
Fast Server-Aided RSA Signatures
Secure Against Active Attacks

Philippe BBguin'** and Jean-Jacques Quisquater2

Laboratoire d'hformatique **
Ecole Normale Suphieure

45 Rue d'Ulm, F-75 230 Paris CBdex 05, Rance

email: Philippe.Beguin@ens.fr

a Laboratoire DICE
UniversitB Catholique de Louvain

Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium

e-mail: QuisquaterQdice.ucl.ac.be

Abstract. Small units like chip cards have the possibility of computing,
storing and protecting data. Today such chip cards have limited comput-
ing power, then some cryptoprotocols are too slow. Some new chip cards
with secure fast coprocessors are coming but are not very reliable at the
moment and a little bit expensive for some applications. In banking a p
plications there are few servers (ATM) relative to many small units; it is
a better strategy to put the computing power into few large servers than
into the not-very-often used cards.
A possible solution is to use the computing power of the (insecure) server
to help the chip card. But it remains an open question whether it is pos
sible to accelerate significantly RSA signatures using an insecure server
with the possibility of active attacks: that is, when the server returns
false values to get some part of secret from the card.
In this paper, we propose a new efficient protocol for accelerating RSA
signatures, resistant against all known active and passive attacks. This
protocol does not use expensive precomputations; the computation done
by the card, the wed RAM and the data transfers between the card
and the server are small. With current chip cards it is thus possible to
implement efficiently this protocol.

1 Introduction

Small devices, like chip cards or smart cards are easy to carry and have the
possibility of computing, storing and protecting data. Unfortunately, today such

' Part of this work was done while the author was visiting the Laboratoire de Mi-
croblectronique, Universite Catholique de Louvain, Belgium.

** Supported by the Centre National de la Recherche Scientifique URA 1327.

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 '95, LNCS 963, pp. 57-69, 1995.
0 Springer-Verlag Berlin Heidelberg 1995

chip cards have limited computing power and some protocols are not executed
in an efficient way: for example, public-key cryptographic protocols. Some new
chip cards with fast and secure coprocessors are coming but are not reliable at
the moment (due to problems of auxiliary memory) and are in some cases too
expensive. Anyway, it is useful to have many cheap secure cards and to put the
expensive part into one or few insecure servers.

A possible solution is to use an auxiliary unit such as a banking terminal,
a card reader, ... in order to help the chip card. In this paper we shall use the
words curd for the main unit and sewer for the auxiliary unit. From a theoretical
point of view it is interesting to study how to share the computing power of two
parties with some security constraints. This paper is a new efficient contribution
in this important field.

If the server is secure and will not leak the secrets, it is possible to imagine
a secure link between the card and the server: the card sends the secret val-
ues to be used to the server; the server computes the result and sends it using
again the secure link. The interesting (real lie) case is working with an insecure
server. This server may then be under the influence of an opponent trying to
obtain the secrets of the card or to cheat with a false result. The conclusion
of this short analysis is that the card must protect its secrets and verify the
computations received from the server. Let us remark that many proposed pro-
tocols ([ll],[l6],[10]) did not have a strong verification step and then were broken

There exist two kinds of attacks against such protocols: classical searching
ones are called passive attacks; specific ones where the server returns false values
to get some information from the card, are called active attach.

Such protocols were first studied by Matsumoto, Kato and Imai [ll] and by
Quisquater and De Soete (141 for accelerating RSA signatures [15]. Next Pfitz-
mann and Waidner [13] proposed some passive attacks against all protocols pre-
sented in [ll]. And Anderson 121 proposed a very efficient active attack against
one of the two protocols presented in [ll], where a dishonest server could obtain
the secret key, by using only one false signature. But these attacks could be very
easily defeated if the card checks the correctness of the computed signatures
and by increasing the parameters used in [ll]. On the other hand Quisquater
and De Soete’s protocol is provably secure against passive attacks but it is very
less efficient than Matsumoto, Kato and Imai’s ones. Then Yen and Laih [16]
and Matsumoto, Imai, Laih and Yen [lo] presented an improvement of protocols
presented in [ll] secure against passive attacks: unfortunately they need expen-
sive precomputations and thus, they are not very efficient. Next Kawamura and
Shimbo [S] proposed four protocols provably secure against passive attacks: the
two first axe not very efficient and the two last are more efficient but they need
expensive precomputations. So, all previously known protocols secure against
passive attacks are not efficient or need expensive precomputations. MoreoverJ
absolutely none of these protocols (provably or not provably secure against pas-
sive attacks) are secure against active attacks presented in [13]. As it is said in
[6], it was an open question whether it is possible or not to construct a secure
protocol against active attacks.

