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Abstract. The Diffie-Hellman key exchange algorithm can be implemented using the 
group of points on an elliptic curve over the field F2m. A software version of this using 
n = 155 can be optimized to achieve computation rates that are slightly faster than 
non-elliptic curve versions with a similar level of security. The fast computation of 
reciprocals in F2rn is the key to the highly efficient implementation described here. 

1 Introduction 

The Diffie-Hellman key exchange algorithm [ll] is a method for initiating an 
encrypted conversation between two previously unintroduced parties. It relies 
on exponentiation in a large group, and the software implementation of the 
group operation is usually computationally intensive. The algorithm has been 
proposed as an Internet standard [15], and the benefit of an efficient implemen- 
tation would be that it could be widely deployed across a variety of platforms, 
greatly enhancing the security of the Internet by solving the problem of key 
exchange for millions of host machines. 

The Diffie-Hellman algorithm was implemented several years ago as part of 
the Sun SecureRPC system used by Sun Microsystems, and the implementation 
used numbers of a size that was determined in [21] to be attackable using a 
method described in [9]. This work indicated that instead of using a 192 bit 
modulus, which could be “cracked” in only about 3 months of effort (including 
software development), system designers should use at least a 512 bit mod- 
ulus. Informal conversations with people associated with developing the Sun 
SecureRPC system indicated that they did not wish to increase the size of the 
numbers, in part because of the amount of time needed for the computation. The 
extra time results because of the number of large-number arithmetic operations 
that must be carried out. 

In our work with implementations of cryptographic protocols, we developed a 
simple version of the DiffieHellman protocol in what has been termed transient 
mode, where the two parties each select a random exponent e and exchange 
values of gel where g is a group element. If party A selects e = a and party B 
selects e = b ,  then each party can compute g a b ,  but no eavesdropper can do so. 
In our implementation, we used the ring Z,,, with p a 512 bit prime, a size that 
should resist attacks with hardware resources known today. The protocol took 
from 2 to 10 seconds on a variety of modern and popular hardware platforms. 
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This speed is unpalatable for machines that need to participate in many keyed 
conversations with a large set of peers. We would estimate that no busy machine 
should devote more than .l% of its cycles to key exchange, and this limits even 
a very fast machine (5 200 MHz) to fewer than 20 key exchanges per hour. 

This work motivated our research into faster software implementations of the 
basic operations behind the protocol. Elliptic curve systems, first suggested by 
Victor Miller [25] and Neal Koblitz [19], were a natural choice because they are 
(insofar as is known today) immune to the index calculus attack. This means that 
smaller numbers can be used to achieve the same degree of security for the Diffie- 
Hellman algorithm as the 512 bit version described above. It is interesting to note 
that the numbers in our implementation are even smaller than the Sun RPC 
version. In addition to this basic savings in computation cost, there are several 
software optimization techniques that result in a significantly faster algorithm. 

An additional advantage is that, as computers get faster, the size of the 
numbers needed to achieve a particular level of security grows much more slowly 
for elliptic curve systems when compared to methods that use ordinary integers. 

The elliptic curve method uses a diqerent group operation than multiplica- 
tion of integers mod p .  Instead, the operation is over the group of points on an 
elliptic curve, and the operation is arithmetically more complicated. The size 
of the group used in our implementation is approximately 2155. The group op- 
eration is implemented using numbers from the Galois field F p 5 .  Our initial 
implementation of this was more than twice as fast as the implementation using 
integers modulo a 512 bit prime, and there was obvious room for improvement. 
For the DH key exchange algorithm, a properly chosen elliptic curve over F21S5 

offers somewhat more security than does working modulo a 512 bit prime. 
The improvements described here are how to efficiently compute the field 

operations in Fp5, especially reciprocals, and a minor improvement in the for- 
mula for doubling an elliptic curve point. The most important contributor to the 
success of the algorithm is the fast reciprocal routine. 

