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1. Introduction 

What can we expect from a poker protocol? How close to reality can we come? 

From the outset of this research , we realized that a cryptographic protocol could achieve more 
security than its real life counterpart (with physical cards). But every protocol proposed until now 
was far from offering all the possibilities of a real deck of cards or could not acheive the full security 
we were expecting. 

Since Shamir, Rivest and Adleman h t  stated a solution to the mental poker problem [SRA] , 
many protocols trying to implement a fully secure game have been proposed. Although SRA proved 
in the two player case that such a solution is not possible from an information theoretic point of 
view, such solutions might be possible when the players' computational power is limited. The leak- 
age of partial information, found by Lipton [Li], in the initial SRA protocol was fixed by 
Goldwasser & Micali [GMl], in the two player case, using probabilistic encryption. Unfortunately 
this scheme did not extend to a larger number of players. No complete solution to the multi-player 
version of the problem is yet known. ALI proposals make special assumptions, like the players' inabil- 
ity to establish secret communications [Yu]&[BF] or the existence of a trusted third party [m. 

To conceive a complete poker protocol, some constraints must bz followed : 

Uniqueness of cards 
Uniform random distribution of cards 
Absence of trusted third party 
Cheating detection with a very high probability 
Complete confidentiality of cards 
Mnimal effect of coalitions 
Complete confidentiality of strategy 

Each card must appear once and only once, either in the deck or in the hand of one player. The 
only case when a card may appear more than once must be the result of some detectable cheating. 

The hand of each player must depend on decisions made by every players, so that none of them 
has any control on his hand or on his opponents'. Every possible hand must have an equal probability 
and be accessible to all players. 

H.C. Williams (Ed.): Advances in Cryptology - CRYPT0 ' 8 5 ,  LNCS 218, pp. 73-86, 1986. 
0 Springer-Verlag Berlin Heidelberg 1986 
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NO trusted party may be assumed, since any human can be bribed, and no machinery is entirely 
safe because no tamper proof device can be achieved. 

Any attempt to cheat must be detected. The probability that a player may cheat without being 
detected must decrease very fast (exponentially) with respect to some security parameter that the 
players must decide before the game. Also the amount of work to accomplish the protocol should 
increase reasonably @olynomially) with respect to this parameter. The value of this parameter will 
depend on the confidence the players have towards each other, and the maximum computation power 
they can achieve. 

No partial or total information about any card from the deck may be obtainable without the 
aproval of every opponent. Also, no information may be obtained from a player’s hand without his 
approval. 

When more than two players are involved, some players could establish secret communication 
and exchange all their knowledge about the game, the protocol or any secret data involved in the pro- 
tocol. Notheless they should not be able to take advantage of this. This information should be 
equivalent to the cards they separatly have in their hands. In other words, as long as one player is not 
cheating, nobody can learn more about his hand, or about the cards in the deck, than what they can 
deduce from the cards in their coalition. 

Finally, it is strategicly very important in the game of poker that the loosing p l a y a  may keep 
their cards secret at the end of a hand. All the concept of bluffing is based on this fact. Therefore, an 
ideal protocol should neither force the players to reveal their hands nor any information leading to 
some knowledge about them. 

Our protocol fully implements a secure game achieving the first six properties. Only the 
confidentiality of the strategy remains unsolved, as all players will be requested to reveal all their 
information in the detection of cheating phase of this protocol. 

This protocol is based on the implementation of the new concept of Hiding-Revealing transac- 
tions. These transactions enable a party A to pick a value from a set hown to a party B without let- 
ting B know which element A has picked. 

Our multi-player protocol is a direct extension of our two player version. Let us first describe 
this simplified protocol. Suppose that PI and P, want to play a fair game of poker. Assume that each 
of them will cheat if he can do so (without being detected). 

