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Abstract. The purpose of this paper is to  evaluate the security of the 
Gollmann m-sequence cascades of k stages. We give some theoretical 
results, which can be utilized to construct the transition matrix T, of the 
conditional probabilities between the input and output strings of a stage. 
And then, we describe an attack algorithm for guessing the initial state 
of the first LFSR with desired reliability, using the transition matrix 
S,  = T;-' of the conditional probabilities between the input string 
of the second stage and the output of the final stage of the given k- 
stage cascade. We finally evaluate the security of the cascades against 
this attack. Menicocci recently conjectured that there do not exist the 
complete analysis of the Gollmann cascades of more than 4 stages and it 
is infeasible to attack the 10-stage cascades with LFSRs of degree 100. 
Our experimental results show that the 9-stage cascades with L F S h  of 
degree 100 are completely breakable and the 10-stage cascades may be 
insecure. 

' 

1 Introduction 

The purpose of this paper is to evaluate the security of the Gollmann m-sequence 
cascades of k stages[l]. 

A Gollmann m-sequence cascade of k stages consists of a series of k Linear 
Feedback Shift Registers(LFSRs), with primitive feedback polynomials of same 
degree n. It produces pseudo-random binary sequences of period (2n-1)" linear 
equivalence exceeds r1(2"-l)~-l [l]. The first LFSR is regularly clocked, whereas 
all registers except the first are clock controlled by their predecessors. A binary 
input bit at clocks a LFSR if at = 1, and then is added to the output from the 
LFSR to give output car which becomes the input of the next. 

c t=a t+b(h t )mod2 ,  ht =ht-1+a~mod2"-1,  t=0 ,1 ,2 , . . .  (1) 

with the initial condition h-1 = 0, where b ( . )  is the sequence generated by the 
LFSR. 

A weakness of the Gollmann cascades, called lock-in egect, was studied in [Z]. 
But the attack by lock-in effect requires lo2' iterations to analysis the two-stage 
cascades with polynomials of degree 34. Menicocci proposed an efficient attack 
on the two-stage Gollmann m-sequence cascades, which utilized the correlations 
between the input and output strings of the final stage of cascades[4]. He also 
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Fig 1: A stage of the rn-sequence cascade; The input bit at clocks LFSR, and then is 
added to the output from the LFSR to give output ct .  The delay means the addition 
takes place after clock. 

proposed an attack on the Gollmann cascade of k stages, and conjectured there 
do not exist algorithms for the complete analysis of the cascade of more than 4 
stages, and it is infeasible to  attack on the m-sequence cascade consists of more 
than 10 stages with primitive polynomials of degree greater than 100[5]. 

In this paper, we give some theoretical results, which can be utilized to  
construct the transition matrix T, of the conditional probabilities between the 
input and output strings of a stage. And then, we describe an attack algorithm 
for guessing the initial state of the first LFSR with desired reliability, using 
the transition matrix S,, = T:-' of conditional probabilities between the input 
string of the second stage and the output of the final stage of the given k-stage 
cascade. We also evaluate the security of the cascades against this attack. We 
finally give experimental results on the cryptanalysis of the cascades with less 
than 10 stages. Our experimental results show that the %stage cascades with 
LFSRs of degree 100 are completely breakable and the 10-stage cascades may 
be insecure. 

2 Constructions of Transition Matrices 

Definition Let w = 2 0 2 1  . . .x,,-1 be a n-bit word. Then the value of w, denoted 
by f (w), is 

n - 1  

Definition Let w and v be n-bit words such that f(w) = i ,  f ( v )  = j .  And let 
t"[ i ,  f be the conditional probability that a given stage of the cascade produce 
v when w is applied to it. Then the 2, ~2~ matrix Tn = ( tn [ i ,  f), 0 5 i < 2", 
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0 5 j < 2", is called a transition matrix of the correlation probabilities between 
the input and output words of the stage. 

Remark For a given cascade of k stages, S = (Tn)k-l = (sn[i,j]) is the 
transition matrix of the conditional probabilities, where s" [i, j] is the probability 
that the final stage generates w = f-l(j) when w = f-l(i) is applied to the 
second stage of the given cascade. 

