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Abstract. It is important to  find the best linear expression t o  esti- 
mate t,he vulnerability of cryptosystems to Linear Cryptanalysis. This  
paper presents a method t o  improve Matsui's search algorithm which 
determines the best linear expression. This method is based on analyz- 
ing the dominant factor of search complexity. We introduce the search 
pattern in order t o  reduce unnecessary search candidates, and apply the 
proposed search algorithm t o  DES and FEAL. T h e  n-round best linear 
expressions of DES are found as fast as Matsui's algorithm for n 5 32. 
Those of FEAL are found much faster than his algorithm; the required 
time is decreased from over three months to  about two and a half days. 
New results for FEAL are  also described; we find the n-round best lin- 
ear expressions ( n  5 32) with higher deviations than those derived from 
Biham's 4-round iterative linear approximations. 

1 Introduction 

Linear Cryptanalysis was proposed by Matmi  [M93] and is known to be one 
of the most effective known plaintext attacks. In Linear Cryptanalysis, we find 
thr following linear approximation (equation (1)) which holds with probability 
p # 1/2 for randoinly given plaintext P and the corresponding ciphertext C, and 
then determine one key bit l i [ k 1 ,  k 2 , .  . . , k,]  by the maximum likelihood method. 

f " i 1 ,  i ~ l  . * - ia] @ C ~ I , ~ Z , .  . . , j b ]  = I { [k l  , hr . . . ,  Ice],  (1)  

where il , iz , . . . , i,, j ,  , jz,  . . . , j,, and k l  , kZl. . . , k ,  denote fixed bit locations and 
A[il ,  iz,. . . , i,] = A[il] @ A[&] @ . .. @ A[&] (A[i] denotes the i-th bit of A). If 
the success rate is fixed, equation (2) holds [M93, L e m m a  2'1, 

N l p  - 1/21' = r (fixed), (2) 

where N denotes the number of the known plaintexts needed to attack the 
crypttosystem. We call Ip - 1/21 the dewzaiaon. Equation (2) shows that it is 
important, to find the linear approximation with the highest deviation, the best 
h e a r  exppresszon, to estimate the smallest value of N + .  

At EUROCRYPT'94, two important topics were discussed in [B94] and [M94]; 
1) the duality between Linear Cryptanalysis and Differential Cryptanalysis, and 
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2) a search algorithm for determining the best linear expression (differential 
characteristic) of DES-like cryptosystems. On l ) ,  it wag clarified how to con- 
struct the global linear expressions (differential characteristics) from the local 
ones in the field of Linear Cryptanalysis (Differential Cryptanalysis). On 2), it 
should be noted that confirming that the “best linear expression” is the best is 
difficult, for example, Biham described that “We have exhaustively verified that 
this iterative characteristic is the  best among all the characteristics with at most 
one active S box at  each round, , . . (Matsui claims that his linear expression is 
the best without any restriction.)” in his paper [B94], which implies that there 
might be more effective linear expressions than that used by Matsui [M93]. To 
ensure his characteristic is the best without any restriction, Matsui developed a 
search algorithm where he introduced the temporary value of the best probabil- 
ity, BEST,, obtained under the restriction of limiting the number of “active” 
S-boxes at  each round, and then got the best probability, BEST,, without the 
restriction. 

Matsui’s search algorithm was applied to DES, s2DES, and LOKI success- 
fully, whose f functions have similar structures to that of DES [TSM94]. In 
applying this search algorithm to the above cryptosystems, we can find the best 
linear expressions with ease, because the speed-up technique using BEST, is 
effective in pruning off the unnecessary branches. 

Unfortunately, for some cryptosystems, his search algorithm is not fast enough 
and it takes over 3 months to find the best linear expression of FEAL-8 on a 
workstation (about 30 MIPS), for example. The main reason is that the search 
bound of his algorithm depends on the cryptosystem, and is so loose for some 
cryptosystems that an enormous number of candidates are searched for. 

If we impose restrictions on the type of linear expression, for example, those 
constructed using the iterative linear approximations with small number of 
rounds, the search problem becomes easy. An efficient method was proposed 
in [K92], where the idea is to find effective differential characteristics of itera- 
tive type in Differential Cryptanalysis. His idea is expected to be also applicable 
to Linear Cryptanalysis because of the duality of these cryptanalyses. His ap- 
proach might satisfy some attackers, since it helps them find an effective linear 
approximation with a large probability, hut it doesn’t satisfy the designers of 
cryptosystems. Thus, it is important to develop a search algorithm for the best 
linear expression with less complexity in order to estimate the vulnerability of 
cryptosystems to Linear Cryptanalysis. 