Assume a comspondance between the cards and the set {1,2,3, ..., 51,52}. So from now on, 
numbers from 1 to 52 will be used to describe the cards themselves. ’ 

2. Cards shuffling 

To shuffle the deck of cards P I  picks at random a permutation x1 of {1,2,3 ,..., 51,521 and P2 
picks 1?2. Accessing any card will be done via these two permutations. Each player Pi locks his per- 
mutation K, using a locking function that must satisfy some special properties described below (which 
two well known cryptosystems will be shown to satisfy). Then P, posts the locked version of xi. A 
card will be accessed by %(xl (k ) )  for k E {1,2,3, ..., 51,52}. Since a player doesn’t know the permuta- 
tion of his opponent , the value ? ( x l ( k ) )  cannot be predicted by either player. To get a card, a player 
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would like to compute xz(nl(k)) from k and the encoded permutations (with the collaboration of his 
opponent) without revealing the outcome of his calculation. This is clearly easy for P,, but tricky for 
Pl. 

3. Requirements 

TO play the game, each player will have to pick four functions, (L,UJr,R) according to the rules 
described below. Briefly, these functions will be used in the protocol to transfer information from one 
player to another. Suppose a player owns a set of values V. He will show a perfectly hiden version of 
his elements using the locking function L. The opponent will be able to select a value from V ,  
without revealing which one, by choosing a locked element c, hiding it with H ,  asking the first player 
to use U in order to release some trapdoor information about H(c), and finally inverting the hiding 
he did previously, using R on U(H(c)) to read the value he has chosen. If H and R have some 
"good" properties, then the owner of the set V will not be able to determine the value chosen by his 
opponent, nor will his opponent learn anything on the other values in V .  

The following properties summarize sufficient conditions to built our protocol. This general 
approach is followed by two fundamentally different implementations. The presentation is done in a 
general framework in order to avoid mixing practical implementation details with the high level 
aspects of the scheme. 

Let V be the value space ( in this case {1,2,3 ,..., 5152) s V ). 
Let S be the seed space. 
Let C be the coded (locked) message space. 
Let K be the unlocking key space. 
Let M be the mask space. 
Let A be the ambiguous value space. 

Define 
L:VXs+C (locking function) 
UA+K (unlocking function) 
H:MxC+A @Xing function) 
R:MxCxK+V (revealing function) 

such that 

(the full meaning of the following properties will become clear in the next sections) 

2) tlvc V , ~ G  S, it is computationally infeasible to compute any information about v from L(v,s). 

3) Wvc V,+c s, it k computationally infeasible to compute s from v and L(v,s). 

4) b c  M,W€ V,WS€ s, R(mC(v,s),U(H(m~(v,s))))=v 
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6) VVE V,'+(m,s)~ MxS,  it is computationally infeasible to compute rn given H(m,L(v,s)) and UV,.~) .  

7) Their exists some polynomial time algorithm for each of L,U,H,R, but U 
includes trap-door information which is computationally infeasible to derive from L a p .  

Here V ~ E X  means: 
"for all X G X ,  except a number of elements smaller than any polynomial fraction in log(#X)". 

4. Protocol 

Assuming the existence of such functions (two implementations are given later), we describe our 
protocol. Let iE { IJ}. 

Preparation Protocol 

Each player Pi  : 
Step 1. Defines Vi,Si,Ci,KifliPi. 
Step 2. Defines Li,Ui,Hi,Ri. 
Step 3. Picks xi  a permutation of (1,2 ,..., 52). 
Step 4. Posts Li,Hi&. 
Step 5. Picks sil,.si2, . . . , s ~ ~ ~ E S ~  at random. 
Step 6. Posts ~,(v)=Li(n,(v),siv), 15~152. 

From property 2, revealing L,~x~v)piv), l<vS52, leaks no information on xi(v). But since only 52 
values are possible for aXv), it would be easy to determine xxv) from si,v if the latter were easily 
computable, by comparing L,(isi,,)Li(2,si,,) ,... Ci(52,si,,) with li(v). This is why property 3 is essential. 

Initially, every v ~ { l , 2 , 3 ,  ..., 52) is marked as "free". Suppose P2 wants to get a card, 

Card Reading Protocol 1 .. 

