages from having a reasonable chance of being 
accepted, redundancy will be required in signed messages. Hence, a distinction will be made 
between messages and vofid messages: all numbers M with 0 < M < n are messages, but only a 
very small fraction of these wiU be valid messages. For instance, if 100 bits of redundancy are 
used, a chosen signature will have only a chance of 2-‘O0 of corresponding to a valid message. 
Thus, Ending afufse signuture (ie., a signature on a valid message not actually signed by A )  will 
cost Z9’ trials on the average, which makes it infeasible to successfully guess a signature. 

Some work has been based on the assumption that the signer would sign anything except 
some desired messages. aDeMillo & Memtt  821 and [Denning 831 independently generalized and 
extended [Davida 821.) Under these assumptions, attackers were able to obtain signatures on 
desired messages simply by combining signatures on apparently unrelated messages. The seem- 
ingly more realistic and practical model assumed here, that the signer is only willing to sign valid 
messages, makes attacks more di€Iicult-though not impossible-as will be shown. 

1.2. MULTIPLICATIVE ATTACKS 

Preventing chosen signature attacks not only requires a sufficient quantity of redundancy in 
valid messages; it also necessitates that the nature of the redundancy is appropriate, since RSA 
sipatures are multiplicative. 

For example, suppose that B can construct three valid messages M M ,  and M3 such that 
M3 = ( h f 1 - M ~ )  mod nA. Then, if B succeeds in getting M I  and M 2  signed by A ,  B can form 
the product (modulo nA)  of these signatures to get a false signature on M3.  denoted Sa(M),  since 

= ((M;‘“ mod nA). (& mod n ~ ) )  mod n~ 

B can also use the inverse M - ’  or the opposite - M  of a mesage M ,  assuming the 
corresponding signed version is known, a a factor in a product f o m g  a new message, since 
SA(M-’  mod nA) = ( S A ( M ) ) - ’  mod nA and S A ( - M )  = - SA(M). (Notice that dA is odd.) 

Thus, if B knows A’s signature on one or more valid messages M,, B can easily forge signa- 
tures for valid messages that B can rewrite as a product of message(s) M I ,  their opposite(s) - M I ,  
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or their inverse(s) M,: (a l l  in modulo nA arithmetic). Note also that a message and/or its opp* 
site and/or its inverse may occur in a product more than once. Therefore, the redundancy 
should make it infeasible to find such valid messages. 

1.3. EXAMPLE CRYPTOSYSTEM 

Rivest, Shamir and Adleman recommended that n be about 200 decimal digits, which 
amounts to about 664 bits [RSA 781. We will use a particular example of an RSA system for 
illustrative purposes, in which n is 800 bits, thereby maintaining an ample margin of safety with 
respect to known factorization techniques for appropriate moduli. The amount of redundancy 
used in the examples will be 200 bits. One reason for this choice of amount of redundancy is to 
provide for s&icient protection against a chosen signature attack. Another is for efficiency, since 
one does not want to expand the messages to be signed too much, say, not more than one third. 
Since, for our choice of n, RSA limits signed messages to 800 bits, the redundancy should 
amount to at most 200 bits. As a consequence, only a fraction of 2-200 of all 8Oc)bit messages 
are valid, and thus the original message to be signed, called the actual message, may comprise 600 
bits. 

An important assumption is that every bit pattern of 600 bits represents a meaningful mes- 
sage; the only redundancy is that explicitly included in the remaining 200 bits. 

2. THE TWO REDUNDANCY SCHEMES 

In the first redundancy scheme the redundant bits are combined with the actual message by 
multiplying that message with an agreed on constant w. That is. all messages M for which 
M mod w = 0 are defined to be valid. T h e  actual message present in such a valid message is 
rn = A4 div w. For w = 2200, this means that each valid message ends up with 200 zero bits. 

