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ABSTRACT 

The Security of the RSA implementation of ping-pong protocols is considered. 
It is shown that the obvious RSA properties, such as "multiplicativity", do not 
endanger the security of ping-pong protocols. Namely, if a ping-pong protocol is 
secure in general then its implementation using an "ideal RSA" is also secure. 

1. INTRODUCTION 

When studying the security of cryptographic protocols, one can take one of the 
following two approaches: 

1) Distinguish between the security of the "high level structure" of the protocol 
and the security of the cryptosystems used for its implementation. The aim is, 
mainly, to better understand the structure of secure protocols and issues 
related to it. While studying the (security of the) structure of a protocol, it is 
assumed that the protocol is "implemented" with "ideal" cryptosystems. In 
other words, the cryptosystems are treated as if they were free of any proper- 
ties which are not implied by the cancellation of encryption with the 
corresponding decryption. Such a treatment has usually an algebraic flavour. 

This approach can be found in [NS], [DY], [DLM], [DEK], [EG] and [EGL]. 

Study the security of a concrete implementation of the protocol with respect 
to  the concrete cryptosystems used for the implementation. The aim is to 
develop concrete provably-secure protocols and to present a methodology for 
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developing and proving correctness of protocols. Characteristic tools in this 
approach are generalized notions of polynomial-time reductions. 

This approach was pursued in [LMR], [GMR], [BGMR], [ACGM], [CF] and 

(GHYl. 

In this paper, we follow the first approach, but introduce some influences of the 
second approach. More specifically, we study the "high level structure" of proto- 
cols implemented using "ideal-RSA" cryptosystems (i.e. cryptosystems which 
posses only the obvious properties of the RSA). Our aim is to try to  characterize 
the structure of protocols which are secure with respect to the obvious properties 
of the RSA. We restrict our study to  a simple class of public-key protocols, 
known as ping-pong protocols. The remon for this restriction is that testing the 
security of protocols, from a slightly extended class, has been shown to be undecid- 
able PG]. We show that  as far as the security of ping-pong protocols is concerned 
the obvious properties of the RSA do not give an adversary any additional edge. 
Put in other words, ping-pong protocols which are secure with respect to  "ideal 
cryptosystems" - remain secure with respect to "ideal-RSA". 

Our work was partially motivated by Denning's study of the weaknesses of 
the RSA implementation of a simple signing protocol [D]. We show that the 
weaknesses, pointed out  in [Da] and [D], are due to the insecurity of the "high 
level structure" of the protocol and not to  the fact that it was implemented using 
the RSA. We further discuss this issue in section 7 .  

2. PING-PONG PROTOCOLS AND THEIR SECURITY 

In this section we recall the basic definitions regarding ping-pong protocols 
and their security problem. 

2.1 Public Key Cryptosystems 

Following (DH], a public k e y  cryp tmys te rn  (PKCS) is a set of pairs of func- 
tions, such that  every user X has an encryption function Ex and a deciyption 
function Dx. Both functions are mappings from {o,I}' to { o , ~ } '  , There is a public 
directory containing ali (X,Ex) pairs, while the decryption function Dx is known 
only to x. It is required that  

(I) For every rn E {o,I}' , & ( D ~ ( v I ) )  = Dx(Ex(m)) = m .  

Dx is the inverse function of Ex. 
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(2) 

For further details consult [DH] and [RSA]. 

It is infeasible to recover z when given E x ( z )  (and Ex ). 

In the rest of this paper we will refer to the encryption and decryption func- 
tion as to operators. Operator words are defined (as usual) as the composition of 
operators; i.e. the operator word u, . -ap ,  maps m E {oJ}' to ~ , ( . . ~ , ( u , ( m ) ) . . . )  . Two 
operator words LI and p are said to be equivalent if for every m E {OJ}' , 
a ( m ) = B ( m ) .  The equivalence between operator words will be denote by = . 
Property (1) above implies the following 

Operators ' Cancellation Rules: 
for every X, Ex Dx = Dx Ex = the identity operator. 

Property (2) above implies tha t  user x can only apply encryption operators and 
his own decryption operator (i.e. operators from the set { D x }  u {EY: Y is any user 
in the network} .) 