Step 1. Pz picks at random a "free" value v E {1,2,3, ...> 2) 
and marks v as "used'. 

Step 2.  P, asks P, for the value of nl(v). 
Step 3. P I  reveals xl(v) to P2 
Step 4. P ,  secretly computes T C ~ ( T I ~ ( V ) ) ,  which is his card. 

At the end of the game, P ,  will be able to produce a proof that the value revealed (xl(v)) was 
correct by showing sl," so that P, can compare L , ( j ~ ~ ( v ) , s ~ , ~ )  with II(v). P I  cannot cheat on this, since 
Il(v) uniquely determines x~(v)  by property 1. 
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At the end of the game, if P2 claims to have the card r2(7t1(v)) in his hand, he will be able to 
produce a proof of this by revealing SZ,~,(”) so that P can then compare . L , ( ~ ( X ~ ( V ) ) , S ~ ~ , ( ~ ) )  with 
12(n1(v)). Again, P2 cannot cheat on this, due to property 1. So this transaction is fully secured. 

Now suppose PI wants to get a card, 

Card Reading Protocol 2a (not sufficient in general) 

Step 1. P I  picks at random a “free“ VE {1,2,3 ,..., 52) 

Step 2. P ,  secretly computes x,(v) .  
Step 3. P picks m E  M2 and computes h=H2(rn,12(7cl(v))). 
Step 4. Pl asks P2 to compute the key k to h. 
Step 5. P2 returns k=U2(h) to P 1. 
Step 6. Pl computes: R2(rn,f2(nl(v)),k) = nz(xl(v)) { by property 4 }. 

and marks it as “used“. 

Since H has property 5,  P2 gets strictly no information on nl(v) from h since any of the 12’s 
may have been used with equal probability. 

We call this (Step 3 to Step 6) a Hiding-Revealing transaction between PI and P2. In this tran- 
saction P2 has revealed a secret value to PI, namely ? ( q ( v ) ) ,  without knowing which one he has 
given away. At the end of the game P I  will be able to check this transaction when asking P, to 
reveal s ~ , ~ , ( ~ )  , P can compare ~(X~(K~(V)),S~,,,,(~~) with 12(n1(v)). The only remaining problem is 
proving to P2 that P I  did not fool him in making him decode something else than H~(~,@I(V)))  . 
How can we force PI to respect the protocol? 

First, let us see how PI could cheat. Suppose P asks P2 to decode h’=H2(m,1z(nl(v’))) for v’fv, 
instead of h. Then PI will get %(x1(v’}) when claiming he has been accessing n2(nl(v)). This could 
be interesting for P for instance, if v’ is marked as “used“ because %(nl(v’)) is in fact a card in 
P,’s hand. This would allow P to know one card of his opponent, at cost of not knowing one of his 
own. But at the end of the game, PI will not know what 3(x1(v)) is. So if PI is asked to reveal all 
the cards he should have accessed, he won’t be able to do so. ( In fact PI may decide to access the 
card later in the game but in that case the problem will cany over to this new card he pretends to 
read ). 

But Pl could be more subtle than that. He could try to get partial information on many cards at 

once. Maybe P ,  claims to follow the protocol, when in fact he is asking P2 to decode some special 
value g=G(Zz(l), ..., f2(52)) instead of h, hoping that G’(12( l), ..., 12(52),U2(g)) returns relevant informa- 
tion (partial or total) on more than one entry of x2, for some easily computable functions G:CS2+A, 
G‘:C5’xK_t@ he has discovered. This way, he might find out what r2(x1(v)) is and get additional 
knowledge on some other cards. 

Our general solution to this problem takes advantage of property 6. P, will ask P l, at the end of 
the game, to reveal q ( v ) ,  sl,” and rn. This allows P2 to compare fl(v) with Ll(7cl(v)~l,v) and h with 
H2(m,Z2(n1(v))). But this is not yet a proof of P l’s fairness. Maybe P1 computed rn after he received 
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the answer k in Step 5 .  