In analogy to the special case where w is a power of two, the general scheme will be called 
the right-padded redundun9 scheme. Figure 1 shows how the n$t-padded redundancy scheme 
spreads the valid messages over the interval [O,n] for n =91 and w =6. 

Fig. 1. The valid messages in case of right-padded 
redundancy for n = 9 1 and w = 6. 
The valid messages are 0, 6, 12, ...., 90. 
The actual messages are 0, 1, 2, ...., 15. 
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The counterpart of spreading valid messages over the interval [O,n] is to concentrate them 
in some interval [ l , u ]  of appropriate size. The actual message contained in a valid message M 
then is m = M -1. For I = O  and u =2600 - 1, each valid message starts with a sequence of 200 
zero bits. Accorhingly, we call the general case of this scheme lefr-padded redundancy. Figure 2 
Uustrates the left-padded redundancy scheme for n = 91, I = 19 and u = 34. 

3. A FIRST KIND OF ATTACK 

Before treating our attacks in detail, we mention briefly an algorithm that wil! be used 
heavily. 

3.1. A VARIATION OF EUCLID’S ALGORITHM 

The algorithm finds, for a given x with 0 < x < n, the smallest positive value c such that 
(cx) mod n is less than some given threshold value t. It is very similar to Euclid’s algorithm for 
computing the greatest common divisor. Indeed, Euclid’s algorithm can be used to compute an 
increasing sequence of values c for which the correspondmg values ( c x )  mod n form a decreasing 
sequence. The only important difference is that processing with our algorithm stops as soon as a 
value below the given threshold is reached. Since Euclid’s algorithm has a worst case (and aver- 
age case) complexity of O(log n) [Knuth 691, our algorithm will certainly be fast (enough) too. 

For our purposes, it is often important that the value found for c is reasonably small. 
Although our algorithm can be used to find for any given values x and t the smallest c for which 
(cx) mod n < t, there is no guarantee that c itself is smaller than some other threshold value. 
However, it is easy to show that there always exists some c with 0 < / c /  < n / t for which 
0 < (cx) mod n < t. 

Consider the integers /a/ and /b/  such that (ax  -6) mod n with 0 < a < [n / t l  and 
0 < b G t. Since there are more than n different pairs (n,b), there exist two Werent pairs, say, 
( a l , b l )  and (az ,bz) ,  for which ( n l x  - b l )  mod n = (azx  - 62) mod n. Since x usually will be 
mprime with n (if not, one could factor n), we know that both al+az and bl#b2.  Therefore, 
we may safely assume that 61 > b2.  Thus, for c = (a l  - a z )  it is true that 0 < IcI < n  / i and 

Fig. 2. The valid messages with left-padded 
redundancy for n =91, 1 = 19 and u =34. 
The valid messages are 19, 20, 2 1, ..., 34. 
The actual messages are 0, I ,  2, ...., 15. 
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0 < (cx)  mod n = (bl  -bz)  < i. 

Since our algorithm searches for the smallest positive value c for which (cx) mod n G t, the 
value found for c may be larger than n / t .  If so, the above shows that there exists some c, 

0 < c < n / t ,  such that 0 < ( - c x )  mod n < t. This ccan be found by applyingour algo- 
rithm to ( - x )  mod n. 

3.3. ATTACKING RIGHT-PADDED REDUNDANCY 

If RSA is used in combination with the right-padded redundancy scheme, one attack 
proceeds as follows. First, choose an actual message m I (Le., m I < n~ div w )  on which A's sig- 
nature is desired. An attack, such as this, allowing a signature to be constructed for a chosen 
actual message will be d e d  a chosen message attack. Now, M = rn 1 w is a valid message, since 
M I  < n~ and M1 mod w = 0. Next, compute x = (rnlw)-' mod n ~ .  If w < nl/*, i.e., if 
the redundancy takes up less than half of the bits in a valid message, our algorithm of Figure 3 
can be used to find a number 0 < c < nA div w such that (cx)  mod nA < nA div w or 
( - c x )  mod nA < n~ div w. Thus? one can find two actual messages r n 2  and m3 such that 
m2 = ( rngx)  mod nA or m2 = ( - m 3 x )  mod nA. 