(“131 , [91h

59

Burns and Mitchell [5] construct improvements of the two protocols presented
in [ll] (RSA-S1 and RSA-S2) secure against active attacks. Unfortunately, the
first one (RSA-S1) is inefficient: the card has to do at least 188 modular multipli-
cations for each signature. Otherwise, the second one (RSA-S2) is much efficient
but it ignores Pfitzmann and Waidner's attacks [13] and thus is not secure.

Lim and Lee [9] developed other protocols using precomputations, based on
the twephase protocols due to Matsumoto, Imai, Laih and Yen [lo].

Otherwise, Bbguin and Quisquater [3] give the first method for accelerating
significantly DSS signatures (121 provably secure against both passive and active
attacks.

But it remains an open question whether it is possible to accelerate signif-
icantly (without expensive precomputations) RSA signatures using an insecure
server, in a secure way against both passive and active attacks. In this paper, we
propose a new efficient protocol resistant against all known passive and active
attacks, including those presented in [13]. Moreover, we will show that our pro-
tocol is secure against more specific passive attacks. This protocol does not use
expensive precomputations; the computation done by the card, the used RAM
and the data transfers between the card and the server are small. Then, it is
possible to implement efficiently this protocol with current chip cards.

We begin by giving some preliminaries, then we outline the protocol of Brick-
ell, Gordon, McCurley and Wilson [4], which we will use. Then we describe our
protocol and study its security. Finally, we expose the performances of this pro-
tocol.

2 Preliminaries

We denote by n the public modulus of RSA (n = p e q) , by 8 the secret signature
key and by v the public verification key such that s . = 1 mod 4(n) with
+(n) = (p - l)(q - 1). The card receives the message M and wants to compute,
using the server, the signature of M: i.e. S = M a mod It.

For a number a, we denote by Z(a) the number of bits of a, i.e. l(a) =
[log, aJ + 1, and for a set F, we denote by #F the cardinality of F.

Let k = I(n) and let t = max(l(p),Z(q)) - 1. In this paper, we will study the
acceleration of the RSA signatures with 512 bit numbers (k = 512) and with 768
bit numbers (k = 768). We denote by modular multiplication the multiplication
of two k bit numbers modulo a k bit number. In this paper, the computations
done by the card will be measured in terms of modular multiplications. Hence we

modular multiplications and the computation of a mod b is about the equivalent

of - ' x modular multiplications. By 8 we denote a constant near 1
varying with the implementation of the operation modulo. Here we use the prac-
tical value of 1.25 for 8. We suppose that the implementation of multiplications

consider that the computation of a x b is about the equivalent of - lxI(a)xl(b)
2 k k

x
2 2k k

60

modulo is classical and does not use clever tricks or the Montgomery's method:
such methods need a specific study.

3 Fast Exponentiation with Precomputation

Several protocols are known to compute exponentiation with precomputation
[4], [8] ... We present a protocol due to Brickell, Gordon, McCurley and Wilson
[4]. The goal of this protocol is to compute a" using some precomputations.

If 2 = xEil uizi with 0 5 ai 5 h, and if a"' is known for each i, then the
algorithm [BGMW] for computing a" is the following one:

B t naiZh axi
A t B
for d = h - 1 to 1 by -1

B t B x naiZdaxi
A t A x B

return(A)

In our protocol, the xi will be known by the server which computes a5i, but
z must be kept secret. Then, the card must use constant time to obtain a";
otherwise, by observing the time used to compute a", an opponent could obtain
some information about z. A solution is an algorithm with a constant number
of multiplications, using, if necessary, the simulation (same time, no operation)
of some multiplications.
During the computations, the card uses one of the two following methods.

Case 1. The card stores axO, . . . ,uxm-l, next computes A. Let k d = #{ai : ai =
d } ; the number of multiplications done by the card during the algorithm is
(kh - 1) + x:z; (kd + 1) = h - 2 + c!=, k d 5 h - 2 + m. some simulation
of multiplications is needed; thus the card computes exactly the equivalent of
h - 2 + m multiplications.