Suppose PI uses g as defined earlier. Afetr he gets k=U2(g) from P2, maybe he can deduce 
K ~ ( K ~ ( v ) ) ,  additional information on %, and some rn such that g=Hz(m,12(xl(v))). However, if we 
force P l  to publish a coded copy of m before making Step 4 of the transaction, then to prove a fair 
access to Kz(rc,(v)), P I  would have had to compute m before leaming k. But this is not possible from 
property 6 because from g and Iz(rcl(v)), Pl cannot compute m. So PI is fair if and only if he knew 
rn before the value of k was revealed to him. 

To implement this solution, we use a (possibily trap-door), public one-way function 0 1  that 
hides all partial information on its inputs and add one step to our protocol (notice that this 
modification is not necessary for one of the implementations proposed in section 5 )  : 

Card Reading Protocol 2b 

Step 1. P1 picks at random a "free" YE {1,2,3, ..., 52}  

Step 2. P1 secretly computes rcl(v). 
Step 3. P picks mEM2 and computes h=H2(rn,12(x1(v))). 
Step 4. P l  asks P, to compute the key k to h. 
Step 4a.P1 posts Ol(m). 
Step 5 .  P2 returns k=U,(h) to P,. 
step 6. Pl computes: R2(m,f2(rc,(v)),k) = nz(nl(v)). 

and marks it as "used". 

This way, P, can check later that P, knew m before Step 4 of the transaction. The fact that the 
one-way function hides all partial information is important. In some implementations it is possible for 
P2 to compute {rnl Ii, 1 5 z I; 52 such that H2(m,lz(i))=h}. If 0, did leak some infomation, then the 
correct rn could be found or the set of possible candidates could be reduced, according to the leaked 
information, and Pz would gain some knowledge about xI(v). 

During the game, cards can be picked from the deck or discarded just by marking (with "used' 
or "discarded",respectivly) the appropriate element in { 1,2,3, ...J 2). (e.g. to discard nz(rcl(v)) just 
mark v as "discarded'.) 

At the end of the game all secret information must be published as proofs of fairness of the 
players. But some care must be taken in the implementations where the Oi functions are not used, to 
avoid revealing some secret item too soon. Otherwise a cheating opponent could forge a fairness 
proof from what he just learned. So, proofs of fairness must be done in the following way. TO 
prevent a cheater from forging a proof, each player must execute Step 1 before anyone does Step 2 
since Step 2 is used to prove that the values revealed in Step 1 were the correct ones. Also each one 
must execute Step 2 before anyone does Step 3 since learning the s's may be a clue to the successful 
forging of m. 
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Proof of Fairness Protocol 

Each player Pi reveals: 
Step 1. xI(v),n2(xI(v)) for each v he has accessed. 
Step 2. All m c M  used for some fidmg-Revealing operations. 
Step 3. ? F ~ ( V )  and si," ,1 I v 5 5 2 .  

This enables the opponent to check the transactions and to be sure that no cheating took place. 
The generalization to more than two players is found in section 6. 

5. Implementations 

We now propose two implementations of this protocol. The first is based on RSA [RSA] and the 
efficient probabilistic encryption scheme of Blum & Goldwasser (BG) [BG]. The second is based on 
the probabilistic encryption scheme of Goldwasser & Micali (GM) [GMJ. This first version matches 
the general pattern given above. 

5.1. Using RSAIBG. 

Let P be one of the players. P selects p,q  two larges primes; large enough for the least 6 RSA bits 
to be 1~~+(l/poly~og@q)))-secure ( see [CG] ). Let n=pq. P selects ~ , 8  such that €8 = 1 (mod $(n)). 
Then define V={0,1,2,3, ..., 63}, S=K=M=A=Z:, C=VxS. ( x h )  denotes the least n signi6cant bits of x 
and 8 denotes the bit-by-bit exclusive-OR. 

I I 

Where m-* is the multiplicative inverse of rn (mod n) and c=(v(c),s(c)). BG is the Blum- 
Goldwasser encryption function (see [BG]); in this implementation, one can use BG in the following 
way. P picks a random so's, and compute sk=& mod n, 1 I k < (lni/6). P then posts SY 6 and 

<(~0~6)(s,lS)...(sq_~.16)> @ m. Here <...> denotes the concatenation of the given blocks of 6 bits. 