2.2 Ping-Pong Protocols 

Following [DY], a ping-pong protocol P ( X , Y )  is a sequence (o1,a2, . . . , a[) of 
operator words, such that  L I ~ ~ - ~  E {Dx,Ex,EY} and a2i E {Dy,Ex,Eu} . Here X and Y 
are variables. In a concrete execution of the protocol they are substituted by  the 
names of the participants. 

An execution of protocol P(.;) by parties A and B , regarding the initial mes- 
sage mo E {0,1} , proceeds as follows: In the first phase party A applies a l [ A  $ 1  to 
the initial message mo , and transmits the result to B .  In other words, in the first 
phase A transmits m l  = a, [A,B](m,)  t o  B .  In the 2i-th phase B applies az i[A,B]  

to m2i-1 , and transmits the result (m2i = a2i[A,B](rn2i-1) )  to A .  In the 2 i + l - ~ t  

a2i+,[A ,B](m2i)) to B .  Here ai [A  $1 denotes the operator word which results from 
ai by substituting Ex [Dx] by EA [ D A ]  and EY [Dy] by EB [ D B ] .  

2.3 Security of Ping-Pong Protocols 

phase A applies aZi+,[A,B] to m2i , and transmits the result (rnZi+, - - 

Following [DY], we say that  a ping-pong protocol P ( . ; )  is insecure if parties 
which did not take part in an execution of P (hereafter referred to as the 
saboteurs) can find out the initial message transmitted in that execution. To this 
end the saboteurs can initiate other executions of P and rely on the operators' 
cancellation rules (i.e. ExDx = DxEx = the identity operator). It was shown 
[DEK] that it is sufficient to consider a single saboteur. A formal definition of 
insecurity follows: 
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Definition 1: Let P ( X , Y )  = (a,,a2, , . , , a , )  be a ping-pong protocol (as in the 
previous subsection). 
Let A ,  B and S denote three distinct users. 
Let CZ = { D z } U { E U :  U is any user name } . (Ex denotes the set of operators 
which may be applied by user x.) 
Let I ( A , B , S )  = { m i [ X , Y ] :  15 i 5 I and X #  Y E{A,B,S}}. ( Z ( A , B , S )  is the 
set of operator words which may be effected on messages in executions of the 
protocol P (.;) by two users out of A ,  B and S .) 

The protocol P (.;) is insecure if there exists an operator word 7 E A such that 
7al [A ,B] is equivalent (under the operators’ cancellation rules) to  the identity 
operator. The operator word TCU,[A ,B]  is called an insecurity str ing. 

Let A = (22, UI ( A  ,E ,S ))‘ . 

Remark 1: The above definition (in which only one saboteur is considered) is 
equivalent to  a definition in which more than one saboteur is considered. The 
latter definition can be obtained by redefining A as follows 

A proof of the equivalence of the two definitions can be found in [DEK]. It is 
interesting to note that  this equivalence does not hold for ping-pong protocols for 
more than two parties [EG]. 

Discussion: Note that  under (the insecurity) Definition 1, the only properties of 
the public-key cryptosystem exploited by the saboteur (in his attack on the proto- 
col) are the most obvious and general ones; namely the cancellation of encryption 
with the corresponding decryption. Definition 1 can be interpreted as considering 
only the security of the high level structuren of the protocol. 
Testing ”high level security”, may obviously provide evidence for the insecurity of 
a concrete implementation of the protocol, but it can not provide a proof that  a 
particular implementation (with a particular public-key cryptosystem) is secure. 

3. THE RSA AND ITS PROPERTIES 

The RSA is the most popular implementation of the concept of a public-key 
cryptosystem. This system, presented in 1978 by Rivest, Shamir and Adleman 
[RSA] is widely believed to  be secure. However, the encryption decryption func- 
tions of the RSA possess obvious properties which are not implied by the cancella- 
tion rules. We begin by presenting the RSA functions and continue by discwing 
their properties. 
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3.1 The RSA Functions 

An instance of the RSA consists of a composite integer N which is the pro- 
duct of two large primes p and 9 ,  and two integers e and d such that c . d  is 
congruent to  1 modulo d(N) (d(N) = ( p - l ) ( q - l )  is the Euler function). 

