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Abstract. No quantum key distribution (QKD) protocol has been pro- 
ved fully secure. A remaining problem is the eavesdropper’s ability to 
make coherent measurements on the joint properties of large composite 
systems. This problem has been recently solved by Yao in the case of the 
security of a quantum oblivious transfer (QOT) protocol. We consider 
an extended OT task which, in addition to Alice and Sob, includes an 
eavesdropper Eve among the participants. An honest Eve is inactive and 
receives no information at all about Alice’s input when Bob and Alice 
are honest. We prove that the security of a QOX protocol against Bob 
implies its security against Eve as well as the security of a Q K D  protocol. 

1 Introduction 

The goal of quantum cryptography is to  design cryptographic protocols that are 
secure against unlimited quantum or classical computational power. At present, 
the quantum protocols that have been designed are commitment [BC, BCJL], 
oblivious transfer [Cr87,Cr94, BBCS, MS, Yao], key distribution [BB84, BBBSS, 
BBBW] and identification [CS]. Furthermore, prototypes for implementing some 
of these protocols have been built [BBBSS, MT, TOW, TRT1, TRT21. 

However, the full security of some of these protocols has not yet been proved. 
One of the difficulties in providing a full security proof is the cheaters’ ability to  
execute coherent measurements on many photons at  a time. At present, security 
against coherent measurements has been obtaiued in the case of commitment 
[BCJL] and bit oblivious transfer fyao]. The security of QKD against coherent 
measurements has not yet been addressed in the literature and it is not clear 
whether the techniques used by Ym in [Yao] for a QOT protocol may be easily 
used for a Q K  D protocol. In any case, we do not use Yao’s techniques. We show 
that the security against Bob of a QOT protocol implies its security against 
eavesdropping and, as a corollary, the security of a key distribution protocol. 
The level of security against eavesdropping that we obtain for QOT (and Q K D )  
depends upon the level of security of QOT against Bob, and, in particular, full 
security against Bob implies full security against eavesdropping. 

The security of a QOT protocol against an eavesdropper is interesting in 
itself because it allows the protocol to  be executed securely over a long quantum 
channel by an honest Alice and an honest Bob. The above implication works 
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with a string QOT protocol, that is, a QOT protocol that transfers a string 
rather than only a single bit. The implication requires that the QOT protocol 
tolerates errors in the quantum channel and that the classical announcements 
in the Q K D  protocol are made on a faithful public channel between Alice and 
Bob. It does not require any unrealistic physical assumption such as zero error 
in the quantum channel. 

2 The QOT protocol and the security of OT 

There are two types of OT: the ordinary OT and the (i)-OT. We consider the 
string version of both types. In the ordinary OT, Alice inputs a string 6 ,  Bob 
receives a random bit c E {0,1} and, if c = 0, the string s. In the (i)-OT, Alice 
inputs two string s1 and s2 , Rob inputs a bit CB and receives the string sCg. 

In this paper, from the security against Bob and tolerance against errors of 
an ordinary QOT protocol, we obtain its security against Eve and, as a corollary, 
the security of a Q K D  protocol. This is significant in particular because Yao 
has proved the security against Bob of an ordinary QOT protocol wao]. 

2.1 The protocol 

In the discussion below, a dishonest Bob and a dishonest Eve, have been included. 
Both appear in the same description, but the security of the protocol against 
any one of them is based upon the assumption that the other is inactive. 

For b ,  0 E (0, l}, let lb)o be the state.of a photon polarized at b x 90 + 0 x 45 
degrees. In the BB84 coding scheme, b is the bit coded in the state Ib)e and 
6 determines the basis used to code this bit: 6 = 0 corresponds to the basis 
{Oo , 90°} whereas 0 = 1 corresponds to the basis (45' , 135O). 

Protocol OT(s)  

1 Honest Bob: He chooses and commits to a random string 8 = (el ,  . . . , 844n) E R  

Dishonest Bob: He cannot gain any advantage from being dishonest at this 
step. 

2.1 Alice: She sends a pulse to Bob in which a random bit is coded using a 
random base in the BB84 coding scheme. 

2.2 Dishonest Eve: She transfers some information from this pulse into her 
own quantum system and she uses that information to modify the resid- 
ual state of the pulse which is sent to Bob. The entire operation may be 
represented by a single unitary transformation on the product state of 
the photon and Eve's system. 