2 Overview of the Method 

We include here brief descriptions of the field and elliptic curve manipulations; 
this material is from draft document [24]. See Silverman [32] for a general intro- 
duction to elliptic curves; Menezes [23] provides a cookbook approach and an 
introduction to the cryptographic methods. Other good references are [l, 2, 3, 51. 

For our purposes, an elliptic curve E is a set of points (2, y) with coordinates 
2 and y lying in the field IF2155 and satisfying a certain cubic equation. The 
points (2,  y) form a commutative group under “addition”; the rule for “addition” 
involves several field operations, including computing a reciprocal; the formulas 
are in section 3.1. 

The elliptic curve analog of the Diffie-Hellman key exchange method uses an 
elliptic curve E ,  and a point P = (20, yo) which generates the whole addition 
group of E.  The base field, curve equation, and starting point are all system-wide 
public parameters. 



45 

When user A wants to start a conversation, he chooses a secret integer mul- 
tiplier KA in the range [2,order(E) - 21 and computes KAP by iterating the 
addition of P using a "double and add" scheme. He then sends the x and y coor- 
dinates of the point K A P  to user B. User B selects his own secret multiplier KB 
and computes and sends to user A the point K B P .  Each user can then compute 
the point (KAKB)P.  Some bits are selected from the coordinates to become the 
secret session key for their conversation. Insofar as is known, there is no effective 
method for recovering ( K A  K B ) P  by eavesdropping on this conversation, other 
than solving the discrete logarithm problem. The discrete logarithm problem is 
hard for elliptic curves, because the index calculus attack that is so effective 
modulo p does not work. 

The elliptic curve operations require addition, multiplication, squaring, and 
inversion in the underlying field. The number of applications of each operation 
depends on the exact details of the implementation; in all implementations the 
inversion operation is by far the most expensive (by a factor of 5 to 20 over 
multiplication). 

3 Working with an Elliptic Curve 

3.1 Adding and Doubling Points 

The two elliptic curve operations that are most relevant to the complexity of 
multiplying a group element by a constant are the Add and Double operations. 
They are presented slightly modified from their presentation in [23]. The elliptic 
curve E a , b  is the set of all solutions (2, y) to the equation y2 +zy = x3 +ax2 +b. 
Here a and b are constants from the field P216S; b must be nonzero. The variables 
3: and y are also elements of F215'6. A solution (2, y) is called a point of the curve. 
An extra point 0 is used as the group identity. We use (0,O) to represent 0. 
(Because b # 0, (0,O) is never a solution of our equation.) 
(i) Adding two points ( ~ : 1 , y l )  and ( z 2 , y ~ ) :  

If either point is 0, return the other point as the sum. 
If 21 = 2 2 :  When yl # y2, return 0;  otherwise use the Doubling rule. 
I f21 f22 , then  ("l,Y1)+(22,Y2)= (t3,y3),where 

Y1 + Y2 

21 + x2 
$3 = X2 + A +  21 + e2 + a ,  y3 = X(ZI + 23) + 23+ y ~ ,  and X = -. 

(ii) Doubling a point (2, y): 
If 2 = 0, then 2(+, y) = 0. Otherwise, 2(x, y) = ( 2 2 ,  yz), where 

t 2 = X 2 + X + a ,  y 2 = z 2 + ( X + 1 ) 2 2 ,  and A =  (.+I). 
x2 as given in [23] uses an extra multiplication. Our formula can be further 
improved to remove one multiplication [31]. 

(iii) Negating a point (2, y): - q x ,  Y) = (t, z + Y). 
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From these formulas, we can determine the number of field operations required 
for each kind of elliptic curve operation. An Addition step usually requires eight 
additions, two multiplications, one squaring, three reductions modulo the field 
polynomial T(u), and one inversion. A Doubling step usually requires four ad- 
ditions, two multiplications, two squarings, four reductions mod T(u) ,  and one 
inversion. A Negation step requires one addition. The important contributors to 
the running time are the multiplications and inversions. 