To create an instance of the RSA, wer A randomly picks two large primes p 

and q , and a number relatively prime to  (p - i ) (q - l ) .  User A computes N = p  ‘9 and 
d =e-’ mod (p - l ) (q  -1) . User A places (A , ( N , e  )) in the public directory and keeps 
all other information (in particular d ,  p and q )  secret. 

Encryption is done by raising the message to  the e-th power modulo N ;  while 
decryption is done by raising the message to the d-th power modulo N .  Everyone 
can encrypt a message so tha t  A can decrypt it. It is assumed that knowledge of 
the factorization of N is needed in order to  be able to  decrypt (and factorization is 
considered intractable). For simplicity let us identify the username (i.e. A ) with 
the modulos N he uses. The encryption function of user N will be denoted by EN 

and N’s  decryption function will be denoted by D,. 

Formal Setting: Let us denote by Z, the set of all residues modulo N (i.e. ZN = 

{0,1,2 ,..., N-I}). By the above we have, for every m E Z, , 
EN(m) = m e  mod N and D ~ ( r n ) =  m d  mod N 

I t  can be easily shown tha t  EN and DN cancel each other [RSA]. 

In addition to the cancellation of encryption by the corresponding decryption, 
the RSA possesses additional obvious relations - to be hereby discussed. 

3.2 The Properties of the RSA 

The main properties of the RSA are that the set of almost all its message 
space forms a group with respect to multiplication modulo N ,  and that  the 
encryption and decryption operators are homomorphisms over this group. Note 
that the RSA induces a permutation over Z; . For simplicity, we restrict the mes- 
sage space to  2; C 2, . This excludes only p + q  -1 elements - a negligible fraction 
of the original message space ( z ~ ) .  

In subsection 3.3 i t  will be shown that all the other obvious properties of RSA 
can be derived from the above. This includes the fact that DN is a homomorphism, 
the fact that  EN(l)=l etc. 
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3.3 Axiomatization 

In this subsection we present a complete axiomatization of the RSA properties 
discussed above. In the formal treatment, we will denote the message space by 
Mx . Recall that  Ex and Dx are inverse permutations over MX . A multiplication 
operator over Mx will be considered. It is axiomatized that this operator (denoted 
by p x )  together with the set M~ forms an Abelian 'group. It is also axiomatized 
that Ex is a homomorphism of this group. 

Ao) Cancellation Axiom: For every m E Mx the following holds 
Dx(Ex(m))  = Ex(Dx(m)) = m. 

Al)  Abelian Group Axiom: The set Mx and the binary operation p x  form an 
Abelian group. That  is, px:Mx x hfx -, Mx satisfies the followings (for every 

m ,m 1,m zrm 3 f MX 1: 

Al:2) px(l,rn)=px(m ,1)=m. 

A1.3) There exists a m-' E MX, px(m ,m-')=px(m-',m)=1 

A1*l) Px(m l#X (m5!,m3)) = PX (PX (m 2)im3) 

Al.4) Px (m 1, m z ) = p x  (m 2, m 1) 

A2) Homomorphism of the Encryption: For every rn,,rn2 E hfx the following holds 

Ex (PX (m 1 m 2 ) )  = Px(Ex(m 1)7Ex(m2)) 

An equivalent formulation is achieved by generalizing the multiplication 
operator pxl  to take arbitrary many arguments, and by introducing the mul- 
tiplicative inverse function zX. 

The RSA Equalities 

EO) Cancellation of EncryptionlDecryption: For every m E Mx , Dx(Ex(m))=m 
and Ex(Dx(m))=m.  

El) Nested Multiplication: For every ml,m2, . . . , md E Mx , and o< j - i  < d 

px(m1,. . . , mi,px(m;+l, . . . , mj),mj+l,.  . . , md) = Irx(mI,mz,. . . , m d ) .  

E2) Redundant Multiplication: For every m E Mx , px(rn)=m . 