According to [BG], no partial information about rn can efficiently be computed from these two public 
values. At the end of the game P will have to reveal 5, then everybody will be able to compute 
s1,sp.. and recover m by inverting the @ . It will also be possible to check that this is the correct SO 

since s ~ l l  is uniquely deccdable. 
6 
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Theorem: L,U,H,R satisfy properties 1 to 7 (assuming inverting RSA is hard). 

Proof: 

2)Since the 6 least sigmficant bits of s are 1/2+(1/poly(log(n)))-secure. 

3)RSA is assumed hard to invert. Being given the last 6 bits of s can at best speed up 
finding s by a factor of 64. 

5)Wv~ V,Wssc S,Vuc A ,  {me 11.11 H(rn,L(vp))=a}={me M l ( n ~ ) ~  mod n=a} 
={a's-' mod n} 

*#{md4IH(mJ(v,s))=u} = 1 

6)Suppose we have XEZ:. If a polynomial fraction in log(#MxC) values of H(rn,c) were 
easy to invert given c,  then we could choose ap(c&.'p for plynomially many random 
cbrk and with a very high probability, find a solution to uk=kl(m,cs) (k, is one of the 
values attempted), using that inversion algorithm. One can check that mr;' would then be a 
solution to (mr;-d)% (mod n). This would imply we can invert RSA. 

7) Clearly L,U,H,R are easy to compute.. 
0 

In this first implementation we need 0 to solve the cheating problem. But in this next one, no 
0 is required. Data expansion may be greater in this second version but the simplicity obtained worth 
the difference. 

5.2. Using Probabilistic Encryption (GM). 

Let P be one of the players. P selects p,q  two larges primes. k t  n=pq. P selects q such that 

k]=[-al=-l. ( where [:] is the Legendre symbol of x over p ). Then define 

& ..., 63}, S = ( q 6 ,  C=A=Zi[+1]6 and M=VxS. ( where c[+l]={xb€ 
Jacobi symbol of x over n ) 
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Denote x'(xl~zxzrr3~4~5~6)€x,where ( x a  is any of (v,V),(c,C),(sfi,(kfl or (ad). Denote also 
rn=(v(m)j(m))cM=VxS and (c @ c ' ) ~  = (c,cJ mod n). 

if x is  a quadratic residue mod n 
Where k(x , y )=yw mod n and if is no, a qdratic residue mod n. Note that these functions 

are inspired by those defined in [GM2]. 

Theorem: L,U,H,R satisfy properties 1 to 7. (assuming the quadratic residuosity assump- 
tion (QRA)) 

Proof: 

l)tIY,V'E v,ws,s'€s, L(vs)=L(v's') 
=w=v' since GM is uniquely decodable. 

2) Known property under QRA. (see [GhQ]) 

3) True under QRA. Because the ability to compute s from v and L(v,s) would allow to 
extract square roots, hence factor n wich is hard under QRA. 

S)WE V,Wse S,Wue A ,  {me MI H ( m , L ( v , s ) ) ~ } = { m ~  MIL,(m) 8 L(v,s)=z} 
={m~MIs(m)*~")~ mod n=usi;%l-vJ mod n, 1 I J I 6 )  
= { m ~ ~ s ( m ) ~ ( ~ ) ~  mod n=x,qYJ mod n, 1 2 J 2 6) with m;%-vJ=x,qdJ where x, is a qua- 

dratic residue mod R 
={meMls(rn):=x, and v(m),=v',, 1 I J 5 6) 
But each of these 6 equahons have 4 solutions 
so #(rnE MI H(mfivs))-a}=46.  