Case 2. Let Cd = naiZd azi. The card computes cl,.. . , C h while receiving the
a"''s. First ci = 1 for each i, thus after receiving the first value there is no multi-
plication to do. But after this first step, in order to avoid to give any information
to the server (or to any opponent), if the received number has to be multiplied
by 1, the card needs to simulate a complete multiplication. Thus the card needs
exactly the equivalent of m - 1 multiplications to obtain cl, . . . , ch. Next the card
needs 2(h - 1) multiplications to obtain A. Hence the card computes exactly the
equivalent of 2h - 3 + m multiplications.

61

4 The RSA Signature

Using the Extended Euclidean Algorithm, the values w,, wq can be computed
such that wp + wq = 1, wp modp = 0, wq mod q = 0 and 0 i Iwpl, lwpl 5 n.
Thus, if yp E y mod p and yq 3 y mod q, we have y 3 ypwq + pqwp mod n. The
protocol is the following.

1. The card receives M to sign.
2. The card chooses randomly ao, al , . . . , am-l s. t. aj E (0,. . . , h} ,

3. The card computes 81 = EL;' aixi.
4. The card sends M,n and 20,. . . , zm-l to the server.
5. The server returns 20,. . . , z,-1 such that zj = M"' mod n.
6. The card computes zp = n,,, zi mod p and zq = n,,, zi mod q using

7. The card computes 82 = s - sl,

20,. . . ,xm-1 s. t. a @ ;) 5 t - log,(m * h) - 2.

m-1 ai m-1 ai

the algorithm [BGMW] already described.

represents s2 under the form up = 52 mod (p-l)+e,(p-l),

where ep is a random number of { 0, , . . , q - 2},
eq is a random number of (0,. . . ,p-2).

cq = 92 mod (q-1)+eq(q-1),

8. The card sends to the server a,, aq.
9. The server computes and sends to the card yp = M"P mod n

yq = M"9 mod n.
10. The card computes S, = yp x z, mod p and S, = yq x zq mod q.
11. Now the card computes S = wq - Sp + w,, . S, mod n.
12. The card verifies S" mod n = M.
13. If during the step 12, the verification is correct, then the card transmits s.

5 Security

5.1 An Exhaustive Search

A possible attack is to make an exhaustive search over 81. An attacking server
knowing M, S, y,, computes gcd(n, S-ypMX;=o mod n) for all ai such that
0 5 ai 5 h.
When EL;' aixj = 81, this server obtains gcd(n, S-y,MCi=o mod n) = p
with very high probability. The complexity of this attack is (h + l)m.

Wehavea, = (8-81) mod (p-l)+e,(pl) . Henceva, = (1-vsl) mod (p-
1) + ve,(p - 1). But (p - 1) mod 2 = 0, then CLi'(vzj mod 2)(ai mod 2) = 1 +
va, mod 2 is known. Hence, using this equation, the complexity of the exhaustive
search becomes (h + l)"'/2.

We suppose that the other factors of p - 1 and q - 1 are unknown (which
is a normal supposition for RSA signatures), hence it is not possible to improve
this search.

W I - 1

aix;
m-1

62

5.2 A Pseudo-Exhaustive Search

This attack is similar to the Pfitzmann and Waidner's attack [13] against the
protocols of Matsumoto, Kato and Imai [ll].
For all A = {ao,...,a~m/21-1} such that 0 5 ai 5 h, the attacking server
computes

For all B = {by,/q '.. . , bm-l} such that 0 5 bi 5 h, the server computes

2: = 3 . p i 1 . zgl mod n with zB = MC;";I:/*l bi*i mod n.

We have
m-1 w 2 i - l m-1

s1 = C q x i = C a,xi + C ajxj,
i=O i=O j= 1m/2l

with 0 I ai ,a j 5 h. Let A = {ao, ..., arm/21-l} and B = {Q[m/211.-.,am-i),
then M81 mod n = YA - ZB mod n. Thus

mod p. mod p = (S - y;' 2;' mod n) mod p = S.y;'.M-"l-y~ mod p =

Hence, with very high probability gcd(yA - z:, n) = p .

Let X = (h + l)[m/21, we denote by yl, . . . , yx and z;, . . . , z; respectively ail
the possible values of 3~ and 2;.
We here describe two ways to perform this attack.

Way a. For all i and j, the attacking server computes gcd(yi - 2;' n). The com-
plexity of this attack is

2
x2 = ((h+qrm/zl) .