If one s u d s  in getting A's signature on m2 and m3 (i.e., SA(M2) and SA(M3)),  one can 
compute A's signature on m by multiplying S A ( M 3 )  with the inverse of S A ( M 2 )  and taking the 
opposite in the case we used -x. Naturally, all arithmetic is done modulo nA. In case we used 
just x, this works, because 

Of course, the attack makes sense only when m l#rnz and m I#rn3. But if the found m2 

or rn3 happens to be equal to rn 1,  one simply searches for another value of c such that 
(cx )  mod n G t or (- cx)  mod n < t. For example, one tries the next minimal value of 
(cx)  mod n or ( - c x )  mod n, respectively. 
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3.4. ATTACKING LEFT-PADDED REDUNDANCY 

RSA's multiplicative properties are also useful for attacking the RSA signature system when 
left-padded redundancy is used. Recall that this scheme defines valid messages as those in the 
interval [Z,u]. 

As a fmt step it will be shown why, in the general case, I should be larger than .I/', and 
thus in our example should be larger than 2". If I would be smaller than u 1 l 2 ,  then any two 
valid messages Mi (i = 1,2) out of [[,u'/~] have a product, say M3,  which lies in the interval 
[b]. This makes a multiplicative attack far too easy. Thus, the left-padded redundancy scheme 
should certainly not be used with I =O; i.e., just requiring each valid message to start with a cer- 
tain number of zero-bits immediately appears to be unsuitable. 

For 1>u'/' there is a chosen message attack. Suppose that M is the valid message on 
which a false signature is desired. First, the attack will be shown for M < u -Z, and later it will 
be extended for the more likely case that M > u -1. 

Due to the large number of wraparounds, the number (I.M) mod n may be positioned any- 
where in the interval [O,n]. Therefore, the chance that 1.M mod n lies in the interval [I+] is 
negligibly small. (About 2-'O0 in the example.) However, it is easy to find a positive integer i 
such that ( I  + i )M mod n is in [Z,u]. 

For example, suppose we have the situation as depicted in Figure 3, where 1.M mod n is 
positioned somewhere to the right of [I,u].  Clearly, (I + l)M mod n lies a (relatively small) step 
of size M to the right of I-M mod n, ( I  + 2)M mod n lies another such step further to the right, 
and so on. Thus, it is easy to compute i, the number of steps to the right needed to end up in 
the "next" interval [ l ,u] .  Since M is supposed to be less than u -f, the step size is s m a l l  enough 
to prevent the interval from being missed by jumping too far. 

Thus, if l+ i  happens to be in [I,u], we have found three valid messages Mi ( i  = 1,2,3) with 
M I  = I +i, M2 = M and M3 = (I +i)M mod n for which M3 = ( M l M 2 )  mod n. Thus, a 
false signature on M can be constructed from the signatures on M I  and M3. 

To be sure that 1+ i indeed will be in [Z,u], i.e., that i < s = u -I, the step size should be 
large enough, i.e., M 2 n /s. Because of our assumption that M < s = u -I, and the interval 
size s should be larger than n / s. Therefore, this attack works for all chosen messages M with 

o moa n !Lt ,+, M I I , 1 
I I '  ' " " ' I " " " ' ' L " '  -I 

1 U 1M mod n 1 U 

r , : .  J . ,  , , , ,L,, 0 mod , n , , , , J ,  , , 

Fig. 3. An illustration of the basic idea of the attack. 
Note that this figure is not drawn to scale! 
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n /s < M < s ifs 2 n 1 I 2 ,  i.e., if the redundancy takes up less than half of the bits in a valid 
message. 

If M > s = u -1, there is no guarantee that a “walk” to the right with steps of size M d 
end up in the “next” interval [I+]. For example, if u - I  = 2600 and if M 
chance to hit the next first interval [I,u] on a walk to the right is only about 2-‘O0. 

