
Security and Performance of
Server-Aided RSA Computation Protocols

Chae Hoon Lim and Pi1 Joong Lee

Department of Electrical Engineering
Pohang University of Science and Technology (POSTECH)

Pohang, 790-784, KOREA
Email : 1chQbaekdu.postech.ac.kr ; pjlOvision.postech.ac.kr

Abstract. This paper investigates various security issues and provides
possible improvements on server-aided RSA computation schemes, mainly
focused on the twephase protocols, RSA-SlM and RSA-S$M, proposed
by Matsumoto et d. [4]. We first present new active attacks on these pro-
tocols when the find result is not checked. A server-aided protocol is then
proposed in which the client can check the computed signature in at most
six multiplications irrespective of the size of the public exponent. Next
we consider multi-round active attacks on the protocol with correctness
check and show that parameter restrictions cannot defeat such attacks.
We thus assume that the secret exponent is newly decomposed in each
run of the protocol and discuss some means of speeding up this preprw
cessing step. Finally, considering the implementation-dependent attack,
we propose a new method for decomposing the secret and performing
the required computation efficiently:

1 Introduction

Smart cards in popular use throughout the world do not have any dedicated
crypto-engine and thus are not powerful enough to perform complicated com-
putations, such aa modular exponentiation, required for most public key cryp-
tosystems (e.g., signature generation with RSA and signature verification in
ElGamal-like signature schemes). To speed up such computations by a weak
power smart card, much research has been conducted under the subject called
the server-aided secret computation (SASC) [l-121. In the SASC protocol, the
client (the smart card) wants to perform a secret computation (e.g., RSA sig-
nature generation) by borrowing the computing power of an untrusted powerful
server without revealing its secret information.

A lot of (passive and active) attacks have been developed on the server-
aided RSA computation protocols (called RSA-S1 and RSA-S2) proposed by
Matsumoto, Kato and Imai [l] (e.g., see, [7-9,111). Matsumoto, Imai, Laih and
Yen [4] also proposed two-phase versions of the basic protocols (called RSA-S1M
and RSA-S2M) to gain resistance against passive attacks, mainly to counter the
passive attack proposed by Pfitsmann and Waidner [8]. On the other hand,
Quisquater and De Soete [2] and Kawamura and Shimbo [5] proposed rather
different protocols for server-aided RSA computation. In these protocols, the

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 '95, LNCS 963, pp. 70-83, 1995.
0 Spnnger-Verlag Berlin Heidelberg 1995

71

secret exponent is decomposed using a fixed basis and the messages sent to the
server are independent of the secret. Consequently, they are as secure against
passive attacks as RSA but require too much computation and communication.
Recently, B6guin and Quisquater [13] developed another protocol using the fast
exponentiation algorithm due to Brickell, Gordon, McCurley and Wilson [14].

The purpose of this paper is to investigate various security issues on server-
aided M A computation protocols and provide possible improvements. Our at-
tention is mainly focused on the two-phase protocols, RSA-S1M and RSA-S2M.
We first show that these protocols in fact do not have any resistance against
active attacks, contrary to the previous claim [lo]. The proposed attacks seem
applicable to any server-aided protocol for RSA computation, including the pro-
tocols in [2] and [5]. Thus it seems essential that the final result should be
checked by the client before being sent to the server. We then present a server-
aided protocol into which signature verification capability is integrated. As a
result, the computation result can be efficiently verified in any server-aided RSA
computation scheme, irrespective of the size of the public exponent.

Though the client only outputs the correct signature, there still exists another
threat, the multi-round active attack such that the server deduces some partial
information on the involved secret in each trial of attack by observing whether
or not the client outputs its computation result (e.g., see [8,11,12]). We show
that the parameter restrictions suggested in [ll] are not effective against more
sophisticated attacks. In fact, it seems impossible that every possible attack
could be detected just by placing restrictions on the parameter selection. Thus
we also assume that the secret exponent is newly decomposed in each run of the
protocol and discuss some means of speeding up this preprocessing step.

The last security issue in these protocols is to prevent the implementation-
dependent attack such as the server infers some information on the secret vectors
by monitoring the duration of the client’s computation. To avoid this type of
attack, we have to require that the client should spend the same amount of time
on each computation step or perform the required computation after receiving
and storing all communications from the server. Under the latter condition, we
propose a new method for decomposing the secret and performing each com-
putation step fast. The resulting protocols are shown to be quite efficient and
practical.

2 Proposed Active Attacks

In server-aided RSA computation protocols, the client wants to compute y = zd
mod n, where n is the product of two large primes p and q , with the aid of the
powerful server. This section presents new active attacks on the protocols RSA-
S1M and RSA-S2M proposed by Matsumoto et al. [4]. Similar attacks can be
devised on the protocols in [2,5] as far as the computed signature is not checked.