Way b. Define the polynomial
X

P(z) = n (z - zj') mod n.

For all i f (1,. . . X}, the attacking server computes P(yi) mod n. Using FFT
algorithms described in [l] (chapter 8), we can theoretically evaluate the poly-
nomial P in X points in X(logX)2 steps. Hence the complexity of this attack
becomes

j=1

(h + 1 p / 2 1 (log ((h + l) rm/"))2 .

The second way needs a lot of cache and RAM memory. Theoretically this
way b's attack needs X(logX)2 steps, but practically the needed hundred Gi-
gabytes will be stored on "slow" discs instead of fast access-memory. So, the
practical complexity of the second way is quite the same as the complexity of
the first one. Hence, the parameters used in section 6.2 to counter way b's attack
will be more secure than we need.

63

5.3

We consider that the card computes several signatures. We denote by sy the
value 81 used during the ith signature. Let us suppose that Z(sj']) 5 6 - 2 for all
i with a > 1. We suppose without lost of generality I @) = t + 1.

&ll)(p- 1). Let us use the following notations ui = OF] -OF+'], ri = a!+'] -
and ei = ep - el+']; we have ui = p i + ei@ - 1). The server knows o, for all i,
but ~ i , ei and p-1 are unknown. We haveI(0;) = k, lei1 5 q-1, and 5 2f-2.
Consider the following matrix where 1 is a non negative integer:

An Attack Using the LLL Algorithm [7]

We have GI] = 8 - $1 + - 1)) then ,7/,4 - Opll = - + ($1 -

0 2 03 - - * q + 1 &

A = [! . - - 10 10: :)
. * . 0 01 0

where E is a random number of size I A - 1.
Consider the left multiplication by the vector y0 = (el, -@a,. . .) -er+l), we
obtain the vector (el02 - e m , elm - e m , . - . , elot+l - er+lal, el&).
But elui - eiol = elri - girl , then /@loi - pioll I q2*-l and]elel
Let Y = (yl, -92,. . . , -yi+1) be a non null vector. Then

q2f-l.

(91, -Ya.. . l -l/1+1) A = (YlUZ - Y2U1, * . * 3 zllm+l - yr+lol,ylE) -
If y1 is much larger than q then the last element will have a too large size. So
consider all values of yl smaller than 4q.

We have yloi = LYJal + T , then yloi - pic1 = (LYJ - gi) 81 + r. The
LLL algorithm will minimize yloi - yial for all i, then yi = [YJ. Hence the
it'' coordinate of Y x A will be [Ti91 mod crl if (~ i y 1 mod [TI 5 and -(o1 -
aiyl mod 01) if oiyl mod o1 2 y .
Consider the following probability:

A - 1
Prul<4q (oiy1 mod 01 < 42t - l or (01 - q g l) mod o1 < q2t - l) N 2%

A

w
P '

NL12Q

- 2f; --

then

Then the average number of integers yl < 4q such that oiyl mod o1 < q 2 t or

(01 - aiyl) mod ol < q2f for all i is about 4q (25/p) . 1

64

We have Z@) = t + 1 then p 1 2t. Hence, if a > 1, there exists 1 such that

4q (2'/p)' << 1. We have proven that there exists a vector YO such that ylaj -
g i a l 5 q 2 t for all i: the vector YO = (el, -&, . . . , -el+l). The probability that
there exists another such a vector Y is very small; then the LLL algorithm will
find the vector YO.

But in our protocol, we have q = Cz.,' aizi, with I(zi) 5 t - log,(rnh) - 2 and
0 I ai 5 h, then 0 5 81 5 mh2t-'0g2(mh)-2. Hence l (s l) 5 t - 2. Then, in our
protocol a = 1, and we cannot find such an I, hence this attack is ineffective.

5.4 Modification of the Previous Attack

In our protocol l ($) 5 t - 2 for all i ; then l(sF1) 5 t - p - 2, with probability
1/2O. Then to find an SF] such that l(stl) 5 t - p - 2, we must consider aP
different &'. But in the previous attack, we must obtain 1 + 1 different 01' such
that l ($) 5 t/a - 2; here a = &. Hence we must obtain (1 + l)2O different
&I; next, we must find the 1 + 1 values such that 1 ($) 5 t / a - 2: there are
(('Ti?') possibilities, and for each we must perform a LLL reduction. Then the
total number of LLL reductions done is (('::yo).