E3) Redundant Identity: For every m ,, . . . , md E hfx , and d 2 1 

Px(m,, . . . , m i , h i + l , .  . . , md)  = px(m, ,  . , ., m,,mi+l , I . .  , ~1 
Inverse: For every m ,ml, . . . , md E Mx , d >_ 0 and i 5 j , E4) 

px(m1, . . ~, mi,m,m;+l,. . . , m,,Ix(m),mj+l,.  . . , = 

p x ( m l , .  . . , m i , I x ( m ) , m i + l , .  . . , m j , m , m j + l , .  . . , md) = 

p x ( l , m l , .  . . , m;,m;+i,. . .  ,mj,mj+i,. . . ,  md) 

E5) Homomorphism of Inverse Operator: For every ml,mz,  . . . , md E ~Mx , and 
d 5: 2 , I,r(px(m,,mz, . . . , md)) = ~ , ( l x ( m ~ ) , ~ x ( m 2 1 , . . . , ~ ~ ( ~ ~ ) )  



4. SECURITY WITH RESPECT TO RSA PROPERTIES 

In this section we define a new notion of insecurity: insecurity w.r.t RSA. 
Loosely speaking, a protocol is insecure w.r.t RSA if an adversary can seize the ini- 
tial message by eavesdropping, initiating other executions of the protocol and tak- 
ing advantage over the (10) equalities listed above. 

In order to  formally discuss the power of such an adversary, we have to study 
the algebra of expressions over the operator alphabet U { E , ~ , D ~ , ~ ~ , I ~ }  w.r.t the 

equalities listed in Sec. 4.2. This algebra is best described by representing its 
expressions as rooted labelled trees and enforcing its equalities by tree manipula- 
tion rules. 

X 

4.1 The Algebra of Operator Trees 

We start the description of the algebra by giving a representation of its 
expressions as rooted node-labelled trees. 

Definition 2: An operator  tree is recursively defined as follows: 

A constant  is an element of UM,: . 

A variable may be assigned any element of uhfX . 

An atom is a node labelled either a constant or a variable. An atom is an 
operator tree (rooted at the atom). 

A protocol node  (P-node) is a node labelled either Ex or Dx for some X. An 
operator tree rooted at a P-node u consists of the node u , an edge ( v  ,u ) and 
an operator tree rooted a t  u .  The operator tree rooted at c is said to be a 

subtree hooked to W .  

X 

X 
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An inverse-node (I-node) is a node labelled I, for some X .  A n  operator tree 
rooted at an I-node u consists of the node u , an edge (U ,u) and an operator 
tree rooted at u. (The operator tree rooted at  u is said to  be a subtree 
hooked to  u .) 

An multiplication-node (p-node) is a node labelled p x  for some X. An operator 
tree rooted at an  p-node u consists of the node Y ,  a set of d 2 l  edges 
{ ( V , U ~ ) } ~ = ~  and a set of operator trees rooted at U ,  , u 2  ... ud respectively. 
(The operator tree rooted at U; is said to  be a subtree hooked to  U .  Note that  
only a p-node may have more than one son in an operator tree.) 

As a first step towards defining the operator tree algebra we define two operator 
trees to be isomorphic if there is a "labelling and rooting preserving" isomorphism 
from one tree to  the other. This isomorphism can be precisely defined as follows: 

Definition 3: Two operator trees T, and T2 are said to be isomorphic if one of the 
following hold: 

I) Both trees are atoms, and either both arc labelled by the same constant or 
both are labelled by the same variable. 

For i f { I $ } ,  let Ti consist of the root vj and d subtrees hooked to  ui denoted 
by ti' , ti2 ,..., ti" respectively. 
Then the labelling of u 1  and u q  are equal and there exists a permutation r 
(over the set {I,z, ..., d } )  such that  for every 15 j 5 d ,  the subtree t l i  is ism 
morphic to  the subtree t ; ( j )  . 

2) 

The equalities listed in Sec. 3.3 imply the following tree manipulation system. The 
system consists of 10 pairs of reduction rules, corresponding to these 10 equalities. 