3.2 Choosing the Curve 

The constant a in the elliptic curve equation can be chosen to simplify the 
operations of doubling a point and of adding two points. We use a = 0, which 
eliminates one addition from the formula for the z coordinate in both operations. 

The order of the group is roughly 2155, but the exact size depends on the 
choice of a and b .  There is a complicated algorithm due to Schoof [30], with 
improvements by Atkin, Elkies, Morain, and Couveignes [lo] for determining 
the group order. For maximum security, the order should have as large a prime 
factor as possible. In our equation, with a = 0, the best possible order is 4p,  with 
p a prime near 2153 [20]. (If a # 0, the order can have the form 2p with p near 2154, 
giving a bit of extra security.) Lay and Zimmer [22] give a method for creating 
a curve with a given order, but we are reluctant to use their scheme because 
it produces curves closely related to rational curves with an extra structural 
property called complex multiplication. We don’t know of any way to “crack” 
such curves, but it seems prudent to avoid this extra structure. 

A curve is selected by choosing small values for (2, y) and computing b from 
the equation y2 + zy = z3 + b .  The curve order is computed with Schoof’s 
algorithm, and tested to see if it is of the form 4p. For curves based on F2155, a 
few hundred tries may be necessary. 

The best known methods for computing elliptic curve discrete logarithms 
take time proportional to the square root of the largest prime factor of the 
group order [27, 28, 141. In our case, the largest prime factor will be about 2153, 
so finding discrete logarithms will take about 276.5 w operations. 

3.3 

The number of additions and doublings necessary for computing nP (where P 
is a point on the curve and n is an integer) is an important factor in the speed 
of the key exchange algorithm. We initially implemented the straightforward 
double-and-add approach based on the binary expansion of n. For a random 
155 bit multiplier n, computing nP requires 154 doubling steps and an average 
of 77 addition steps. The number of doubling steps is roughly fixed, but it is 
possible to reduce the number of addition steps. This problem is studied in a 
large literature on addition chains [18, 7, 8,291. We implemented two well-known 
easy speedups that apply to randomly chosen multipliers. 

If the starting point P is available ahead of time, preparation of tables of 
multiples of P is useful [8]. This is the situation for the first two of the four 

Computing a Multiple of a Point 
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point multiplications in key exchange where both parties begin with the system- 
wide generator P = (20, yo). The precomputed table consists of 16KP for I( = 
0, . . . ,38.  Using radix 16 and the digits f l ,  a typical 155 bit multiplier n requires 
about 42 point additions (and no doublings) to compute nP. 

When the starting point P is not known ahead of time, as for the final two key 
exchange point multiplications, a different speedup is available. This is a blend 
of the w a r y  method ([la] p. 404) with Booth’s algorithm [6]. In this case, the 
computed table is the odd multiples from P to 15P. Then we proceed as in the 
usual double-and-add method, scanning the bit representation of the multiplier 
n from the high end. Using the table of small multiples of P ,  we can do several 
doubling steps before an addition is necessary. If we require an even multiple of 
P ,  such as 12P, we instead use an odd multiple ( 3 P ) ,  introduced a couple of 
steps earlier in the doubling process. Because the subtraction of two curve points 
is no costlier than addition, we have the option of subtracting a small multiple 
of P when convenient. On the average, the number of addition/subtraction steps 
needed is 76 the size of the exponent. For a random 155 bit exponent, we will 
use about 152 doubling steps and 32 addition/subtractions (including the cost 
of preparing the table). 

For DH key exchange, the first two of the point multiplications are with a 
known starting point, and the last two are with new points. The last two point 
multiplications can take place in parallel. The total time for the key exchange is 
2(42A) + (1520 + 32A) = 1520 + 116A. The double-and-add approach would 
use 3(154D + 77A) = 462D + 231A, nearly three times as many operations. 

4 Field Operations in P2m 
4.1 

We represent field elements as bitstrings of length 155. For a 64 bit processor, 
this is only 3 words; the brevity of the representation means that much of the 
computation can be done in hardware registers. 