One point needs to be mentioned on the passive attack. Unlike to the asser-
tion in [4], the birthday-type attack [8] can be applied to the two-phase protocols
as well. Of course, its complexity is much increased in this case, compared to

72

single-phaae protocols. But it is still much lower than that for a simple exhaustive
search. For details, see the complexity analysis of Section 6.

2.1 Attack on RSA-S1M

The following protocol, RSA-SlM, is a two-phase version of RSA-S1 proposed
to counter the passive attack devised by Pfitzmann and Waidner [8].

0) (Preprocessing) The client chooses an integer vector D = {di}Z1 over
Z, and binary vectors F = {fi}zl and G = {gi}& such that d = f .
g mod A(n),f = xi"=, f,di mod X(n) and g = EEl g,di mod X(n), where
F and G have Hamming weight 5 W . The client also randomly picks an
integer T E Z, and computes t = v - g mod la.

1) The client sends n, D and 2: to the server.
2) The server returns 2 = {%,}El such that t i = xda mod n.
3) The client computes and sends to the server z = r . flzl tf. = r . 2:f mod n.
4) The server returns V = {wi}zl such that wi = td* mod n.
5) The client computes the final result y as y = t . n,?"=, wf' = t . zg mod n.

Anderson [9] devised a simple one-round active attack on RSA-S1 and later
Yen and Laih [lo] claimed that the above two-phase protocol is highly resistant
against Anderson's attack. However, we show that Anderson's attack can be
extended to MA-S1M (in fact, to any server-aided RSA computation scheme).

The server's strategy is to manipulate its transmissions in such a way that
the final result y only consists of the product of known numbers. For this, the
server supplies z: = x e d , mod n in step 2) and v: = pi . (Z ') ~ V mod n in step
4) respectively, where pi's are small primes whose product is less than n. Now,
when receiving y' = t ng,=l v: mod n from the client, the server computes
d .2:-l = ng,=l pi mod n. The server can then factor this number and obtain
the secret vector G (hence, the secret number 9). Once g is obtained, the server
can find the other secret vector F using the identity 2: = (zeg)f mod n in about
about N log, N operations with N = Ck.,,W,Z, (y) [8]. This attack can also be
applied to the non-binary version of the protocol if ng,Zo $ is less than n.

The above attack can be avoided if the client sends a blinded 2: in step 1)
and cancels out the blinding factor in step 5). However, we can also devise a
variation of the attack for this case : The server returns in step 4) w: = ~i * zdn
mod n with random yi and, when receiving y', computes (y')" - 2-l - - n g , = 1 Ti"
mod n. Now this equation can be used to find the secret vector G using the
birthday paradox. Consequently, the whole attacking complexity in this case can
be reduced to about two times Nlog, N operations with N = &rW/21 (y) .

-

-

2.2 Attack on RSA-SPM

The following is (non-binary) RSA-SPM, a variant of RSA-S1M which employs
the Chinese remainder theorem to speed up the client's computation.

73

0) (Preprocessing) The client chooses integer vectors D = {dj}El (di E Zn),
Fj = { , f j i } E i and Gj = {gji}El (j = 1,2) such that d = f .9 mod A(n), f =

EE1 f i i d i mod p - 1,f = x i z 1 f2idd mod Q - 1 , g = E i Z l g l id i mod p - 1
and g = g2idj mod q - 1, where the vectors F.'s and Ga's consist of
small integers and their components satisfy f1i = f2j mod 2 and g l i = g2j

mod 2 for all values of i. The client also randomly picks an integer r E Z,
and computes t = r-g mod n.

M M
M

J J

1) The client sends n , D and z to the sever.
2) The server returns Z = { z i } z l such that zi =
3) The client computes zf mod n as zf = xpfwp + z i w q mod n, where zpf =

ni,, z{la mod p , z{ = n:, ,fa' mod q , wp = q (9 - l mod p) and wq = p(p-'
mod q) . The client then sends z = P . zf mod n back to the server.

mod n.

M

4) The server returns V = {vi}cl such that vj = zdt mod n.
5) The client computes z g mod n as zg = zpwp + z,"wq mod n , where zp" =

ngl w;" mod p and z i = ngl wy' mod q. The client then computes the
final result y as y = t zJ mod n.

Shimbo and Kawamura [7] developed a factorization attack on RSA-S2, and
claimed that their attack could be prevented by the parameter restriction such
as adopted in step 0) in the above protocol (i.e., f 1 j = f2i mod 2 and g l i = g2i

mod 2) . However this is not true. We present a generalized version of the attack
which can be applied to any server-aided RSA computation protocol using the
Chinese remainder theorem (CRT).