Consider for simplicity Z(p) = l (q) = t + 1 = k/2. Then the constraint

g (21/p)' << 1 will become t + t l (l /a - 1) << 0, thus 1 + l (l / a - 1) < 0. Hence
1 > a/(& - 1) = t / P . Then, the workload w of this attack satisfies

w > w(P) = ($;).
With RSA-512 (k = 512) the minimum is obtained when /3 = 129: ~(129) =

2130. And with RSA-768 (k = 768) the minimum is obtained when 0 = 193:
w(193) = 21g4. Recall that we must perform w(p) LLL reductions, then these
attacks are ineffective.

5.5 Active Attacks

If the server cheats to obtain some information, the card will detect that. Then
the card will not reveal the false value of S. Hence an active attack using only
one false signature like the Anderson's one [2] is impossible.

Moreover, since 81 and the zi's are different for each signature, active attacks
in several rounds like Pfitzmann and Waidner's ones [13] are impossible. The
main difference between our protocol and all previously known ones ([ll], [14],
[lo], [6], [16] ...) is the use of random values which prevents our protocol from
active attacks using several signatures.

65

6 Performances

We suppose v = 3. We also suppose for evaluating the computations done by the
card that I (p) = k / 2 and I(q) = k / 2 . We use the results explained in section 2; all
values used here are clearly more precise than needed, but in order to overcome
the addition of error facton, we will approximate the results only at the end of
the analysis.

6.1

The card must multiply a k / 2 bit number (say 3) by a k bit number (say z)
modulo a k / 2 bit number (say p) . The best way is to compute z mod p , then
multiply the two k / 2 bit numbers and then take the result modulo p . With this
way the computation is i - & . - y + i - & - y = & modular
multiplication.
The card must also multiply two k / 2 bit numbers modulo a k / 2 bit number
which takes . y .
To obtain z, and 2,:

case 1 The card must do two modulo (k, k / 2) to obtain zo mod p and zo mod q,
then m - 1 multiplications (k / 2 , k) modulo p and modulo q, and h - 1
multiplications (k / 2 , k / 2) modulo p and modulo q to obtain z,, and zg. Hence
the card must do fi + (rn - 1) x 5 + (h - 1) x & modular multiplications.

case 2 The card must do two modulo (k , k / 2) to obtain zo mod p and zo mod q,
then m-1 multiplications (k / 2 , k) modulo p and modulo q to obtain c1,. . . ct,
modulo p and q, and 2h - 2 multiplications (k / 2 , k / 2) modulo p and modulo
q to obtain zp and zq- Hence the card must do & + (rn - 1) x + (2 h - 2) x &
modular multiplications.

Computations done by the Card

+ 3 .

+ $. & . y = & modular multiplication.

The card must do
that s mod (p- 1) and s mod (q - 1) are stored in memory; next it must do 2 x
modular multiplication to obtain S, and S,, and 2 . - . + $. - - k - &

k - 32
to obtain S. Finally the card needs two modular multiplications to verify S.

modular multiplication to obtain up and crq: we suppose

Hence the total number of modular multiplications done by the card is

9 67
- + - + 2 ,
16 32

case 1 - + (m - 1) x g + (h - 1) x
5 7
16
5 7 9 67
16 8 16 32

case 2 - + (m - 1) x - + (2 h - 2) x -+- + 2 .

6.2 Choice of the Parameters

In order to leave the attacks studied in section 5 ineffective, that is of complexity
at most P4, and to minimize the number of modular multiplications done by
the card, we take

66

-Y a
case 1 h = 10, rra = 19,
w e 2 h = 7, m = 22.

case 1 h = 17, m = 25,
case 2 h = 11, m = 29.

wayb

6.3

We will evaluate the amount of memory the card needs to achieve the above
protocol. We separate this memory into RAM and EEPROM.

InEEPROMareput allfixedvaluess,~ mod@-l) ,smod (q-l),v,n,p,q,wp,
w,, that is 6k + 1 bytes, and some other values.

case 1 M and 2 0 , . . . , Zm-1 are stored in the EEPROM that is (m + 1) x k bits.
The total number of bits written into the EEPROM for each signature is
(m+ 1) x k, and each bit of memory is used only one time for each signature.

case 2 M and q,,, . . . , ~ h , p , c ~ , ~ , . . . , ch, , are stored in the EEPROM, that is
(h + 1) x k bits. When the card receives a new zi, it must compute the new
corresponding ci,p and c * , ~ and write these new values into the EEPROM.
Then the total number of bits written into the EEPROM is (m + 1) x k, and
each bit of memory is used at most t times for each signature.