2.3 Let us assume that, thus far, i-1 pulses have been detected by an honest 
Bob or declared as such by a dishonest Rob. 
Honest Bob: He executes on this pulse a von Neumann measurement 

{0,1)4n. 

2 Until 4n pulses are detected by Bob: 
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in the basis di and, if the pulse is detected, he obtains a bit &i that he 
commits to Alice. 
Dishonest Bob: He executes a coherent measurement on this pulse and 
the previous pulses in order to determine: 
- whether or not he declares this pulse a8 detected and, if he declares 

- the bit 6 i  that he commits to Alice. 
this pulse as detected, 

Typically, Bob executes an incomplete measurement, 
The string of bits coded in these 4n detected pulses is b E R  (0, l}4n and the 
associated string of bases is 0 ER (0, l}4n. 

3 Alice: She chooses a random string open ER (0, l}4n and publicly announces 
it. For each i ,  if openi = 1 she asks Bob to open the commitments bi and b i .  

She publicly announces the string error where 

1 if 9, = & h bi # bi A open, = 1 { 0 otherwise 
errori = 

If #error and the number of undetected pulses (another kind of error) are 
not too large, the remainder of protocol is executed, and Puss is set to 1 
otherwise Alice refuses to continue and Puss is set to 0. 

4 Alice: She publicly announces the string 8 = (01, . . . ,&+,,I. 
5 Honest Bob: He chooses a random bit c g .  He deterministically computes an 

ordered pair (eo,el)  such that eo U el = {ilopeni = 0 } ,  I#eo - #ell 5 1 and 

(vi E ecs) ei = & v (vi E e F B )  ei # di, 

and publicly announces this ordered pair. For our proof, it is convenient to 
consider that Bob's deterministic algorithm to compute (eo, el)  returns the 
same output if and CB are both complemented (this is easy to accomplish). 
Dishonest Bob: Having learnt the string 8, he executes a first post-test mea- 
surement of his choice and uses the outcome to compute an ordered pair 
(eo ,e l )  such that eo Uel = {ilopeni = 0) and I#eo - # e l l  5 1, and publicly 
announces the ordered pair. 

For all d E (0, 1}, the string coded by Alice in ed is denoted W d .  

6 Alice: She chooses and publicly announces a random bit CA and a hash 
function g from { O , l } # e ~ ~  to {O,l}r. The integer r is the length of the 
string to be sent via QOT. She also publicly announces a = g(weA)  @ s and 
Syn(w,,) ,  the syndrome of we,  which is needed by Bob for error correction. 

7 Honest Bob: Let c = CA @ CB (this is the c that appears in the description 
of the task). If c = 0, he uses Syn(w,,)  to correct the error in w,, = w,, 
and then he computes s = g(we,) @ a. 
Dishonest Bob: Using the information obtained at step 6, he executes a 
second and final post-test measurement and obtains the outcome jBob. This 
provides information about 8 = a @ g ( W d ) ,  for d = 0 , l .  

8 Dishonest Eve: She measures her system and obtains the outcome j&ve. This 
provides information about s = a @ g ( u ) d ) ,  for d = 0 , l .  
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We adopt the following notation: the random values s, b, B , 6 ,  etc. associ- 
ated with an execution of the protocol are values taken by random variables 
S, B, 8, B, etc. 

The remainder of the section contains the formal definitions of security that 
we use in our proof. As for the definition of security for (i)-OT found in [Cr94], 
our definitions are formulated in terms of the amount of information received by a 
given participant. Any initial information about s that may have this participant, 
Bob in sections 2.2 and 2.4 and €ve in section 2.3, corresponds to an apriori 
probability distribution on S which is implicit in our definitions. 

Due to their relative complexity, we understand that the reader may have the 
impression that the following definitions are more complicated than necessary. 
However, these are the most simple and yet complete definitions that we could 
express in terms of mutual information. A more complete discussion on this 
subject, including a connection with definitions expressed in terms of statistical 
indistinguishability, will appear in another paper. 

2.2 

Let VBob represents all the information received or generated by Bob in the 
protocol. A QOT protocol is secure against Bob if (3a > 0)(3no) such that, 
(Vn > no), for every Bob, for every Channel, there exists a binary random 
variable t? (defined when PUS = 1) such that 

Security of 02' against Bob 

I (S ;  vBobIC = 1 A P Q S S  = 1) x Pr(Pass = 1) 5 2-0" 

P r ( 6 =  1IPuss = 1) = 1/2 
I (S ;  VBoblPaSS = 0) x Pr(Pass = 0) 5 2-an 

I (S;  c, Puss) 5 2-On 

(1) 
(2) 
(3) 
(4) 

Let us remark that at step 5 a dishonest Bob does not even have to choose 
a bit CB. If Bob does not choose a bit CB,  the bit C = CA @ CB associated 
with an honest Bob is meaningless. Therefore, in the above definition, has, in 
general, nothing to do with the bit C associated with an honest Bob. 