The Two-way Reduction Rules: The notation e , ( t )  -+ e d t )  [ e l ( t )  <- e d t ) ]  

means that the subtree described by the expression e l ( t )  [ c d r ) ]  can be replaced by 
the subtree described by c z ( t )  [ c , ( t ) ] ,  in any operator tree. For every equality Ei 
(0 5 i 5 9) of the form c l ( t ) = e 2 ( t ) ,  we introduce a reduction rule (denoted R i )  
c l ( t )  -+ c P ( t )  and a (reverse) reduction rule (denoted B i )  e l ( t )  <- c d t ) .  

Finally, we define equivalence of operator trees as follows 

Definition 4: Two operator trees are (two-way) equivalent if applying a 
sequence of reduction rules to  one of them results in an operator tree which is 
isomorphic to  the other. We stress that both the Bi and the Ri reduction 
ruIes may be used in this sequence of applications. 
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4.2 Properties of the R-Reductions Rules 

The reduction rules discussed in subsection 4.1 consist of pairs Ri and Bi 
such that if R i  is e , ( t ) -  e z ( t )  then Bi is e , ( t )  <- e 2 ( t ) .  This system of reduction 
rules is clearly infinite, in the sense that one can apply an infinite sequence of 
reduction rules t o  every operator tree. We will consider the Ri (0 5 i 5 9) reduc- 
tion rules hereafter called the R-reduction rules. The system of R-reduction rules 
is finite; that is, for every operator tree t there is a (finite) upper bound of the 
length of sequences of R-reduction rules which can be applied to  t . 
Lemma 3: Let n denote the number of nodes in the operator tree t .  Then n3 is an 
upper bound on the length of R-reduction sequences which can be applied to  t . 
Remark 2: The upper bound presented in Lemma 3 is tight up to  a multiplicative 
constant. A demonstration of this fact is omitted from this extended abstract. 

The finiteness of the R-reduction rules suggests the following 

Definition 5: An operator tree is said to be irred~ucible if no R-reduction rule can 
be applied to  it. 

Corollary 1 (to Lemma 3): 
For every operator tree t , there exists an operator tree r such that 

1) 

2) 

Another appealing feature of the R-reduction rules is the insignificance of the 
order in which R-reduction rules are applied; 

Lemma 4: 
For every operator tree t there exists a unique operator tree r such that 

1) 

2) 

Lemma 4 can be proven by demonstrating' that the R-reduction rules have the 
Church-Rosser Property [CR], and by using the Church-Rosser Theorem. By the 
Church-Rosser Theorem if a reduction system is finite (in the sense of Lemma 3) 

and has the Church-Rosser Property then each object has a unique irreducible 
object reachable from it. Lemma 4 suggests the following 

r is an irreducible operator tree. 

r is the result of applying a finite sequence of R-reduction rules to  f .  

r is an irreducible operator tree 

r is the result of applying a finite sequence of R-reduction rules to  t . 

Definition 7: The reduced f o rm of t is an operator tree r such that  r is 
irreducible and t --+ ' r  . 

'Such a demonstration is straightforward but tedious. An extensive study of general methods for proving Church-Rcsser prc- 
erty of tree manipulation systems was conducted by Rosen jRI. 
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Definition 8: Two operator trees are said to  be R-equivalent if their 
corresponding reduced forms are isomorphic. 

4.3 R-Reduction Rules versus Two-way Reduction Rules 

In this subsection we show that the R-reduction rules are as powerful as the 
two-way reduction rules. This is of much importance since, unlike the two-way 
reduction rules, the R-reduction rules can only be applied a finite number of times 
and yield a unique (irreducible) result. 

Lemma 5: Two operator trees are R-equivalent if and only if they are two- 
way equivalent. 

Corollary 4 (to Lemma 5): With respect to any operator trees t ,  and t!, , the fol- 
lowing are equivalent: 

1) t ,  and t z  can be proven to  be equal in the proof system which consists of the 
axioms AO, A1 and A2 (of subsection 3.3) and the proof rule known as substi- 
tution. 

The reduced form of t ,  is isomorphic to  the reduced form of t ! ,  . 2) 

Thus, the R-equivalence ”grasps” the structure of the algebra of operator trees. 