The Needed Memory of the Card

Hence the need EEPROM is

case 1 (m + 7) x k + 1 bits,
case 2 (h + 7) x k + 1 bits.

We consider now the RAM. In step 2., the card chooses a. and zo and computes
81 = ~ O Z O , then sends zo to the server. Then it chooses 0 1 , ~ 1 and computes
s1 := 81 + a121 ... The card keeps in mind gl, ao, . . . , am--l, zi. Hence it is easy
to see that the maximum needed RAM for the card is in step 6. In step 6., the
card must store

case 1 s1, ao, . . . , ~ ~ - 1 , A , B, z i , n: the needed RAM is 4k+ t - 2+m log,(h+ 1)
bits.

case 2 s l , a o , . . . ,am-l ,Ap, BPIA,, Bq,zi ,p , q. To obtain the new A,, BPI the
card must compute and store zi mod p, next to obtain the new A,, B,, it
must compute and store zi mod q which can be put instead of zi mod p.
Then the needed RAM is t - 2 + rn loga(h + 1) + 4k + t + 1 bits.

6.4 The Data Transfers

In the two cases, the card must send to the server M, n, ZO, . . . , z,-I, up, o,, and
the server must send to the card 20,. . . , zm-1,3p, yp. Then the data transfers are
(6 + m) x k + na x (t - log,(mh) - 2) bits.

67

6.5

All computations done by the server are the evaluations of MZ mod n for several
x 5 N . It will do it by using the protocol BGMW [4] already describe with
X i 7 b', rn = rlog,Al and h = b - 1 for an appropriate b. Then knowing
M b mod n for all i = 0,. . . , m - 1, the number of modular multiplications done
by the server is in the average [log, N] + b - 3. In our protocol, the server
must do this for N = 23 (step 5.) and for N = 2& (step 9.).

Computations done by the Server

M A 512: k = 512
The server computes and stores MIS' mod n for i = 0,. . . ,63 and M32' mod n
for i = 0,. . . ,102 which needs 510 modular squares. Then in the step 5. for
each modular exponentiation, the server must do in the average 73 modular
multiplications using b = 16, and in the step 9. for each modular exponentiation,
in the average 128.8 modular multiplications using b = 32. Then the total number
of modular multiplications done by the server is 510 + 73 x m + 2 x 128.8.

RSA 768: k = 768
The server computes and stores M16' mod n for i = 0,. . . , 95 and M32' mod n
for i = 0,. . . , 153 which needs 765 modular squares. Then in the step 5. for
each modular exponentiation, the server must do in the average 103 modular
multiplications using b = 16, and in the step 9. for each modular exponentiation,
in the average 178.2 modular multiplications using b = 32. Then the total number
of modular multiplications done by the server is 765 + 103 x m + 2 x 178.2.

6.6 Results

The following tables give for the two cases, the number of modular multiplica-
tions done by the card and by the server, the needed RAM, EEPROM (in bytes),
the number of bytes exchanged between the card and the server and the factor
of acceleration by using our protocol. We also give the total number of bytes
written into the EEPROM during the protocol and the maximal average times
we must write in each bytes. We take for t the value k/2 - 1.

In the first table, we give results for the RSA 512 bits, and in the second for
the RSA 768 bits. We recall that, using the Chinese RRmainder Theorem, the
card can compute a RSA signature in 260 modular multiplications when k = 512
and in 388 when k = 768.

Let us notice that today it is possible to write into the EEPROM in parallel
with other computations (without any penalty of time) and to use a data transfer
of 100 kbits/s.