Let k[u] be the ring of polynomials over IFz. We will work in the extension 
field of the trinomial T ( u )  = u155 + u62 + 1.  The extension is a field because 
the polynomial is irreducible over Fa. The field elements are members of k[u] 
modulo the field polynomial T ( u ) ,  with coefficients drawn from the set 0 , l .  Each 
polynomial in k[u] can be reduced to a remainder of degree at most 154. 

The irreducible trinomial T ( u )  has a structure that makes it a pleasant choice 
for representing the field. In IFz, there are only two irreducible polynomials of 
this degree. The fact that the middle term, d2, has an exponent that is roughly 
half of the field degree is important to the optimizations for calculating modular 
reductions (as described in section 4.3) and to the division by large powers of U ,  
(as explained in section 4.4). 

Representation of the Field Elements 

4.2 Addition and Multiplication 

Field elements (for a prime power field) are added and multiplied as follows: 
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- Field addition: ( ~ ~ - 1 . .  .also) + (bn-l  ... b l b o )  = . . . q c o ) ,  where ci = 
aj + bj in the field Fa. That is, field addition is performed componentwise. 

- Field multiplication: (an-l...alao) . (  b , - l . . . b l b o )  = ( P , , - ~ - . . T ~ T O ) ,  where 
the polynomial (rn-1un-' + . . - + T ~ U  + T O )  is the remainder when the poly- 
nomial (an-lu"-' + . . . + a lu  + ao) . ( b n - l u " - ' +  . . . + blu + b o )  is divided 
by T(u)  over F2. 

The addition algorithm for field elements is trivial: the two blocks of bits 
are simply combined with the bitwise zor operation. Because our field has char- 
acteristic 2, subtraction is the same as addition, and negation is the identity 
operation. 

Multiplication of field elements uses the same shift-and-add algorithm as 
is used for multiplication of integers, except that the "add" is replaced with 
"xor". This has the virtue that the operation can no longer generate carries, 
simplifying the implementation. We experimented with several different ways of 
organizing the multiplication routines and found that different architectures had 
different optimal routines. (Our timings are done with the optimal routines for 
each architecture.) 

The Squaring Operation Squaring a polynomial in a modulo 2 field is a linear 
operation. In the formula for squaring a binomial, (a  + b ) 2  = u2 + 2ab + b 2 ,  the 
crossterm vanishes modulo 2 and the square reduces to a2+b2. Consequently, we 
can square a sum by squaring the individual terms. For example, (u3 + u + 1)' = 
216 + u2 + 1. 

In terms of bitstrings, to square a polynomial, we spread it out by interleaving 
a 0 bit between each polynomial bit. For example, u3 + u + 1 is represented as 
1011, and the square is 1000101. This can be done quickly using table lookup to 
convert each byte to its 15 bit square. The squared polynomial is then reduced 
modulo T(u) .  Squaring is so much faster than regular multiplication that it can 
be ignored in rough comparisons of the timings. 

4.3 Modular Reduction 

The field elements are polynomials with coefficients in the ring Zz. After each 
multiplication or squaring, the result must be reduced modulo T(u)  = u155 + 
d2 + 1.  The product of two polynomials of degree 154 produces a polynomial of 
degree 308. The product is represented as 10 words on a 32 bit architecture, or 
5 words on a 64 bit architecture. 

A hand tailored reduction method, specific for T ( u ) ,  takes advantage of the 
degree of the middle term to minimize the number of operations required. First 
note that 

mod T(  u) . - u + 1, and un 3 u"- '~ + un-155 u155 = 62 

Assume the polynomial to be reduced is 

P ( U )  = u ~ ~ ~ ~ L ~ ~ ~  + . . . + a2u2 + alu + ao. 
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As many as 93 of the leading terms of P ( u )  can be reduced modulo T(u)  by 
replacing each non-zero term by its congruent two-term expression, i.e. au" 
aun-93 + a u ~ - 1 5 5  mod T(u) .  We can think of this as zeroing out the upper 93 
bits of the 309 bits of the expression (subtracting each term) and adding in the 
representation of each original term right-shifted by 93 (i.e., multiplied by u - ' ~ )  
and also right-shifted by 155 (i.e., multiplied by 16-l~~): 

P ( u )  p(u)215--0 + P(u)308--216(21-~~ + u-155 ) mod T ( u )  

k where P(u)j-k = Ci=j aiui is the portion of P(u) from degrees j through k. 
This yields a length 216 partial result. This reduction can be repeated to make 
the degree less than 155. 