Statement 1 says that, if Bob passes the test with a significant probability, 
then, in the context where Bob passes the test and 6 = 1, Bob learns almost 
nothing about S. Statement 2 says that, in the context where Bob passes the 
test, 6 is perfectly random. Statement 3 says that, if Bob fails the test with a 
significant probability, then, in the context where Bob fails the test, Bob learns 
almost nothing about S. Statement 4 says that the information (6, Pass), where c is not given to Bob in the protocol but could eventually be given to Bob outside 
the protocol, says almost nothing about S. 

2.3 
Let VfVe represents all the information that is available to an eavesdropper Cve. 
The protocol is secure against eve, if (3no) such that, (Vn > no),  for every 
Channel, for every €ye, 

Security of the extended 02' against Eve 

I (S;  Qve) 5 2-On. 
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2.4 

The protocol is tolerant against errors (the tolerated error rate being indirectly 
specified by the test) if, (3a > 0) (3no) such that, (Vn > no), for every Channel, 
if Pr(Pass = 1) > 2-O", then 

Tolerance against errors in OT 

I(s; vBob IC = 0 A P U S S  = 1) > P - 2-ffn 
Pr(C = OlPass = 1) > 1/2 - 2-an 

( 5 )  
(6) 

where C is the bit that is received by an honest Bob. 
The condition Pr(Pass = 1) > 2-an is needed because, if the expected rate 

of errors in the quantum channel is so high that the probability that Bob passes 
the test is almost zero, then the protocol does not have to compensate for errors, 
even in the rare cases where Bob does pass the test. Statement 5 says that, in 
the context where C = 0 and Bob passes the ,test, Bob must receive almost 
everything about the string S. This means that the protocol compensates for 
errors in the quantum channel. Statement 6 says that, in the context where Bob 
passes the test, the bit C must almost be perfectly random. 

3 From Bob to Eve 

In this section we prove the following theorem. 

Theoreml. The  security against B o b  and tolerance against errors of the above 
protocol implies  i t s  security against Eve .  

Looking ahead to an extension of this result to Q K D ,  we shall be generous 
and assume that Eve receives 4 and CB at  the same time as she receives the 
pair (Eo, E l )  (which is thus redundant). The following general purpose lemma 
is useful. 

Lemma2. Let A, B,C be any  random variables. W e  have 

I(d; B) = I(d; C) + 1(B;C) - f(A, B;C) + I(d; SIC = c )  Pr(C = c ) .  
C 

The proof is left to the reader. When we refer to this lemma, we say that the 
mutual information I(d; f?) is partitioned over C. Note that, if C is a function of 
B, we obtain I (B ;  C) = I(d, B; C) = H ( C )  and, therefore, 

I (A;  D )  = I(d; C) + x I ( d ;  SIC = c )  Pr(C = c). 

Proof of Theurem 1 .  Let a and no be the parameters for the security against 
Bob. Let a' and nb be the parameters for the tolerance. Let a, = Mat{a, a'} 
and n ,  be such that 

C 

(7) 
,. 2-(a-/3brn < _. i 

6 
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We shall see that n: = M Q Z { ~ O ,  nh, n,} and a" = a,/3 are adequate parame- 
ters for the security against €ve. Partitioning I (S;  I/cve) over Pass we obtain 

I (S;  VEve ) 
= I ( S ;  V&velPass = 0) Pr(Pass = 0) 

+I(S;  V ~ ~ ~ ( P a s s  = 1) Pr(Pass = 1) 
+I(S;  Pass)  

Using 3 and 4 and the fact that Vtve is a subset of vBob we obtain 

I (S ;  Vsve) = 2 x 2-4m" + I ( S ;  VfveJPass = 1) Pr(Pass = 1). 

We only have to take care of the last term. Partitioning the last term over 
C = CA @ CB,  we obtain 

I (S;  V ~ ~ ~ l P a s s  = 1) Pr(Pass = 1) 

= - I (S;  VgveIC = 0) Pr(Pass = 1) 
1 
2 

+ j I ( S ;  VE,,IC = 1) Pr(Pass = 1) 
1 

We now use the two following propositions. 