We extend Matsui’s search algorithm by analyzing the dominant factor of 
its complexity carefully, and propose a method to reduce the number of candi- 
dates, in other words, not to expand unnecessary nodes in the search tree. We 
can eliminate the unnecessary candidates using the set of possible values of the 
deviations of the linear approximations of f  functions of all rounds, what we call 
the search pattern, before determining the linear approximations themselves. 

We apply the improved search algorithm to DES and FEAL, and compare its 
search complexity against that of Matsui’s algorithm. The n-round hest linear 
expressions of DES are found as fast as Matsui’s algorithm for n 5 32. Those of 
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FEAL are found much faster than his algorithm; the time required is decreased 
from over three months to  about two and a half days. 

In truth, the best linear expressions obtained by Matsui’s algorithm might 
not be the best (it doesn’t mean that we don’t consider the effect of multiple 
approximations), and those obtained by ours might not, either. This is because 
both algorithms calculate the deviation of the linear approximation of the f 
function by the Pdzng-up L e m m a  [M93] which assumes the linear approximations 
of the “active” S-boxes in the f function hold independently. The subject of this 
paper is to  reduce the search time of Matsui’s algorithm. 

New results for FEAL are also obtained; we find the best linear expressions 
of 7-round with the deviation of 1.15 x 2-”, those of 15-round with 1.48 x 2-”, 
and those of 31-round with 1.99 x 2-41, while Biham’s equivalent values were 
2-l’, 2-23, and 2-47, respectively [l394]. 

This paper is organized as follows. In chapter 2 we introduce Matsui’s search 
algorithm [M94]. Next, in chapter 3, after considering the search bounds and 
complexity of his search algorithm, we give two problems. In chapter 4 we propose 
an improved search algorithm to solve these problems. In chapter 5 we apply the 
improved search algorithm to DES and FEAL, and show how the search time is 
reduced. We also show the best deviations of DES and FEAL obtained from the 
search. 

2 Preliminary 

2.1 

This paper discusses the security of iterated cryptosysterns, where f is the round 
function. Let I i ,  O;, and Iii be the input data, the output data, and the subkey 
data of the i-th round f function. We define I‘X as the masking value of data 
X ,  and X [ T X ]  as the even parity value of X a TX, where . represents a bitwise 
AND operation. We call equation (3) the h e a r  approxzmahon of the i-bh round 
f f w c t a o n .  This linear approximation may be abbreviated to  the pair of masking 

Linear Approximation of f Function 

values, (TO;, TI j ) .  
Ij[rIa] @ Oi[roi] = Kj[TIij] (3) 

This paper uses the term, devtalton, which means the absolute value of the 
difference of the probability from 1/2. The deviation of the linear approximation 
of the i-th round f function ( r O * , r I , ) ,  denoted as p i ( r O , , T I , ) ,  is defined as 
foIlows8. We may simply use pi for pi ( TO,,  TI , ) .  

p:(TOg, I ’ I g )  = I Prob{I , [ f  I,] @ O,[TO,] = 0) - 1/2 I (4 1 
1 Ohta and Aoki showed 7-round linear approximations with the deviation of 1.15 x2-* 

in [OA94]. We have confirmed that they found some of the 7-round “best” linear 
expressions. 
Since in our search algorithm p i ( r O , , T I , )  is calculated by the Piling-up Lemma 
using the deviations of the linear approximations of “active” S-boxes considering 
complexity, the value ofp:(rO,, TI,) might differ from that obtained by equation (4). 
This problem was also not solved i n  [MW]. See section 4.3. 
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2.2 Best Linear Expression 

In this paper we use BEST, defined by equation (5), following the definition 
of BEST:C used in [TSM94]. We don’t consider multiple approximations de- 
scribed in “941. We call BEST, the n-round best devaation. The n-round linear 
approximation with the n-round best deviation is called the la-round best h e a r  
expresszon. 

n 

2.3 

This section introduces the search algorithm for the best linear expression pro- 
posed in [M94]. It is based on the mathematical inductive method and derives 
BEST,, which is the n-round best linear deviation, from the knowledge of all 
i-round best linear deviations, BESZ (1 5 i 5 n - 1). 