6)Suppose we have xaZ;[+l ] .  If a polynomial fraction in log(#MxC) values of H(m,c) 
were easy to invert given c, then we could choose mod n, with 
nk,z,nk,3,a~4,ak5,u~6 random numbers in Z;[+II, for plynomiaUy many random ckjbvb 

and with a very high probability, find a solution to ok=H(m,cd (ko is one of the values 
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attempted), using that inversion algorithm. One can check that m&~(-"~' would then be a 

solution to (s&sl(m))%l =x (mod n). This would imply we can decide quadratic 
residuosity (mod n) (in contradiction with QUA). 

vd4-vbl-  

7) Clearly L,UJr,R are easy to compute. 
0 

This implementation is particular because no encoding of mcM is needed to prove that someone 
knew m before using it in the Hiding-Revealing transaction. This is because of the next result: 

Theorem: m cannot be computed from U(H(m,c)) and c, for any rntzM,ce C. 

Proof: U(H(m,c)) is independent of s(m). 

Suppose Pj makes a hiding-revealing mnsaction with Pi. If he doesn't know m before the tran- 
saction he cannot h o w  it after since s(m) cannot be computed from U(H(rn,c)). So to prove that he 
knew rn before the transaction, Pi just has to prove he knows it at the end of the game, since nothing 
has revealed this value to him after the transaction or later in the game. 

6. Multi-Player protocol 

We now extend the previous protocol to the multi-player problem. Suppose that P1,P2. . . . J'j 

want to play poker. The preparation protocol is identical to the two-player version. A card will be 
accessed as n,{xFl(x, -2(...(3(n1(~)))...))) for V E  {1,2,3 ,..., 52).  Suppose P,, n ~ { 1 , 2  ,... j }  wants to get 
a card. 
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This way, P, computes ~,.+~=x,(n~~(n~~( ...(n2(7c1( v ) ) )  ...))) and nobody except himself knows 
v,,+,, ... ,vj,vfi1. All the proofs of fairness described in the two-player version can be used again in the 
multi-player case. Again depending on the implementation, Oi’s may be needed to obtain proofs of 
fairness in the Hiding-Revealing protocol. Finally the order of reveIations at the end of the game 
must be the same as in the protocol for two players when those 0,’s  are not used. 

7. Security against player coalitions 

The main improvement of this protocol is protection against coalitions. If some players form a 
coahtion, they will not get any advantage from it, other than learning each other’s hand. Since every 
card is accessed through each permutation, no subset of the players can know anything about the 
cards of the other players, other than knowing that they are not the cards within the coalition. 
Assume some player Pi is not a member of a coalition (by this we mean that Pi does not reveal any 
private information to any other player), then by the construction of the protocol we know that the 
values V~+~,...,V~,V+~ are secret and known only to himself for each of his cards. Since the vj+l’s actu- 
ally identify his cards, nobody has any information on them (unless someone has not followed the 
protocol but in that case he wdl be detected at the end of the game). Similarly, no coalition can 
influence the cards drawn by an honest player. 

8. Playing other games 

Our new protocol can be extended to play almost any card game, as well as other kind of 
games, such as Scrabble. Fortune and Merrit mentioned games that could not be played with 
their protocol. With our protocol, one can play any game where cards have to be exchanged between 
players more than once, or where cards may be dealt and discarded many times. Suppose for instance 
that P, wants to get a card from Pi’s hand. 

Card exchange Protocol 

Step 1. Pi reveals, in a random order, a locked version of his cards 

Step 2. P ,  picks one of them ,tells which one to Pi 
Step 3. Pi returns Ln(x,s) with a random seed SE S, 

Step 4. P,  recovers x using Hn,U,,Pn. 

(Li(x,sJ for each card x in his hand, with a random seed sx E Si). 

where x is the card P, wants. 

This way, only P i  and P, know whch card was exchanged. In fact, everybody will be able to 
check this operation at the end of the game when P, reveals the sx’s. Also no information, like the 
identity of the previous players who ever had the card, is embedded with it. One might think that the 
following solution is sufficient, but if fact it is not. Phi picks a value that P, claims as “used’ and 
reads it using the Hinding-Revealing protocol. P, has to inform P, of which card he has picked SO, 

that P, knows that this card is no longer in his hand. But if later Pi have to pick a card from Pn’S 
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hand, he will be able to choose the same card P, had picked before since he knows how to access it. 