In practice, we work one computer word at a time, lowering the degree by 
either 32 or 64, proceeding from the high order terms (bits) to the low. The re- 
sults are accumulated into the original expression, i.e. the bitstring representing 
P ( u )  is the operand for each shift and xor operation. 

The benefit of using a trinomial its the modulus is that each word only needs 
to be xored into two places for the accumulation operation. Having the middle 
term of relatively low degree is beneficial because the accumulation operation 
with a high-order word does not affect that word, so that each reduction step 
reduces the degree by a full word. (If the middle term were u150 instead of u62, 
we would only shorten our dividend by 5 bits each time instead of 32, and we 
would have to do the reduction operation multiple times.) 

+ 1,  u172 + 
uS1 + 1, ulS5 + d9 + 1,  ulQ1 + u71 + 1, u217 + zP4 + 1, dZ3 + ugl + 1, and 

+ uS2 + 1. Irreducible trinomials are somewhat sparse: for the degrees from 
100 - 199, 43 have no irreducible trinomial. If one needs to work with a field of 
a specific degree, and the field has no good trinomial, a pentanomial (at least) 
is required. (In fields of characteristic 2, polynomials with an even number of 
terms are always divisible by u + 1.) 

Some other recommended trinomials are u12' + + 1, uX4O + 

4.4 Computing Reciprocals 

The rules for doubling an elliptic curve point, and for adding two elliptic curve 
points, involve computing a reciprocal, either l / x  or l / ( x l  + x2) (see section 
3.1). Multiplicative inversion of elements in a field is usually so slow that peo- 
ple have gone to great lengths to avoid it. Menezes [23] (p. 90) and Beth and 
Schaefer [5] discuss projective schemes, which use about nine multiplications per 
elliptic curve step, but use very few reciprocals. We report here on a relatively 
fast algorithm for field inversion, which allows direct use of the simple formulas 
for operating on elliptic curve points. Our field inversion time is about three 
multiplication times, a substantial improvement over [23]. 

For the field we are working in, the problem to be solved is 

Menezes' inversion scheme computes 1/A(u) as A(u)2155-2 mod T(u). This can be 
done with 10 multiplications and 154 squarings [16]. 
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Given a non-zero polynomial A(u) of degree less than or equal to 154, 
find the (unique) polynomial B(u)  of degree less than or equal to 154 
such that 

A(u)B(u)  3 1 mod u155 + u6’ + 1. 

The problem has a simple, but relatively slow, recursive solution, exactly 
analogous to the related algorithm for integers. We have developed an algorithm 
that is considerably faster. It borrows ideas from Berlekamp [4] and from the 
low-end GCD algorithm of Roland Silver, John Terzian, and J. Stein (described 
in Knuth [18] p. 297). Our Almost Inverse algorithm computes B(u)  and k such 
that 

AB = uk mod M ,  deg(B) < deg(M) ,  and k < 2deg(M),  
where deg(B) denotes the polynomial degree of B. After executing the algorithm, 
we will need to divide B by uk (modM) to get the true reciprocal of A .  

The pseudo-code for the algorithm is given below. The computer implemen- 
tation relies on a few representational items: 
- Multiplication of a polynomial by u is a left-shift by 1 bit. 
- Division of a polynomial by u is a right-shift by 1 bit. 
- A polynomial is even if its least significant bit, the coefficient of uo (the 

constant term), is 0. Otherwise it is odd. 
The algorithm will work whenever A(u) and M ( u )  are relatively prime, 

A(u) # 0, M(u) is odd, and deg(M) > 0. In our application, M ( u )  is the 
irreducible trinomial T(u) ,  so the algorithm works for any nonzero A(u) with 
degree less than T(u). 