BEST, is the temporary value of BEST, during the search. We have to 
pay attention when setting the initial value of BEST,. The search program can 
determine BEST, as long as BEST, 5 BEST, holds, but the farther from 
BEST, the initial value of BEST,, is, the more complex the search becomes. 
How close the initial value of BEST, is to BEST, decides the efficiency of the 
search. The framework of Matsui’s algorithm consists of the following recursive 
procedures. Here the value of [ p ; , p i , .  . . , p i ]  is defined as the following equation, 

Matsui’s Search Algorithm for Best Linear Expression 

t 

[ p ; , p ; ,  . . . , p i ]  = 9 - l  U P : .  

[Matsui’s Search Algorithm] [M94] 
Procedure Round-1 : 

For each candidate for FO1,  do the following: 
b Let pi = rnaxpi(r01, rl). rr 
D If [pi, BEST,,-J] < BEST,, then try another candidate for rO1. 
D Call Procedure Round-2. 

Let BEST, = BEST,. 
Exit the program. 

Procedure Round-2: 
For each candidate for fO2 and ria, do the following: 
b Let pk = p ; ( f  0 2 ,  rIz). 
D If [pi , p & ,  BESTn-2] < m, then try another candidate for I’OZ and f I 2 .  

b Call Procedure Round-3. 

Return to the upper procedure. 

Procedure Round-i: (3  5 i 5 n - 1) 
For each candidate for rl,, do the following: 
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> Let rOi - rOi_2 © r/,_!.
> Let v\ = P',(ro,, rh).
> If [p;,p2,...,p-,fl£STn_i] < BESTn, then try another candidate for T/,.
> Call Procedure Round-(i+1).

Return to the upper procedure.

Procedure Round-n:
Let ron = ron-2 © nn-i.
Let p'n = maxp'n(rOn, ri).

H[pi.P2,- .- ,Pn] > fl£STB, then fl£STn = [pi ,

Return to the upper procedure.
,...,&].

3 Consideration of Matsui's Search Algorithm

3.1 Search Bound

Consider the search bound of Matsui's search algorithm that determines the
range of pj-, which is the deviation of the linear approximation of each round. In
his search algorithm, the linear approximations whose deviation satisfies equa-
tion (7) become search candidates at the i'-th round (1 < i < ri).

[ p i . p i . • • - , ? : • , -i] > BESTn

Equation (7) is transformed into equation (8) using equation (6).

BESTn
p[ x p'2 x • • • x p't > - .

2' x BESTn_i

(7)

(8)

The above equation shows that the product of p\, p'2, • • • ,p^ depends on the ratio
of BESTn to BESTn-i. There is a possibility that the value of BESTn/BESTn-i
is too small for some cryptosystems, even if the initial value of BESTn can be
set close to BESTn. If the value of the right side of inequality (8) is small, an
excessive number of candidates of the linear approximations with deviation p\
are searched for. This is because the number of the linear approximations of the
/ function with deviation > p' increases, as the value of p' decreases, as Table 1
shows.

p'
DES
FEAL

2"1

1
16

2-J

13
1808

2-J

195
98576

2-*
3803

3453200

2~s

40035
774484304

2-,>
371507

1215648016

Table 1. Number of linear approximations of / function with deviation > p'
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3.2 Complexity 

This section discusses two subjects on the search complexity of Matsui’s search 
algorithm. One is the dominant factor of search complexity, and the other is the 
relation between search complexity and round number. 

First, we show that the complexity of the search for the n-round best linear 
expression is dominated by the number of candidates in Procedures Round-1 
and Round-2. In Procedure Round-1,  all the r U l s  that satisfy equation (9) are 
search candidates, and in the Procedure Round-2, all the (r02, r 4 ) s  that satisfy 
equation (10) are search candidates. 

In Procedure Round-a (3 5 i 5 n) ,  TO, is fixed by the equation, r0, = 
rOi-2 @ r18-1, and only the r 1 , s  that satisfy equation (7) are search candi- 
dates. The number of candidates heuristically increases from Procedure Round-1 
to Procedure Round-2 but then decreases in subsequent procedures. Thus the 
complexity of the search can be estimated from the number of the candidates in 
the first two procedures. 

The search becomes more complex as the number of the candidates in the first 
two procedures increases; in other words, as the ratio of BEST, to BEST,-I 
and that of BEST, to BEST,-:! decrease, according to inequalities (9) and (10). 