Example If at = 0, ct = b(St).  The sequence b ( . )  is generated by LFSR, SO 

we have P(ct = 0) = P(ct  = 1) = f .  If at = at+1 = 0, then ct+l = b(St+l) = 
b(St) = c t ,  so we have P(ct+l = ct = 0 )  = P(ct+l = ct = 1) = i. Continuing 
this process, we will finally have 

Definition Let S = { t , t + l ,  . . ,t+n-1) be a set of n consecutive non-negative 
integers, and let w = a:at+l. . .ut+,,-l be a n-bit word such that f(w) = i. 
Then, we may define a class Pi of subsets Sk by following procedure. 

Procedure 1 
Set k = 1 and s k  = {t). 
For all I = t + l , .  . e ,  t+n-1 

If 
Otherwise, set k = 6+1 and set s k  = { I } .  

= 0, then set Sk = S k  u { I } .  

Property 1 Let w = atat+l..-a:+,,--l be a n-bit word such that f ( w )  = i. 
And let m be the number of ones in {at,at+l, 1 - .  , at+n-l). Then the number of 
subsets IPil of the class Pi is 

rn if at = 1 
\pi1 = { m+1 otherwise (3) 

Proof. By definition of the class Pi, it is trivial. 0 

Property 2 Assume that a stage of a cascade produces w = ctct+1 ..*ct+n-i 
when w = atat+l$ .  -at+,,-1 is applied. If Pi = {S,, . . . , Sm} is the class deter- 
mined by Procedure 1, then, for all I in &, 

01 + CI mod 2 = const (4) 

Proof. From (l) ,  it is trivial. 0 

Property 3 For given integers i and j, where 0 5 i < 2", 0 5 j < 2", let 
w = atat+l. .at+,,-l and v = ctct+l. . .ct+,_l be the binary representations 
of i and j respectively. And let Pi = {Sl, . . . , Sm} be the class determined by 
Procedure 1. Then t " [ i , j ]  = 0 if and only if there exists an integer 0 5 k 5 m 
such that al+cl # aIt+cp mod 2 for some / ,I'  in Sk, 
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Proof. By Property 2, it can be easily proved. 0 

Property 4 If t"[i,j] # 0 for some 0 5 i < 2", 0 5 j < 2", then t"[i,j] = &. 
Proof. Let w = atat+l.  . - Qt+n-l be the binary representations of i. And let Pi be 
the class determined by Procedure 1. If a stage produces v = ctct+1 . - -c t+n- i  

when w is applied, then, by Property 2, there exist constants b l ,  bz,  . . , blp.1, 
such that cl = al-kbk mod 2 for dl 1 in s k ,  where s k  is in Pi. This means that, 
when w is applied, all outputs are uniquely determined by b l ,  b z ,  - . a ,  bp, , so that 

0 

Property 5 For a given integer 0 5 i < 2", there are exactly 2p* number of 
nonzero elements in Tn,i, where Tn,i is the i-th row of the transition matrix T,. 

0 

if t"[i,j] # 0, t"[i,j] = &. 

Proof. By Property 4, trivial. 

Property 6 If 0 5 j < 2"-l, t"[i, j] = t"[i ,  2"-1-j] for all 0 5 i < 2". 
Proof. Let w = atut+l a .  .at+,,-l and v = ctct+l . . a ct+,,-1 be n-bit words such 
that f(w) = i ,  f(v) = j. If the value of V = . -&+, , -I  is 2"-1-j, then 
we have, dl = cr+l mod 2 for all I ,  1 = t ,  . . ., t+n-1. Let Pi = (S1, SZ, . . . , S ~ J }  
be the class determined by Procedure 1. If t"[i,j] = 0, by Property 3, there is 
an integer k, 1 5 k 5 IPil, such that ai+ci # alj+co mod 2 for some 1,  I' in sk. 
Hence al+di # QJf+dp mod 2, so tn[i,2"-1-j] = 0. If t " [ i , j ]  # 0, by Property 
3, we have, al+dl = Q ~ + c J + ~  mod 2 = const for all 1 in sk. Hence, by Property 