68

multiplications (card)
without server

factor of acceleration
EEPROM (bytes)

write (bytes)
number of writing

RAM
data transfers (bytes)

multiplications (server)

wa,
case 1

25

r a
case 2

30

wa
case 1

35

yb
case 2

40
260

10.4
1665
1280

1
296
2183
2155

8.7
897
1472
3.1
328
2468
2374

7.4
2049
1664

1
301
2748
2593

6.5
1153
1920
2.6
333

3127
2885

Table 1. RSA-512

multiplications (card)
without server

factor of acceleration
EEPROM (bytes)

write (bytes)
number of writing

RAM
data transfers (bytes)

multiplications (server)

wa
case 1

25

y a
case 2

30

wa
case 1

35

v b
case 2

40
388

15.5
2497
1920

1
440
3287
3078

12.9
1345
2208
3.1
488
3716
3387

11.1
3073
2496

1
445
4140
3696

9.7
1729
2880
2.6
493
4711
4108

Table 2. RSA-768

7 Conclusion

We have presented a new efl&cient protocol for accelerating RSA signatures using
an insecure and fast server- This protocol is resistant against all known active
and passive attacks. It does not use expensive precomputations; the computation
done by the card, the needed RAM and the data transfers between the card and
the server are small. Then, it is possible to implement efficiently this protocol
with current chip cards.

It remains an open question: the existence of efficient protocols (without the
use of precomputation) for accelerating RSA signatures provably secure against
passive and active attacks.

69

References

1. Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The design and analysis of computer
algorithms. Addison-Wesley, Reading, Mass. (1974).

2. Anderson, R. J.: Attack on server-assisted authentication protocols. Electronic
Letters (1992) p. 1473.

3. Bbguin, P., Quisquater, J.-J.: Secure acceleration of DSS signatures using insecure
server. In Proceedings of Asiacrypt 9 4 (To appear).

4. Brickell, E., Gordon, D. M., McCurley, K. S., Wilson, D.: Fast exponentiation
with precomputation. In Advances in Cryptology - Proceedings of Eurocrypt '92
(1993) Lecture Notes in Computer Science vol. 658 Springer-Verlag pp. 200-207.

5 . Burns, J., Mitchell, C. J.: Parameter selection for server-aided RSA computation
schemes. IEEE Transactions on computers 43 (1994) pp. 163-174.

6. Kawamura, S., Shimbo, A.: Fast server-aided secret computation protocols for mod-
ular exponentiation. IEEE Journal on selected areas communications 11 (1993).

7. Lenstra, A. K., Lenstra, H. W., LovBsz, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261 (1982) pp. 515-534.

8. Lm, C. H., Lee, P. J.: More flexible exponentiation with precomputation. In
Advances in Cryptology - Proceedings of Crypto '94 (1994) vol. Lecture Notes in
Computer Science 839 Springer-Verlag pp. 95-107.

9. Lim, C. H., Lee, P. J.: Security and performance of server-aided rsa computation
protocols. In this Proceedings .

10. Matsumoto, T., Imai, H., Laih, C.-S., Yen, S.-M.: On verifiable implicit asking
protocols for RSA computation. In Advances in Cryptology - Proceedings of
Auscrypt '92 (1993) Lecture Notes in Computer Science vol. 718 Springer-Verlag
pp. 296-307.

11. Matsumoto, T., Kato, K., Imai, H.: Speeding up secret computation with insecure
auxiliary devices. In Advances in Cryptology - Proceedings of Crypto '88 (1989)
Lecture Notes in Computer Science vol. 403 Springer-Verlag pp. 497-506.

12. NIST: FIPS 186 for Digital Signature Standard (DSS).
13. Pfitzmann, B., Waidner, M.: Attacks on protocols for server-aided RSA compu-

tation. In Advances in Cryptology - Proceedings of Eurocrypt '92 (1993) Lecture
Notes in Computer Science vol. 658 Springer-Verlag pp. 153-162.

14. Quisquater, J.-J., De Soete, M.: Speeding up smart card RSA computation with
insecure coprocessors. In Proceedings of Smart Cards 2000 (1989) pp. 191-197.

15. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21 (1978) pp. 120-126.

16. Yen, S.-M., Laih, C.-S.: More about the active attack on the server-aided secret
computation protocol. Electronic Letters (1992) p. 2250.

	Fast Server-Aided RSA Signatures Secure Against Active Attacks
	Introduction
	Preliminaries
	Fast Exponentiation with Precomputation
	The RSA Signature
	Security
	An Exhaustive Search
	A Pseudo-Exhaustive Search
	An Attack Using the LLL Algorithm [7]
	Modification of the Previous Attack
	Active Attacks

	Performances
	Computations done by the Card
	Choice of the Parameters
	The Needed Memory of the Card
	The Data Transfers
	Computations done by the Server
	Results

	Conclusion
	References