Proposition3. For every E v e ,  for every Channel, (Vn > ng), 

I ( S ;  v g v e l ~  = 1) x Pr(Pass = 1) 5 2-u"n. 

Proposition4. For every Eve, for every Channel, (Vn > ng),  

I (S ;  vEvelc = 0) x Pr(Pass = 1) 5 2-a"". 

Using propositions 3 and 4 we obtain the security against Eve. We shall prove 
these propositions in the remainder of this section. 

Proof of Proposition 3. Let us consider any integer n > ng, any Channel and 
any &ve. Let us consider a Bob that executes Cve's actions in addition to his 
honest actions. Because VgVe is a subset of vBob, it will be enough to show that 

I(s; VBobIC = 1) x Pr(PC6SS = 1) 5 2-a"". 

The basic idea of the proof is simply that, because tolerance against error implies 
that Bob must receive S each time that C = 0 and security against Bob implies 
that he cannot receive S more than half of the time, then Bob cannot receive S 
when C = 1. The remainder of the proof expresses this idea more formally in 
a way that takes care of additional points related to the test. By contradiction, 
let us assume that 

I(s; VBob(C = 1) x Pr(PaSS = 1) > 2-aff" = 2-(am/3)" .  
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This implies
Pr(Pass = 1) > (l / r)2~ ("- / 3 ) n (8)

and
KS\VBoh\C=\)>2-(a>»l3> (9)

To obtain the contradiction, we show that

7(5; VBoh\Pass = 1) > (r/2) + I i 2 -« - /3 )» (10)

and
7(5;VBoh\Pass = 1)< (r/2) + JL2-«««/s>». (11)

First, we show 10. If we partition 7(5; VBob\Pass = 1) over C, we obtain

I(S;VBoh\Pass = l)

I{S;VBoh\C=l)
1

I(S;VBoh\C = Q)
2

Formula 7 and 8 give us Pr(Pos« = 1) > 2~amn which is the required hypothesis
in tolerance against errors. Formula 5 and 6 give us that

HSl VBob \C = 0) Pr(C = 0\Pass) > (r/2) - (r + | ) 2 — " . (12)

Using equation 9, we obtain

I(S; VBoh\C = 1)Pr(C = 0|FasS) > i2^a-^n. (13)

Summing inequalities 12 and 13, one easily obtain 10. Now, we show 11. Let
C be the random bit whose existence is required by the security against Bob.
Partitioning 7(5; Vgo|j|Pass = 1) over C and using 2, we obtain

I(S;VBoh\Pass=l)

I(S;VBoh\C = 1 * Pass = I)
+ 2
+I(S;C\Pass =

Clearly,

2 - 2
Also, using 1, we obtain

= 0 A P a w = 1 ) r
- 2 " V ;
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from which, using 8, we get 

Now, partitioning I ( S ;  6, Pass) over Pass, we obtain that 

I (S;  C, Pass) 2 I ( S ;  elpass  = 1) €+(Pass = 1). 

Therefore, using 8 and 4, we obtain 

which implies 

Summing inequalities 14, 15 and 16, one easily obtains 11. This concludes the 
proof of proposition 3. 

To prove proposition 4, the following lemma is useful. 

Lemma5. Let A, B,C and V be any random variables svch that C is a function 
o f D .  For every d ,  we have 

I(A; B,CIV = d )  = I (A;  BlV = d ) .  

The proof of this lemma is left to the reader. 

Proof of Proposition 4 .  Let us consider any n > n:, any eavesdropper €veo and 
any channel Channel. Our proof consists of finding an eavesdropper &ve1 such 
that 

where the upper index (i) on a random variable means that it is associated with 
the eavesdropper eve;. Let 

x = (Open,  S, cB), 
u = (B, 81 EOr El, C A Y  G ,  s), 

Y = (Error, Jeve) 

and 

Note that eve's view on the execution is Vcve = (XI 2). Let F be the transfor- 
mation that maps z = (open, 8, CB) into z' = (open, @, E B )  where 

= (9, Error, CA, G, Syn(wcA), A ,  Jfve). 

e: = { f i  i fopenj  = 1 
ei e 1 if openi = o ' 
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Let p ,  = Pr(X = x) = &=. For every Eve', using a partition over X and the 
relation I (S ,XIC = c )  = 0 to  obtain the first equality, lemma 5 to  obtain the 
second equality and the bijectivity of F on X to obtain the third equality, we 
have: 