One can notice a problem with discarding in our standard protocol if the game played allows 
several dealing and discarding of cards. Suppose cards were dealt and then some were discarded. 
Suppose we deal some more cards and then discard some of the cards in our new hands (there are 
variants of poker in which players may ask twice to change cards). On the second discarding opera- 
tion each player knows if the discarded cards of his opponents, come from the initial hand or from 
the new one dealt, since the "discard' markers are tagged on to the public values YE { 1,2, ..., 52} .  This 
information may be compromising. To solve this, a card should be discarded by revealing a coded 
version of it and declaring it discarded (This idea was introduced in mu]). If Pi  wants to discard the 
card n,(xpl(xF2( ...(% (q(v))) ...))), instead of marking v as "discarded", he does the following: 

Discarding Protocol 
1 

Pi posts Li(v,s) for some s€Si and declares it "discarded". 

At the end of the game, when Pi reveals v and s, the other players will be able to-detefine 
which cards Pi has accessed, which are still in his hand and which were discarded during the game. 
Just like in the exchange of cards, this reveals no information on its origin. 

Another interesting feature of this protocol is the ability to return cards into the deck. Initially, 
each player goes through the Preparation Protocol, exactly as before and uses the other protocols for 
the other standard operations, Suppose that some players (maybe only one) want to return some 
cards (maybe only one) into the deck for the nd time. It would not suffice to change their marks 
from "used" to "free" because this would d o w  the next person who select one of these cards to 
know that it had been in someone's hand previously. The entire deck, including the cards just 
returned to it, must be re-shuffled by: 

Card Returning Protocol(part 1) 

Each player P; 
Step 1. Picks xi,, a new permutation of {1,2 ,..., 52). 
Step 2. Picks sbl,,,si2,,, . . . , s ~ , ~ ~ , ~ E  Si at random. 
Step 3. Posts Z~(v)=li(ni,(v),si,3, 1 5 v 5 52. 
Step 4. Posts Z i n ( ~ 5 2 2 ) = l i ( x ~ ~ ( v ) , s i , ~ ~ ~ , ~ ) ,  1 5 v 5 52. 
Step 5 .  Sets x,=q,, 

When this is all done, the players will have to read backwards the new origin of the cards they 
have under their control (in their hands and among those they have discarded). They will not be able 
to cheat on this since the other players will check the correspondance between the cards had under 
each of the xi,". 
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Card returning Protocol(part 2) 

Each player Pi, for each card c under his confro1 he wishes to keep, 
Step 1. sets c,=c 
Step 2. FOR l=j DOWNTO i+l 
Step 2.1 Reads z&z1) using the Hiding-Revealing protocol with P, ; 
Step 2.2 Sets C~-~'X$C~); 

Step 3. Sets C~-~=IT;J(CJ; 

Step 4. FOR l=i-1 DOWNTO 1 
Step 4.1 Reads K&Z~) using the Hiding-Revealing protocol with PI ; 
Step 4.2 Sets c l - , ~ ~ ~ ( c l ) ;  
Step 5 .  Declares co (the origin of c) as "used". 

These operations can all be verified when the ni,"'s and the siJ,,'s for 1 I I < 104, are revealed. 
Notice that this feature enables the implentation of"a Scrabble Aotocol that minimizes the effect of 
player coalitions". To do this, change cards into letters and the deck into the box of letters. Then the 
dealing of letters is similar to the dealing of cards and so on... But since letters can be returned into 
the box, this last feature is necessary to implement that game. 

9. Open Problem 

Nothing is quite perfect. There is one thing our protocol cannot do. The strategy of each player 
is completely revealed at the end of each game since OUI protocol asks everyone to show every infor- 
mation involved in the protocol. It makes it impossible for the players to bluff. Real poker players 
would never accept to play such a game. Although whe believe such a protocol can be achieved, we 
do not have a complete solution yet. 
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