4.4 The New Secur i ty  Definit ion 

Having presented the algebra of operator trees and its properties, we are 
ready to define insecurity with respect to  this algebra. We will say that a protocol 
is insecure if a saboteur can construct an operator tree which is R-equivalent to  
the initial message sent from A to B .  As in Definition 1 (subsection 2.3), the 
saboteur can apply any operator in his vocabulary as well as apply any instance of 
any protocol word to any message. Let us present a formal definition of this new 
insecurity notion. 

Definition 9: Let P ( X , Y )  = ( L Y , , ~ ~ ,  . . . , (10 be a ping-pong protocol (as in subsec- 
tion 2.2). 
The protocol P(.;) is RSA-insecure if a saboteur S who does not know the initial 
message mo (in the execution of P by A and B )  can construct an operator tree 
which is R-equivalent t o  m, . (This operator tree will be called the insecurity tree 
of protocol P . )  

The trees that S can construct are recursively defined as follows: 

I) 

2) 

S can construct the path a,[A ,B](m,) 

S can construct an atom labelled by a constant. 
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3) Let t be an operator tree which can be constructed by S .  Then S can con- 
struct the operator tree D y ( t )  ( Y  # A $  is any user in the net other than A 

or 8) and the operator tree & ( t )  (X is any user in the net). 

Let t be an operator tree which can be constructed by S. Then S can con- 
struct the operator tree ai [ X , Y ] ( t )  , where 1Si </ and x # y are any two dis- 
tinct users. 

Let t l , t z ,  . . . , td be d 2 2  operator trees which can be constructed by S .  Then 
S can construct the operator tree p X ( t , , t , ,  . . . , t d )  and the operator tree I x ( t , )  

(X is any user in the net). 

4) 

5 )  

Consider the following variant of the above definition: 

Definition 10: The protocol P(.,.) is gene7ically-znsecure if a saboteur S who 
does not know the initial message m,, (in the execution of P by A and B )  can 
construct an operator tree which is R-equivalent to m o  , where the trees that 
S can construct are recursively defined by 1, 2 ,3 and 4 above (without 5 ) .  

Remark 3: Note that the Definition 10 is identical to Definition 1 (the insecurity 
definition which appears in subsection 2.3). 
(Note that if P is generically insecure then it has an insecurity tree which consists 
of a path with one atom (m,) and all other nodes are P-nodes. Also recall Remark 
1 in subsection 2.3.) 

5. EQUIVALENCE OF THE TWO SECURITY DEFINITIONS 

We are now ready to present the main result of this paper: the equivalence of 
the insecurity definitions presented in Definition 1 and Definition 9 (subsections 2.3 

and 4.4) respectively. By Remark 3 (above) it suffices to show that 

Main Theorem: A protocol P is RSA-insecure if and only if it is 
generically-insecure. 

proof Clearly, if the protocol P is generically-insecure then it is RSA-insecure. It 
is left to show that if P is RSA-insecure then i t  is generically-insecure. 

Suppose that P is RSA-insecure, then it has an insecurity tree t which con- 
tains atoms, P-nodes and possibly I-nodes and p-nodes. Consider an application of 
a R-reduction sequence to the operator tree t ,  resulting in the operator tree m o .  

Consider the node in t tha t  was not reduced during this reduction process (it, is 
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labelled by mo); and the path in t from the root to  this node. Denote the nodes on 
this path by no ,nl  , n 2 ,  . . . , and nl . no denotes t ’ s  root and nl the node labelled 
by mo which was not reduced in the reduction sequence. 

First note that the path which results from no ,ni ,...,al by omitting all p- 

nodes and I-nodes can be constructed by the saboteur S .  It is left to show that 
this path (the path which results from n o  , n l  ,..., nI by omitting all p-nodes and I- 
nodes) is R-equivalent to m o .  That  is, that the P-nodes of this path can be paired 
in a non-interlacing manner such that the labels of the nodes of each pair are Ex 
and Dx (for some user X). 

Throughout the R-reduction process, consider the path between the current 
root and nl . Before the first reduction rule was applied this path consists of 
no ,nl ,..., nl . Consider the application of the i t h  R-reduction rule. 