0 4, t " [ i , j ]  = tn[i,2"-1-j] = h. 
Property 7 For all 0 5 i ,  j < 2"-l, t" [ i , j ]  = tn[2"-'+i,2"-'+j]. 
Proof. We first note that Pi = Pza-~+il where Pi and PZm-1+i are the classes de- 
termined by Procedure 1. Let w = atat+l .-.at+,,-~, v = ctct+1 . . - c ~ + ~ - I .  Then 
WI = c-&Q~+I . . + at+,-l and Y' = ftct+l.  . . ct+,,-l are the binary representations 
of 2n-1+iand2"-1+j respectively. Since at+ct = ut+Ct, we have 

0 

Similarly, we can prove: 

Property 8 For all 0 5 i , j  < 2"-l, tn[2"-l+i,j] = tn[a',2"-l+j]. 

Property 9 In the case of ra 2 3, t"[a',j] = 0 if 0 5 a' < 2n-a, ZnP2 5 j < 2"-'. 

Proof. Let w = atat+l . . .at+,-l and z, = ctct+l.  - ct+"-1 be n-bit words such 
that f(w) = i and ( Y )  = j .  Then, we have, at = ot+1 = ct = 0, ct+l = 1. We note 
that t , t + l  belong to same set S1 in the class Pi. But at+ct # at+l+ct+l mod 2 

Property 10 For all 0 5 i , j  < 2n-21 t"[ilj] = t"-'[i,j]. 
Proof. Let Pi be the class of subsets of the set S = { t , t+ l ,  ..., t+n-1}, and 
let P;' be the class of subsets of the set S = { t + l , .  . - ,  t+n-1) determined by 
Procedure 1, when i is applied. Note lPil = [Pi[, Si = S1 - { t } ,  Sk = sk, k > 1. 
Let w = atat+l . . -at+,,-l and v = ctct+l . . .ct+,,-l be the binary representations 
of i ,  j ,  respectively. If t " [ i , j ]  # 0, then al+cl mod 2 = const if 1 in s k  for all sk 
in Pi. Hence al+q mod 2 = const if I in Si  for all Si in Pi, so that t"-l[i,j] # 0. 

t"[ i ,  j] = t"[2"-l+i, 2"-1+j]. 

so t " [ i , j ]  = 0. 0 
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Therefore, if t " [ i , j ]  # 0, then, by Property 4, t " [ i , j ]  = t " - l [ i , j ]  = &. In the 
0 

Property 11 For all 2"-2 5 i < 2"-l, t" [ i , j ]  = it"-l[i,j]. 
Proof. Let Pi and Pi be the classes defined in the proof of Property 10. In a 
similar way, we can easily prove that t" [i, j] = 0 if and only if t"-l [ i ,  j ]  = 0. We 
note that, by Property 1, = lP,!l+l. Hence, by Property 4, if t " [ i , j ]  # 0, 

case of tn[i,j] = 0, we can prove similarly t"[i,j] = t"-'[i,j] = 0. 

t n [ i , j ]  = +t"-'[ i , j ] .  0 

Property 12 Let w = atat+l .at+,-l be the binary representation of i. Then 
t"[ i ,  01 = 0 if and only if there exist 1, I' such that t 5 I < I' 5 t+n-1, ar = 1 
but all = 0. 
Proof. Assume that ar = 1 but all = 0 for some 1,l' such that t 5 1 < f' 5 t+n-1. 
Let f(w) = i .  And let Sk be the subset of Pi which contains 1'. Let us define 
h = max{m 11 5 rn < l',um = 1) .  Then h E sk and a h + O  # qt+O mod2 
SO that tn[ i ,  01 = 0. Suppose that t " [ i ,  01 = 0. Then it is clear that i # 0 , l .  
Hence there exists at least one I such that t 1 < t+n-1 and a1 = 1, say 
p = min{l)t 5 1 4 t+n-l ,al  = 1) .  In the case of p = t ,  if al = 1 for all 
t + l  5 1 5 t+n-1, then each S k ,  k = 1,2,...,t+n-1, has only one element 
so that tn[i,O] # 0. So we may assume p 2 t+ l  ie at = 0. If at = 1 for all I ,  
p 5 1 5 t+n-1, then only So may have more than one elements. Since all in 

0 SO are 0 so t " [ i ,  01 # 0. 

From Property 12, we have 
Property 13 

Now we summarize Properties solved in this section to give Theorem 1. 