X 

X 

Similarly, we have 

= I(,$('); Z(o)IX(o) = 2 A C(O) = 0) x pn 
X 

Note that (S, 2)  is a function of (U,  Y). Therefore, we are done if we may define 
Cvel's strategy a t  steps 2 and 8 such that the distribution of (U('), Y(')) given 
(X, C)(O) = ( t , O )  is identical to the distribution of (U(l) ,Y(l))  given (X, C)(l) = 
( F ( z ) ,  1). Let us consider an execution under Cveo where (X, = ( 2 ,  c) and 
an execution under Eve1 where (X, C)( ' )  = ( F ( a ) ,  C) = F ( x ,  c). For every Cvel's 
strategy, because Alice acts exactly in the same way in both executions and 
U is invariant under F, we have that U(O) in €veo execution is identical to 
U(')  in Bvel execution. Now, we fix the value of U and consider the random 
variable Y. We must construct Cvel's strategy such that the distribution of 
Y(O) given (U,X,C)(O) = ( u , z , c )  is the same as the distribution of Y ( l )  given 
F ( U ,  X,C)(l)  = (u,z ,c) .  At step 2, we define Cvel such that she executes the 
same transfer of information as EVQ. This is a natural choice because, at this 
step, (Y,C) is unknown and Cvel cannot make use of the difference between 
the above conditions. We obtain that the random variable Error behaves in the 
same way in both executions because 

- Bob's outcomes a t  positions that are used for the test are independent of 

- Eve1 has tampered the photons in the same way as Eveo. 
Bob's choice of bases at  positions that are not used for the test and 

We now fix the value of Error. At step 8, Cvel with the view Vf,!e executes 

what Iveo executes with the view F(V?Ve) = Vg)  . In other words, in these two 
distinct executions, Eve0 and Eve1 act in exactly tge same way. The distribution 
of the random variable Jfve must be the same in both case, because they have 
executed the same transfer of information and the same measurement, and Alice 
has sent the same state. This concludes the proof of proposition 4 and theorem 1. 
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4 Security of QKD 

The Q K D  protocol is exactly the QOT protocol, where Bob announces 6 and 
CB, and Alice always chooses C = 0 (CA = CB).  The security of this Q K D  
protocol is a direct consequence of proposition 4. 

5 Conclusion 

In this paper, we have shown that the security of an ordinary QOT protocol and 
its tolerance against error implies its security against eavesdropping and, as a 
corollary, the security of a Q K D  protocol. In the (:)-OT case, security against 
an eavesdropper means that, if Alice and Bob are honest, Eve cannot find out 
anything new about (s1, sz). A (i)-QOT protocol is similar to an ordinary OT 
protocol, except that Alice transfers two random strings wo and w1 using the 
sets eo and el  respectively. One may wonder, if we could obtain the security 
against eavesdropping of a (:)-QOT protocol via a similar approach. This would 
be interesting because, if efficiency is a concern, the (:)-OT task is more pow- 
erful than the ordinary OT task: one execution of a (:)-OT protocol is enough 
to construct an ordinary OT protoco1,'but K n  executions of an ordinary OT 
protocol, for some K > 0, is required to construct a (:)-OT protocol [Cr87]. 

Unfortunately, there is an additional problem in the (i)-OT case which is 
related to the fact that Eve may be aware of some correlation between $1 and 62 

before the protocol begins. This correlation becomes a correlation between wo 
and w1 at the time Eve measures her system and, in principle, this may help her 
to execute a better measurement. In a more elaborate version of this paper, we 
shall provide a proof for the (3 case where s1 and s2 are independent in Eve's 
initial information. 

It would have been reasonable to better explain our formal definitions of se- 
curity that appear in section 2. Ideally, we should have explained the connection 
between these definitions and previous definitions found in the literature such 
as those found in [Cr90]. As mentioned before, an analysis of these definitions 
will be presented in a subsequent paper. 

Finally, now that we know that security may be obtained, it will be useful 
to determine the maximal error rate that can be tolerated and, for a given error 
rate, how much resource is required to guarantee a desired level of security. 
We need this information to find out what kind of technology is required to 
realize quantum protocols that are efficient and secure. To our knowledge, some 
theoretical work remains yet to be done at this level, at the least for QOT and 
QKD.  
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