2’0° then the 

However, as explained in 53.1, it is easy to find a value c for which IcI < n /s and 
CM mod n G s. Starting with x = I  or x =u, one can use this new value CM mod n as the step 
size (to the right or to the left) and can compute for which integer i the number (x  +ic)M mod n 
will be in the interval [I,u]. Since we want x +ic to be a valid message, the product ic should be 
less than s. Assuming that each number less than s had equal probability of being the chosen 
step size CM mod n, the chance that the step size is, for a givenp, larger than s / p  is 1 - 1 / p .  
With a step size larger than s / p ,  i WLU be less than (np) /s. Thus, ic will then be less than 
(n’p) / s2. This upper bound on zc should be kept smaller than s, therefore, s should be such 
that s3 > (n2p).  In other words, the chance of success is very large roughly when the redun- 
dancy is less than one third of the bits in a valid message. 

Consider our example with I =Z7Oo. The number c for which cM mod n < 2600 or 
(-cM) mod n G 2600 will be less than 2200. There is a high probability that the new step size, 
CM mod n or ( -cM)  mod n, will be larger than, say, ’i!5m. This means that the required number 
of steps, i. almost W y  WiLl be less than 2300. In our example, ic thus may be expected to be 
less than 2? Thls means that we could have started with almost any x in [I+]. 

4. A SECOND STYLE OF ATTACK 

Another kind of attack is based on an approach called Multiplymg-In-Dividing-Out 
(MIDO). It is used below to break the same two redundancy schemes. 

4.1. RIGHT-PADDED REDUNDANCY AGAIN 

Suppose that the actual message rn on which a false signature is desired, can be written as 
the product of two numbers u and u2.  Thus, M = mw = olaZw < n. Now choose numbers 
bl and b2 such that MI 1 a l b l w  < n, M 2  = a2b2w < n, and M 3  = blb2w < n (e.g., 
chooseanybl a n d b l  withbl  < a2 and62 < a ] ) .  Clearly,thethreernessagesM1,M~ and 

M3 are all valid, and M = ~ M 2  (hence the name MIDO). Thus, if one succeeds in getting 

A’s signature on the valid messages M ,  ( i  = 1,2,3), one can also construct a false signature on the 
chosen message M .  

M3 

One difference with the attack of $3.3 is that this MIDO attack works for any amount of 
redundancy. On the other hand, this MIDO attack will not work for all chosen messages rn, 
since it may be infeasible or even impossible to factor the integer rn. Of course, one could mani- 
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pulate chosen factors to construct an appropriate actual message m, but this does not change the 
fact that there is only limited freedom in choosing m. 

4.2. LEFT-PADDED REDUNDANCY REVISITED 

The following me thd  illustrates how the MID0 approach can be used for attacking left- 
padded redundancy. It works for all valid messages M that can be written as a product a la2 

withal > a 2  >2 , such tha ta l#az+ l  andei ther (a)M-I>a2andu-M > a 1  or(b) 
M - l  > U I  and u -M > U Z .  

In case condition (a) holds, take 

M i  = ( ~ 1 - 1 ) ~ 2  = M - ~ 2 ,  
M2 = a l ( a i+ l )  = M + U I ,  

m d M j  = (a1-l)(a2+1) = M + - LIZ - I 

Thus, M = - , while condition (a) assures that all three messages M ,  (i = 1,2,3) are valid. 

The condition u 1 #u2 + 1 assures that M3#M. For the case that condition (b) is true, a I and 
u2 should be exchanged in the above description. Figure 4 illustrates how M I ,  M2 and M3 are 
positioned in [ l , u ]  if condition (a) holds. 

M3 

Clearly, the chance of success with this method depends on the size and placement of the 
interval [Su],  and thus on the amount of redundancy. Furthermore, this method does not work 
for all chosen messages. However, it is easy to adapt this attack to work for almost any chosen 
valid message M. The only restriction will be that M should not be chosen too close to I or u. 