Theoreml. For all n 2 3 ,  let Hn = ( h n [ i , j ] ) , H A  = (hfn[i,j]) be 2,-lX2"-l 
matrices of the probubilities such thut hfn[i,j] = h"[i,2"-1-1-j]. Then 
1) the transition matrix T, = ( t n [ i , j ] )  cun be represented as: 

2) the 2n-1x2"-1 matrix H ,  = (h"[i,j]) can be.represen2ed as: 

with ihe initial condition H I  = (a). 
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3 The attack proposed 

Our aim is to find all initial states of LFSRs of the given cascade, under the 
assumption that we know a sufficiently large number of consecutive bits of the 
output and all primitive polynomials. 

For a given cascade of k stages, we define a matrix s" by 

S" = ( T n l k - l  = (s"[i,j]) (7) 

Then the component s"[i,j] is the probability that the final stage produces 
v = j-l(j) when w = j - ' ( i )  is applied to the second stage of the cascade. This 
matrix S" enables us to guess the initial state of the LFSR of the first stage 
with desired reliability. 

Theorem2. For all i, 0 2 i < 2", let w, be the n-bit word such that f(wi) = a, 
and Ai the event that wi is applied to the second stage of the cascade. And let 
Eo be dhe event that the cascade generates a run of n consecutive zeros and EI  
a run of n consecutive ones. I f E  = EO U E l ,  then 

P(AiIE) = s " [ i , O ]  (8) 

where P(AiIE) denotes the conditional probability of A; occurs given that E has 
occurred. 

Proof. By Bayes's theorem, we have, 
2n- 1 

P(AiIE0) = { P ( A ) P ( E o l A i ) ) / {  C P(Am)P(Eo lAm)}  
m=O 

2%- 1 2"- 1 

where i ranges over integers such that i A 2n-k -1  = 0. The notation A denotes 
the bitwise A N D  of two integers. Hereafter, for all 0 5 k 5 n-1, we define q k  
by  q k  = I-P(at+k = OIE). 

For a precise description of our attack, let m be the same degree of primitive 
polynomials and let p be the desired error rate. In order to find the initial state 
of LFSR in the first stage, we first scan the given output bits to find all runs 
of at least n consecutive zeros or ones. Then we scan each run for k such that 
q k  5 p ,  to set linear equations, which have the m unknowns for the initial state. 
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In this way, we can set a sufficiently large number, say 1 ,  of linear equations. 
Choose randomly rn out of the I equations and solve the linear system. If it has 
a solution, say 5 = Z O , Z ~ ,  . , zm-l, then examine how many equations hold 
when 3 is substituted. If it is the real initial state, the number of equations held 
is on average 1(1 - p). This is repeated for each except final stage. And then, 
apply the algebraic technique[6] to the final stage to guess the initial state of its 
LFSR. Test, finally, whether the cascade produces the given output sequence. If 
not, repeat again. 

How many trials of selections m from 1 equations is needed to find the initial 
state of the first stage. By a similar way in [3], we can estimate the probability 
q that a trial successes, so q-' is the expected number of trials. 

q = ( l - $ ( l - K ) .  Pl a .  (1-- ) >_ (1-- pl )m 1-1 I-m+l I-m+l 
Example Consider a cascade of 2 stages with LFSRs of the same length 34. 
We are assumed to know 800 consecutive output bits, so that we can find, on 
average, 25 number of runs whose lengths are greater than or equal to 5. If we 
put p = 2-4, we can set 50 linear equations so q NN Hence about 1000 trials 
are expected to find the correct solution. 

Algorithm: An attack on the Gollmann k-stage cascades 
Step 1 Scan the given output bits, ah, Q h + l ,  ah+2, . . - . . ., to find all runs of at 

least n consecutive zeros or ones. This number n may be determined 
by the desired error rate p, the number of given output bits, and the 
degrees of LFSRs. 