The Almost Inverse Algorithm 

Initialize integer k=O, and polynomials B=l,C=O,F=A,G=M. 

loop: While F is even, do F=F/er, C=C*u, k=k+i. 
If F = I, then return B,k. 
If deg(F) < deg(G), then exchange F,G and exchange B,C. 
F=F+G , B=B+C . 
Goto loop. 

We improved the performance of this raw algorithm considerably with the 

- The operations on the polynomials B,C,  F ,G are made into inline, loop- 
unrolled code within the inversion routine. This is a crucial optimization, 
resulting in a factor of 3 reduction in the overall running time. 

- Instead of using small arrays for B,  C, F, G, use separate named variables 
BO, B1, . . , , G4 etc. to hold the individual words of the polynomials. Assign 
as many of these as possible to registers. 

- F is even at the bottom of the loop, so the “Goto” can skip over the test 
for the “While”. This non-structured jump into the body of a “While” loop 
saves about 10% of the time. 

following programming tricks: 
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- Instead of exchanging F,  G and B ,  C, make two copies of the code, one with 
the n a m e  exchanged. Whenever an exchange would be called for, instead 
jump to the other copy. 

- During the execution of the code, the lengths of the variables F ,G shrink, 
while B, C grow. Detect when variables’ lengths cross a word boundary, and 
switch to a copy of the code which knows the exact number of words required 
to hold the variables. This optimization makes the code much larger, because 
either 25 (for a 32 bit architecture) or 9 (for a 64 bit architecture) copies 
are required. Fortunately the code still fits within the DEC Alpha on-chip 
cache. 

The following additional optimization is possible: 
- Because F, G shrink while B ,  C expand, some of the variables representing 

the high-order terms can share a machine register. This would be useful on 
regis ter-poor machines. 

Dividing out uk To find the reciprocal of A(u), we need to divide B(u)  by uk, 
working mod T ( u ) .  The typical value of k is 260, although k can be as large as 
309. The strategy is to divide B successively by uw , where w is the number of 
bits in the wordsize of the computer, and finish up with a final division by a 
smaller power of u. 

The operation of dividing by uw is broken into two parts. First, a suitably 
chosen multiple of T is added to B, so as to zero out the w low order bits of 
B. The new B can have degree as large as 154 + w. Second, the new B is right- 
shifted by w bits, effectively dividing it by uw . Since the low order bits are 0, 
the division is exact; and the right-shift reduces the degree to (at most) 154. 

The “suitably chosen multiple of T” is just T times the low order 32 (or 64) 
bits of B. For the 32 bit SPARC, using the notation of section 4.3, 

B = B + Bs~--D(u 155 + u~~ + 1) = B154-32  + B ~ ~ - o ( u ~ ~ ‘  + mod T ( u ) .  

The second term is computed by left-shifting the low-order 32 bits of B by 
62 bits and 155 bits and is xored directly into B. The zeroing operation has a 
complication on the Alpha, where we work with 64 bits at a time: After the shift- 
and-two-xors step, there are two possibly unzeroed bits, B 6 3 - 6 2 .  An additional 
shift-and-two-xors step is performed with this twenty-five cent field to clear it. 

The same logic, modified for the smaller shift size, is used for the final division 
by a less-than-wordsize power of u. 