Next, we show the relation between search complexity and the number of 
rounds. We define C, as the estimated value of the incremental search complexity 
for the n-round best linear expression under the desirable condition that we know 
all BEST, ( T  5 n )  values, 2.e. the least search complexity. As mentioned above, 
the search complexity can be estimated from the number of candidates in the first 
two procedures. Thus C, is obtained using the data in Table 1 and calculating 
all the TOls and (TO2, r12)s  that satisfy both inequalities (9) and (10). 

The relations between C, and n for DES and FEAL are shown in Figure 1. 
Figure 1 shows that Cn of FEAL is much more than that of DES. (Note the scale 
of the vertical axis.) It is also clear that C, isn’t related to n. 

3.3 Problems 

This section describes two problems of Matsui’s search algorithm. We begin by 
introducing the term, search pattern. We define the search pattern a8 the set of 
n deviations ( q i ,  q; , .  . . , q k )  that satisfies pi  = q{ , p’2 = q i ,  . . . , and pk = qk 
when we search for the n-round linear approximations. 

Problem 1. Duplicate Candidates 
The n-round linear approximation whose linear approximation of the i-th 

round f function (roil rli) is exchanged for that of the ( n  - i + 1)-th round 
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Round n

10 15 20 25 30 35

Roundn

(1) DES (2) FEAL

Fig. 1. Relation between Cn and n

f function (fOn-i+i, f/n-.+i) for all i (1 < i < n) has the same meaning
as the original one, since we can exchange the roles of P and C, and also A',
and An+1_, in equation (1). In Matsui's search algorithm, when search pattern
( 9 i i 0 2 > • - • <Qn) s a - t i s f i e s e q u a t i o n ( 7 ) , s o d o e s i t s i n v e r s e p a t t e r n ( q ' n , q ' n _ i , ••••
q[). Two linear approximations with the same meaning from the viewpoint of
Linear Cryptanalysis are searched for in his search algorithm, and one of them
is unnecessary.

Problem 2. Nonexistent Candidates
In Matsui's search algorithm each search pattern (q'1,q'2,... ,q'n) satisfies all

the following inequalities, which are derived from equation (7).

92> >9n}< BESTn

73.94, • • • i<i'n\ < BESTn_2

[q'^^BEST,

(11)

These inequalities are not guaranteed to yield the conditions that all r-round
(1 < r < n) linear approximations contained in the n-round linear approximation
have the deviation less than or equal to BESTr. In other words, there is a
possibility that the linear approximation whose search pattern satisfies inequality
(12) is searched for unnecessarily.

[9,'. 9,'+i> • • •,9,'+r_i] > BESTr (1 < i < n, i + r - 1< n) (12)

From the definition of BESTT (equation (5)), the linear approximations that
satisfy inequality (12) don't exist, and need not be searched for.
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4 Discussion 

4.1 Solving the Problems 

The problems explained in section 3.3 are solved as follows. Note that the prob- 
lems concern only the deviations of the linear approximations of the f function, 
and are independent of the choice of (TO, ,  TI,). 

First we choose the search patterns ( q i ,  q i ,  . . . , q;) that satisfy the following 
two conditions, and secondly decide (TO,, rl,) for each round using the chosen 
search patterns. In order to  cover all possible search patterns, we make use 
of the idea of Matsui's search algorithm and list all the ( q ; ,  a;, . . . , &)s that 
satisfy inequality (7). We can guarantee that the set of the chosen search patterns 
contains all the candidates needed to be searched for, since Matsui's search 
algorithm doesn't miss possible candidates. 

Condition 1 (Deletion of Duplicate Candidates) 
The search pattern ( q i ,  q i ,  . . . , qh) must satisfy the following condition, 

C(q;,qL...,qh) G(d?q;-1, .4J;)  

where C ( q i ,  q i ,  . . . , q A )  that satisfies pi = q i ,  p ;  = qk, . . . , and #', = q; is 
the complexity of the search for the n-round linear approximations. 

As shown in section 3.2, C ( q i ,  q;,  . . . , qh) can be estimated well by the 
number of candidates in the first two procedures. Thus we might compare 
C ( q i , q ; )  with C(qk,q;-l) instead of the inequality above, where C ( a , b )  de- 
notes the number of the linear approximations with p i  = a and p i  = b .  
C(a, b )  is also calculated using the data in Table 1. 