Such a restriction is not very severe, since, for example, u - M and M - 1 are both larger than 
2-I0(u -0 for 99.8 percent of all valid messages. 

Once M is chosen, one searches for “factors” u and a2 such that M = (a  la2) mod n. 
(The important difference with the attack above is the addition of “mod n”.) This can easily be 
accomplished by freely choosing one factor, say u 1 ,  and then computing the other factor, a2,  as 
(a M )  mod n. Having fixed a 1 and a 2 one computes the numbers c 1 and c2 with 
(c11 d 2n / ( u  - M )  and l c ~ l  < 2n / ( M  - I )  such that (c la l )  mod n < ( u - M ) / 2  and 
( ~ 2 ~ 2 )  mod n < ( M  -Z)/ 2. In the following, we only treat the case that both CI and c~ are 
positive. Take 

cp2rnod n c l o t  god n 
+- 

L ‘  I t  I 
1 - - - - -  - - - - _  

M, M M3 M2 

Fig. 4. 
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M I  = uz(al - c 2 )  mod n = M - (c2a2 mod n )  
M2 = u l ( a z + c l )  mod n = M + (c lal  mod n )  

and M3 = (a1 - c 2 X a 2 + c 1 )  mod n = ( M  + c l a l  - c2a2 - c Ic2 )  mod n. 

Thus, M I  and M2 are valid messages. Define z to be the minimum of u -M and M -1. M3 is 
also a valid message if c 1 c 2  is appropriately small, i.e., if c 1 c2 is less than z / 2. (See Figure 5 
for an illustration.) Since clc2 is known to be less than 4n2 / z2, this product is certainly 
smaller than z / 2  if 8n2 < z3. Thus, the attack works essentially when the redundancy amounts 
to less than one third of a valid message. 

In our example, both u - M and M - 1 are numbers of almost 600 bits. Therefore, c 1 and 
c2 may be expected to be numbers of a good 200 bits. Thus, their product may be estimated to 
be a number of something like 400 bits, which usually will be negligibly small compared to M‘s 
distance to I and u. As a consequence, the chance that M3 is not in the interval [I,u] is neghgibly 
small. 

Fig. 5. 

CONCLUDING REMARKS 

The attacks presented use signatures obtained on messages having a redundancy property 
that are chosen to allow derivation of false signatures on other messages also having the redun- 
dancy property. The attacks are quite powerful, since they allow the derived message to be 
chosen freely or almost freely. 

One obvious way to protect against attacks such as those shown here in practice, which has 
been known in the ‘‘folklore” of cryptography for some time, is to apply some sort of one-way 
function to actual messages before signing them. This approach can be quite practical for long 
messages. But for short messages, it may have the disadvantage of data expansion and may be 
U M ~ C ~ S S ~ Y  computationally expensive. 

There are of course signature schemes that do not appear to have the kinds of multiplica- 
tive structures used in the attacks presented here. These schemes generally have received less 
attention than M A  and most of those currently unbroken appear more expensive than RSA in 
various ways. An interesting and potentially attractive variation on RSA signatures, however, 
came out of this work [de Jonge 851. 

Multiplicative properties of RSA and its variants should not necessarily be regarded as 
undesirable shortcomings to be avoided in improved systems, however, since they allow various 
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powerful and often desirable functionality, such as blind signatures [Chaum 851. Motivation for 
embarking on this line of inquiry in fact came from consideration of the needs for secure blind 
signature systems. In such systems, any message may be signed; only messages with the redun- 
dancy property are accepted; and the primary security requirement, called conservation of Signa- 
tures, is that it should not be possible to construct more signatures than are issued. Thus such 
systems do require redundancy properties robust in the presence of multiplicativity. The simple 
schemes considered here demonstrate that such redundancy properties must be chosen with care. 
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