5 Timings 

The timings on two platforms are presented in Figure 1. The Sun SPARC IPC 
is a 25 MHz RlSC architecture, with a 32 bit word size. The DEC Alpha 3000 
is a 175 MHz FUSC architecture, with a 64 bit word size. If everything is just 
right (all the data in registers, etc.), the SPARC machine can execute 25 million 
instructions per second, the Alpha 175 million. The Alpha has an 8K byte on- 
chip instruction cache; assuring that the critical field operations are loaded into 
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Field and Curve Operations
155 bit add
155 x 155 bit multiply
32 x 155 bit multiply
64 x 32 bit multiply
155 bit square
Modular reduction, 310 bits to 155 bits
Reciprocal, including divide by uk (k = 261)
Double an elliptic curve point
Add a n elliptic curve point
Multiply two elliptic curve point
Multiply new elliptic curve point

SPARC IPC
3,5

112.6
8.0

8.1
3.8

280.1
481.0
550.8

23 msec
92 msec

Alpha
.22

7.10

1.65
.49
.15

25.21
40.46
42.05

1.8 msec
7.8 msec

Key exchange times
Elliptic curve DH key exchange (155 bits)
Ordinary integer DH key exchange (512 bits)
... with four tricks (estimate)
... no tricks, 128 bit key (estimate)
Best DH key exchange, estimates for 128 bit
Elliptic curve over F2

155(estimate)
Modular arithmetic, 512 bit prime (estimate)

137 msec
2670 msec
523 msec
670 msec

11.5 msec
185 msec

34.8 msec
46 msec

multiplier/exponent
114 msec
150 msec

9.6 msec
10.0 msec

Fig. 1. Times for various field and elliptic curve operations. Unlabeled times are in
microseconds.

the cache without conflict is crucial to achieving the results reported here. The
SPARC instruction cache is 64K bytes, and the code fits easily.

We made a few measurements on other architectures. The Intel 486 (66MHz)
and the DEC MIPS (25MHz) are both within 10% of the SPARC times. Both
machines have a 32 bit word size.

Assumptions for Timing Estimates Our modular arithmetic implementa-
tion of Dime-Hellman key exchange uses the GNU bignum package GMP [13].
This package includes assembly language routines for the low-level primitives.

For a fair comparison with ordinary modular key exchange, we assume that
all reasonable optimizations are made to the arithmetic. Many of the tricks that
we have used in our elliptic curve program have analogs in ordinary arithmetic.
For comparison purposes, we assume that the four tricks described below are
added to GMP.

— Special case code for squaring a number is used to reduce the time to 60%
of a multiplication.

— The modulus is chosen to be a prime P of the form 2512 — K with small K,
reducing the time for a modular reduction to 10% of a multiplication.

— When the base g to be exponentiated is known ahead of time, we assume
that tables of g±32 (mod P) are prepared in advance. For a random 512 bit
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exponent, this will reduce the required number of modular multiplications
to 114 on the average, and eliminate all squarings.

— When the base B is not known in advance, we assume the m-ary method
[18], using the odd powers B1,..., 531(mod P). For a random 512 bit ex-
ponent, this will require an average 508 modular squarings and 100 modular
multiplications.
Under these assumptions, the estimated times for modular arithmetic DHKX

are given in the table above. These times are compared with actual measured
times for the implemented elliptic curve routines.

Phil Karn has suggested speeding up the key exchange by limiting the expo-
nent size to 128 bits, in Photuris [15]. Therefore, we also provide estimates for
both methods of key exchange on the assumption that the exponents/multipliers
are reduced to 128 bits. In this case, the elliptic curve method has only a slightly
better running time than the modular arithmetic method.

5.1 Planning Ahead

A major advantage of elliptic curves is that they scale well with increasing com-
puter power. In the discrete logarithm problem for modular arithmetic, changing
the modulus from a 512 bit prime to a 1024 bit prime multiplies the cracking
effort by a factor of 8 million.3 In the elliptic curve case, forcing a corresponding
increase in cracking effort requires adding only 46 bits to the size of the field.
This would raise our field size from 155 bits to 201 bits.

Now compare the changes in encryption effort for this increased security.
In the ordinary arithmetic case, changing from a 512 bit modulus to 1024 bits
will make the basic operation of modular multiplication take 3 times as long
if the Karatsuba method [17] is used. The corresponding elliptic curve times
increase by only (201/155)2 = 1.7. (Both methods would also require that ex-
ponent/multiplier sizes increase by 46 bits, so each method incurs an additional
penalty of about 174/128 = 1.4.)