Consider the following example; when we search for the 7-round best linear 
expression of FEAL, there are such search patterns as (T3, T3, 2-', 2-', 

We choose the latter search pattern, because C(2-3, T3) is 9,364,045,824, 
and C(2-', 2-') is only 256. 

Condition 2 (Deletion of Nonexistent Candidates) 
For all i and r (1  5 i 5 n , i +  r - 1 < n), the search pattern (pi,  q; ,  . . . , q h )  
must also satisfy the following condition. 

2-1 , 2-1 , 2-1 ) and its inverse pattern (2-', 2- l ,  2 - l ,  2-', 2-2,  2-3, 2-"). 

4.2 Improved Search Algorithm 

The improved search algorithm is shown below. It determines BEST, and the 
best linear expression 8.e. the set of n linear approximations of the f function 
(TOj,I'I,) (1 5 i 5 11). It consists of four routines, Procedure Main ,  MakeLast- 
round-n, PackandChoose and Search. 

In Procedure MakeLas2-round-2, the list of all the possible search patterns 
is made. In Procedure PzckandChoose, the search pattern P a t t e r n J  (p',", &, . . ., 
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p i )  which satisfies Conditions 1 and 2 is chosen from the list made in Proce- 
dure MakeList-round-i,  and then Procedure Search is called with P a t t e r n j  as 
a parameter. In Procedure Search, the linear approximations of the  f function 
whose deviation of the i-th round pi  equals p;j are searched for. T h e  difference 
of Procedure Search from Matsui’s search algorithm is that the deviation of thr 
linear approximation of the f function is decided using Patternj(py ,  p ; ,  . . ., 
p : )  c.hosen in Procedure PickandChoose,  not equation (7). 

[Our Search Algorithm] ( for FEALT ) 
Procedure Main: 

Let BEST, = 2 x BEST,,-l, and BEST,, = 1. 
Do - 

D Let BEST,, = 2-’ x BEST,.  
D Call Procedure MakeList-round-I. 
D Call Procedure PickandChoose. 

while BEST,  # m. 
Exit the program. 

Procedure MakeList-round-:: (1 5 i 5 n )  
For each candidate for p : ,  do the following: 

D If [ p i , p h , .  . .  , p : , B E S T n - , ]  < BEST,, then try another candidate for p : .  
D If i < n, then call Procedure MakeList-round-(i+l), 

else if i = n., then add ( p i ,  p ; ,  . . . , p h )  satisfying [pi, p i ,  . . . , p h ]  = BEST,  
to the list of the search patterns. 

Return to the upper procedure. 

Procedure PickandChoose: 
For each candidate for ( p i ,  p b ,  . . . , p L ) ,  do the following: 

D If 3i ,3  r (1  5 i 5 n,  i + r - 1 < n)  satisfying [p:,p:tl , .  . . ,p:tr-l] > BEST,,  
then try another candidate for ( p i  , p L , .  . . , p ; ) .  

D If C ( p ;  , p i )  > C ( p h , p L - l ) ,  then try another candidate for ( p i , & ,  . . . , p k ) .  
D Let Pattern,(py,py, .  . . , p $ )  = ( p i , & ,  . . . , p ‘ , ) .  
D Call Procedure Search (Pattern,). 

Return to the upper procedure. 

Procedure Search (Patternk): 

Procedure Round-h: ( h  = 1 ,2 )  

For each r0 and rl 8.t. pL(r0, T I )  = pLk, 
D Let roh = TO,  and r l h  = rl. 
D Call Procedure Round-(h+ I). 
Return to the upper procedure. 

Procedure Round-i: (3  5 i < n )  
Let roi = roi-2 e rii-l. 

n This search algorithm cannot always find the best linear expression of DES faster 
than Matsui’s algorithm. In the case of DES, the technique of improving the value 
of the right side of inequality (8) using the search patterns chosen in Procedure 
PickondChoose speeds up his algorithm. 
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For each ri 8.t. p i ( r O , , r i )  = p:‘, 
D Let rI, = rI. 
b Call Procedure Round-(i+i). 
Return to the upper procedure. 

Procedure Round-ti: 
Let rOn = rOn-2 B, rIn-1. 

Let rl, = T i  and BEST,, = BEST, if pk(rO, ,  F I )  = p: 
Return to the upper procedure. 