Step 2 Repeat the process of Steps 3 - 6 in order to guess the initial states 
of LFSFls of all but final stages with desired reliability 1-p. 

Step 3 Select at such that P(at = O(E) 2 1-p to set a linear equation, which 
has the m unknowns for the initial state. In this way, we can set a 
sufficiently large number, say 1,  of linear equations. 

Step 4 Select randomly na out of the 1 equations and solve the linear system. 
Step 5 If it has no solution, goto Step 4. 
Step 6 Examine how many equations hold when the solution is substituted. 

If the number is less than k, which is heuristically determined by 
l(1 -p), goto Step 4. 

Step 7 Apply the algebraic technique to the kth stage using the sequence 
generated by the L-lth stage. 

Step 8 Test whether the cascade produces the correct final output sequences. 
If success terminate, else goto Step 2. 

4 Security evaluation 

The security of the Gollmann cascades may be evaluated by the number of trials 
for obtaining the correct initial state of its first LFSR and the number of the 
final output bits for obtaining runs whose lengths are sufficiently large enough 
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to guarantee small error rate. From the view point of cryptanalysis, there may
be trade-off between the number of trials and bits. When the length of runs is
greater than 9, we could not calculate correctly the error rate and the number
of trials due to the memory problem of computer. However, by some statistical
observation, we expect that the runs of length 20 enable us to break completely
the cascades of 10 stages with LFSRs of degree 100.

We have implemented the proposed attack in C on an Axil Hyundai worksta-
tion(80 MIPS), compatible with a SUN Sparc 10, in a UNIX environment. For
the case of 2-stage cascades with primitive polynomials of degree 34, we have
found all initial states of LFSRs within 2.8 CPU seconds on average.

Following table gives our experimental results. In those tables, Degree denotes
the degree of primitive polynomials, Stage the numbers of stages, Bit the num-
bers of output bits, Run the lengths of runs, p desired error rates, Eqns the num-
bers of equations, Trial the numbers of trials, Theo the numbers theoretically
calculated, Expe the numbers of experimental results, CPU the CPU seconds
needed execution the algorithm.

Degree

34

44

54

100

Stage

2
3
4
5
2
3
4
5
2
3
4
5
3
4
5
6
7
8
9

Table:
Bit

800
1800
7000
35000

1000
2300
9000
45000
1200
3000
15000
60000
20000
60000
240000
500000
2000000
8000000

30000000

Experimental Results
Resul

5
6
8
10

5
6
8
10
5
6
8
10
7
9
11
12
14
16
18

V

0.0625
0.1269
0.1208
0.1145

0.0625
0.1269
0.1208
0.1145
0.0625
0.1269
0.0801
0.0801
0.04699
0.05235
0.05318
0.08440
0.08960
0.08562
0.07188

Eqns

75
82
73
110
95
116
109
117
115
127
136
121
304
256
263
242
230
262
248

Trial
Theo
18
423
399
146
46

2033
1576
891
114

16734
327
412
350
949
1006

99874
267088
88956
15340

Expe
15
119
96
241
23
626
436
255
437
1843
873
271
896
1892
3950
4282
1741

39147
51006

CPU

2.8
4.5
7.2

49.4
8.7
17.4
28.4
68.8
18.2
56.7
99.2
155.3
123.0
265.1
687.3
721.0
828.0

2334.0
3322.0

5 Concluding Remarks

In this paper, we have evaluated the security of the Gollmann m-sequence cas-
cades. We have described, in detail, an algorithm for guessing the initial state of
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the first LFSR with desired reliability. We have also given experimental results 
on the complete analysis of 9-stage cascades with polynomials of degree 100. We 
have finally defined the security of cascades by the number of trials for obtaining 
the correct initial state of its first LFSR and the number of the final output bits 
obtaining runs whose lengths are sufficiently large enough to  guarantee small 
error rate. Now we are trying the complete analysis of 10-stage cascades with 
LFSRs of degree 100. It is expected to be successful with 226 output bits of the 
cascades. 
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