This advantage of elliptic curves is even more pronounced if long-term secu-
rity is required: each additional bit added to the field size increases the cracking
work by a factor of 1.4. In the modular arithmetic case, adding a bit to a 1024
bit prime only multiplies the required work by 1.026. To double the cracking
effort requires increasing the the field size by 2 bits in the elliptic curve case,
versus adding 27 bits to the length of the modulus for modular arithmetic.

6 Other Applications

ElGamal Encryption The elliptic curve improvements also make ElGamal
style encryption and signatures more attractive. The total effort of signing and
checking a signature is less with elliptic curve methods than with RSA.
3 The time required to find a discrete logarithm mod p is estimated with the formula

exp(1.93{/logp(loglogp)2) [21].
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Elliptic curve ElGamal decryption (155 bitsj 
Elliptic curve ElGamal signature (estimate) 
Elliptic curve ElGamal check signature (estimate) 

Cryptographic Operation ISPARC IPCl Alpha 
Elliptic curve ElGamal encryption (155 bits) I 116 msecl 9.8 msec 

94 msec 8.0 msec 
24 msec 1.8 msec 
220 msec 17.8 msec 

The ElGamal encryption method [12, 231 can be implemented using these 
elliptic curve routines. The method uses a “semi-static” Diffie-Hellman key ex- 
change: there is a public elliptic curve with generator P = (z0,yO), and par- 
ticipants choose secret multipliers mp and contribute Pp = mpP to a public 
key phone book. When party A wishes to communicate with party B, he se- 
lects a random multiplier k and computes k P  and k P B .  The latter quantity is 
used to create a key for encrypting the message. The quantity k P  is attached 
to the ciphertext. Party B can recover the key by computing r n ~ k P .  Timings of 
the encryption and decryption operations are presented in Figure 2, along with 
estimates for the related signature operations. 

Other Finite Fields The new reciprocal algorithm is useful for doing arith- 
metic in other finite fields. Because it makes inversion less costly, it will be 
worthwhile to reanalyze other formulas for operations with elliptic curves. The 
reciprocal algorithm can also be used, with slight modifications, to compute re- 
ciprocals in ordinary integer modular arithmetic. (The algorithm is most efficient 
with moduli of the form 2 A  - 2B - 1, but will work reasonably with 2 A  - k2B - 1 
for 32 bit k. For generic odd moduli, Peter Montgomery’s trick [26] is useful for 
dividing by the required power of 2.) Another benefit may be in ordinary modu- 
lar exponentiation, as used in RSA and many other schemes: if a reciprocal costs 
only a few multiplications, addition-subtraction chains can be used to compute 
powers; this allows shorter chains which more than recoups the investment in 
computing the reciprocal. 

7 Conclusions 

We have shown that the software implementation of the Diffie-Hellman algorithm 
can be done more efficiently using elliptic curve systems over IFp than using 
integers modulo p. Assuming that no equivalent to the discrete logarithm attack 
exists for an elliptic curve, smaller number representations of the group elements 
can be used, and the software becomes quadratically faster. RISC machines with 
64 bit wide words show excellent performance. 

Our implementation’s major speed advantage over previous implementations 
derives from its use of an efficient procedure for computing reciprocals in F a n .  
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If network protocols were to rely on this method for establishing DES key 
pairs between hosts, four times as many connections could be made as com- 
pared with our baseline modulo p implementation. Even if the mod p arithmetic 
is improved as outlined in section 5, the elliptic curve method remains very 
competitive. As computing power increases, and the search capabilities of oppo- 
nents improve accordingly, it is cheaper to improve the security of elliptic curve 
methods than to improve the security of mod p methods. 

Key exchange nonetheless remains an expensive operation ... over 100 times 
as expensive as computing the MD5 one-way hash function, for example. 
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