Case I: If the i t h  rule is not RO then it does not cause the omission (or inser- 
tion) of any P-node in the path from the current root to nl . Furthermore, it 
also does not change the order in which the P-nodes appear on the path from 
the current node to n1 . 
[Note that we rely on the fact that  nI was not omitted during the R-reduction 
sequence.] 

Case I 1  If the i t h  rule is RO, but it is not applied to a node on the path from 
the current root to nl , then i t  does not effect the nodes on this path. 

Case III: If the i th  rule is RO and it is applied to nj which is on the path 
between the current root and nl , then it causes the omission of n, and some 
nk . Note that  both nodes are currently adjacent on the path between root 
and nl . In this case we pair  the node ni with the node n b  . 

Note that in the end of the reduction process the path between the current root 
and nl consists of a single node: nl . It is evident that we have paired all the P- 
nodes of the initial path between the root and n, so that the pairs do not interiace 
and the labels of the P-nodes of each pair are Ex and Dx for some X .  

We conclude by noting that  concatenating the labels of the P-nodes on the 
initial path from root to  n1 forms an insecurity string of the protocol P .  Thus, P 

is generically-insecure. 
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6. EXTENSIONS 
The definitions and results of the previous sections can be extended in three direc- 
tions: 

1) 

2) 

3) 

In this extended abstract, we only deal with the last case. The first two cases will 
appear in the full version of this paper. 

The security of ping-pong protocols over extended operator-alphabet. 

The security of multi-party ping-pong protocols. 

Insecurity as the ability to accomplish the effect of a specified operator word. 

Insecurity as the Abi l i ty  to  Apply a Specific Operator Word 

The insecurity definitions appearing in this paper can be rephrased as follows: 
Can a saboteur construct an operator tree which is equivalent, modulo a specific 
set of reduction rules, to the left inverse of the first word in the protocol (i.e. 
equivalent to q ( A  $I-') ? [The reader is referred to subsection 4.4 for a definition 
of the set of operator trees which can be constructed by the saboteur.] 

Following [El, we generalize the above notions of security, and consider the 
following question: Can a saboteur construct an operator tree which is equivalent, 
modulo a specific set of reduction rules, to a specific operator word @? 
In case the saboteur can construct (using instances of the words of the protocol) 
such an operator word, we will say that the protocol is pinsecure, otherwise we 
say that the protocol is psecure. 

Using the appropriate sets of reduction rules, we derive definitions for p 
RSA-insecurity and pgeneric-insecurity. (In the first the set of reduction rules 
consists of all R reductions, while in the second the set of reduction rules consists 
only of RO.) The proof of the Main Theorem can be modified to yield the follow- 
ing: 

Theorem 2: For every 8, a protocol is FRSA-insecure iff it is pgenerically- 
insecure. 

7. CONCLUDING RErviARKS 

In [D], Denning considered a signing protocol which consists of applying the 
user's decryption operator to  the given document. Formally, this protocol consists 
of two phases: in the first one party s sends his counterparts (R) a document m 

(to be signed); in the second phase R applies DR to m and replies with the result 
DR (m), which is considered to be R ' s  signature to m . 
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Using the fact that  the message space of the RSA forms a group and that the 
encryption function is a homomorphism of this group, Denning demonstrated (by 
methods of Davida [Da] and others) that  the RSA implementation of the above 
protocol is insecure. Namely, that  .S can get R 's signature to message m without 
R being willing to sign m . 

The fact that  the above protocol is D,-RSA-insecure should be no surprise, 
since this protocol is obviously DR -generically-insecure. In the above protocol, R 

does not have the choice of which messages he signs since he is assumed to play 
the protocol for any initial message. In order to get R ' s  signature t o  m all S needs 
to do is to send m to R in the first phase. Thus, the weaknesses pointed out by 
Denning rejects only the weakness of the protocol she used, not a weakness of the 
RSA. Furthermore, 

Any successful attack on a ping-pong protocol which relies on the obvious 
properties of the RSA (listed in Sec. 2) can be transformed into a successful 
attack which works no matter which public-key cryptosystem is used to  
implement the protocol. 

In other words, generically-secure ping-pong protocols are immune against 
attacks which rely on the obvious properties of the RSA. 
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