4.3 Revision of Best Deviation 

Because both of Matsui’s search algorithm and ours calculate the deviation of 
the linear approximation of the f function by the Pdang-up Lemma for the sake 
of complexity, it might differ from the true one obtained from equation (4). We 
revise BEST, determined by the search program as follows; for all the best 
linear expressions obtained from the search, we calculate the true deviations of 
all rounds of linear approximations and determine the best deviations. 

However, we might miss the t ru ly  best linear expression. Because the devi- 
ation of linear approximation of each round can be increased or decreased by 
revision, the truly best linear expression might come from the linear approxi- 
mation with smaller deviation than BEST,II. It is difficult t o  search all possible 
linear expressions for the truly best deviation because of too much complexity. 
The method to compute the true deviation of the linear approximation of the f 
function with less complexity will solve this problem. (See Appendix.) 

5 Experimental Results 

5.1 Search Time 

We applied our search algorithm to DES and FEAL using a SPARCstation 10 
(SuperSPARC/36MHz1 31MIPS). It takes the times shown in Tables 2 and 3, 
respectively, to find the n-round (4 5 n 5 8**) best linear expression when we 
set the initial value of BEST, equal to BEST,. Note that the data with I‘*” 

are theoretical estimations from the number of candidates. 
The best linear expressions of DES are found with ease by Matsui’s algorithm. 

One of the reasons is that DES doesn’t have so many linear approximations of the 
f functions with large deviations, as Table 1 shows. Another reason is that  the 
technique that reduces candidates by limiting the number of “active” S-boxes in 
the f function is effective for DES [M93]. On the other hand, Matsui’s algorithm 
takes too much time to search for those of FEAL. This is because FEAL has 
many more candidates than DES, and the technique of limiting the number of 

The 7- and 15-round linear expressions of FEAL with the best deviation we have 
found are in the linear approximations with the deviation of 2-1 x BEST,  [MA096]. 
The search times of the other n-round (9 5 n 5 32) best expressions can be estimated 
from Figure 1. 

** 



167

Round
Our Algorithm

Matsurs Algorithm

I 4

0.2 sec
I thm sec

1
1

5
.2 sec
.2 sec

6
0.2 sec

19.2 sec

7
0.2 sec
1.3 sec

0
0

8
.3 sec
.9 sec

Round
Our Algorithm

Matsui's Algorithm

Table 2.

4
0.0 sec
0.3 sec

Search Time (DES)

5
0.4 sec

23.1 sec

6
3.8 min
39.0 hr

7
4.2 hr

•34 day

8
2.3 day
*58 day

Table 3. Search Time (FEAL)

"active" S-boxes is not effective for FEAL, since the linear approximation of each
round in the n-round (n < 32) best linear expressions of DES has no "active"
S-box or only one, but almost all S-boxes are "active" in the case of FEAL.

5.2 Best Deviations of DES and FEAL

Figure 2 shows the n-round best deviations of DES and FEAL (1 < n < 32).
This is based on the data in Table 4, which are the revised data as explained
in section 4.3. Note that each best deviation of DES is the same as BESTn

determined by the search program, because the linear approximation of each
round of the best linear expressions of DES has no "active" S-box or only one,
and the deviation calculated by the Piling-up Lemma is the same as the true
deviation. Figure 2 also shows that all the n-round (n < 32) best deviations of
FEAL we found are higher than those derived from Biham's 4-round iterative
linear approximations [B94].

All the n-round (10 < n < 32) best linear expressions of FEAL that we
obtained are based on the following type of 8-round iterative linear approxima-
tions. The following iterative linear approximation is one of them, and there are
other variations of this type. The best linear expressions of DES are also based
on a similar 8-round iterative linear approximation "-ACD-DCA" [M93]. Note that
numbers in brackets are the true deviations obtained from the definition of p(-
(equation (4)). The difference occurs because p't is calculated by the Piling-up
Lemma in the search algorithm (See section 4.3).

00000000 00000000 2-1
02a40104 81010100 2~3

00000000 00000000 2 - 1

02a40104 81010100 (1.

oooooooo 00600000r4(1
81010100 2 - ’

00000000 2
02C40104
81010100
02~40104 81010100 2

p\ (true deviation)

(1.00 x 2-1)
(1.00 x 2~3)
(1.00 x 2-1)
(1.00 x2- 3 )
(1.81 x 2-41
(1.00 x 2-2)
(1.00 x 2-1)
(1.00 x 2-2) .2-’

o_1 3 (1.64 x 2~12)
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(maximum previously known)

Roundn

Fig. 2. The Best Deviation

6 Conclusion

We have improved Matsui's search algorithm by considering the dominant fac-
tor of search complexity. To discard many unnecessary search candidates before
searching, we introduced the search patterns, which are preselected set of devi-
ations of linear approximations of each round. Now we have two alternatives for
finding the best linear expression. Matsui's search algorithm is easy to imple-
ment and works well for some cryptosystems. Our algorithm is equally effective
and is suitable for those cryptosystems which cannot be readily searched by his
algorithm.

Our search algorithm was applied to DES and FEAL. The ra-round best
linear expressions of DES we found as fast as Matsui's algorithm for n < 32.
Those of FEAL we found much faster than his algorithm; the time required is
decreased from over three months to about two and a half days. We have found
the ro-round best linear expressions of FEAL (n < 32) with higher deviations
than those derived from Biham's iterative linear expressions.

Our idea is expected to be also effective in searching the differential charac-
teristics in Differential Crypt analysis.
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Number 
If Round 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

n 
Best Deviation 

1.25 x 2- 
1.56 x 2-3 
1.95 x 2-5 
1.22 x 2-6 
1.95 x T9 
1.95 x 2-l' 
1.22 x 2-11 
1.91 x 2-14 

1.19 2-17 

1.53 x 2-15 
1.91 x 2-16 

1.49 x 2-l' 
1.19 x 2-21 
1.19 x 2-22 
1.49 x 2-24 
1.16 x 2-26 
1.86 x 2-" 
1.16 x 2-" 
1.46 x 2-30 
1.82 x 2-32 
1.46 2-34 
1.46 x 2-35 

1.42 2-39 
1.14 2-39 

1.78 2-43 
1.11 2-44 
1.12 x 2-46 

1.11 x 2-49 

1.82 x 2-37 

1.42 x 2-" 

1.78 x 2-48 

3est Deviation 

1.00 x 2-1 
1.00 x 2-1 
1.00 x 2-2 
1.00 x 2-3 
1.52 x 2-6 
1.15 x 2-' 
1.00 x 2-11 
1.00 x 2-12 
1.64 x 2-14 
1.64 x 2-14 
1.24 x 
1.48 x 2-17 
1.48 x 2-la 
1.48 x 2-20 
1.13 x 2-21 
1.34 x 2-22 
1.34 x 2-23 
1.34 x 
1.02 x 2-26 

1.21 x 2-28 
1.21 2-27 

1.21 x 2-30 

1.10 x 2-32 
1.10 2-33 
1.10 2-34 
1.67 2-37 
1.99 x 2-36 
1.99 2-39 
1.99 2-41 

1.85 x 

1.51 x 2-42 

FEAL 
BEST, 

2-' 
2-1 
2-2 

2 -6 
2-8 
2-11 
2-12 

2-'5 

2-18 

2-20 

2-21 

2-3 

2-14 

2-19 

2-24 
2-25 
2-26 
2-27 
2-30 
2-31 
2-32 
2-34 
2-36 
2-37 

2-39 

2-38 

2-42 
2-43 
2-44 

2-46 
2-48 

Table 4. The Best Deviation 
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P 9 4 1  
- 
- 

- 

- 

- 

- 

2-13 
2-15 
2-16 
2-17 
2-19 

2-21 

2-22 

2-23 
2-25 
2-27 
2-28 

2-33 

2-35 

2-37 

2-39 

2-29 
2-31 

2-34 

2-40 
2-41 
2-43 

2-'6 
2-47 

2-45 

2-49 
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Appendix Open Problem

When more than two S-boxes are approximated in the / function, the Piling-up
Lemma can't always calculate the true deviation of the / function. Table 5 gives
examples of the linear approximations of the / functions of DES and FEAL
whose deviations calculated by the Piling-up Lemma differ from the true values.

We can't currently compute the true deviation of the / function except using
equation (4) with exhaustive search. How to compute the true deviation of the
linear approximation of the / function with less complexity is an open problem.

DES
FEAL

Linear approximation
of/function (rOi,ri,)
(00140000, al0400c0)
(00140000, a10400cO)

Pi(roitr
Piling-iip Lemma

0
2"*

/,) calculated by
Definition (Equation(4))

1.25 x 2~J

1.25 x 2-’

Table 5. Examples of Linear approximations of / functions whose deviations calculated
by the Piling-up Lemma differ from the true values
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