The proposed attack is applied to the second phase of the protocol. Instead
of returning vi = zd* mod n in step 4), the server sends back vi = y . zda mod
n with y chosen at random. Let s1 = xi=l g1j and 52 = xEl g2i) and, for the
moment, assume that s1 # 82. Then the client's computation in step 5) will end
up with the value y' given by

M

y' = t . (7"zp" + wp + yJ3zg9 . wp) mod n, (1)

where y'1.z; and y'az," are actually numbers reduced mod p and mod q respec-
tively. (Note, however, that the equation still holds even if they are not reduced.)
By raising y' to the e-th power, the server obtains

(2) (y t e -) - t e . (yeslzeg + (yeas - yes1)z;gwq) mod n,

where we used the fact that w; = wp mod n, w; = wq mod n and wpwq = 0 mod
n. Therefore, on receiving y' , the server can find the prime factor p by computing
gcd(n, (y')" - zyesl mod n) since it is unlikely that Q divides t e . (yeba - yesl)zlg
mod n. The server may try all small numbers within a reasonable bound as
candidates for s1 since it does not know the exact value of s1. But s1 will be
small in practice and thus the prime factor can be quickly found.

The above attack cannot be prevented by the simple restriction on the secret
vectors G1 and G2 such that g1i = xEl g2i, since the server may use a
set of random numbers as 7 and compute vi's as above with a number randomly

M

74

picked in the set. This will increase the number of gcd computations, but the
attack will be still effective due to the small size of integers used. In fact, unless
the two secret vectors G1 and G2 are the same, the proposed attack has a high
probability of success only with several values of y. However, setting GI = G2
and F1 = F2 makea RSA-S2M essentially equivalent to RSA-S1M. Therefore,
we conclude that server-aided RSA computation based on the CRT can hardly
be secure against the active attack unless the client checks the final result.

3 Integrating Server- Aided Verification

The active attacks described seem applicable to any server-aided protocol for
RSA computation. Thus it is essential that the client check the correctness of
the final result before sending it to the server. If e is chosen to be small such as
3, the last checking will not much increase the client’s computational load.

However, the RSA system with a small public exponent may be dangerous
in some circumstances (e.g., when used for encryption in network environments,
see [15]). Thus what is more desirable is that no restriction needs to be placed
on the choice of e. It is then quite natural to consider that the verification of the
computed signature could be carried out with the aid of the same server. Several
such protocols were proposed (for example, see [2,16]), but they seem to require
too much amount of communication or computation. Thus it remains still open
to design an efficient verification protocol.

The problem of integrating signature verification capability is nontrivial. A
main difficulty arises from the fact that the two processes are reverse each other
(i.e., encrypting a signed message reveals the plaintext). This makes it difficult
for the client to detect the server’s attempt to obtain a signature on message
of its own choosing. We here propose an efficient protocol for RSA signature
generation with the correctness check. We only describe a variant of RSA-S1M
and the same technique can be adapted for any SASC protocol. Suppose that
gcd(3,X(n)) = 1 and e > 3.

0) (Preprocessing) The client computes do such that eodo = 1 mod A(.) with
eo = 3 and randomly decomposes dod mod A(n) as in RSA-S1M. It also
computes t l = rYg mod n and t 2 = rPe mod n with random P I , PZ E Z,.

1) The client sends n, D and z to the server.
2) The server returns Z = {z;}& such that r; = zd* mod n.
3) The client computes and sends to the server z = T I . n, -1 zi mod ra.
4) The server returns V = {v;}E1 such that vi = zd* mod n.
5) The client computes ~0 as yo = t l . n,,=, vi = zdod mod n. Then the client

6) The server returns w = ve mod n to the client.
7) The client checks that weo = z . t 2 mod n. Only if the check succeeds, does

I -

sends v = yo T Z mod n back to the server.

the client send y = y;O = x d mod n to the server.

The client’s on-line computational load increased due to the integration of
signature verification is just six multiplications, irrespective of the size of e. This

75

is a considerable advantage over direct verification if e is not very small. In step
7) the client may send yo directly to the server, which can then compute the
signature y from yo. Though this can save two multiplications, we would not like
to recommand this variant since it may cause a problem in certain careless use
of the protocol (see the footnote below). (It also requires that xdo mod n be of
no meaning.)

To pass the check of step 7), the server has to know the eo-th root of ztz mod
n. This is infeasible if the server deviates the protocol. Note that do and d are
fixed but r1 and r-2 are refreshed in each run of the protocol. This means that
multi-round attacks on the signature verification part is of no use. Note also that
the server may obtain the eo-th root of t 2 (i.e., r8 mod n) by providing zi = xeods
mod n in step 2) and then computing ~ l ~ 2 - l mod n in step 6). However, there
exists no way to obtain xdo mod n.l Thus we believe that the above protocol
can detect any active attack mounted by the server.

4 Multi-Round Attacks Under Parameter Restriction

Even if the client checks the final result and only outputs the correct signature,
there exists another threat to the server-aided protocol, i.e. the multi-round
active attack such that the server changes a few values of its transmissions each
time and decides, say parity or equality etc., on the corresponding elements of
the secret vector based on whether or not the client gives the signature. Burns
and Mitchell [ll] described various attacks on RSA-S1 and RSA-S2, including
multi-round active attacks, and proposed some means of parameter selection
with which they claimed any attempt to deceive the client would be detected.
However, this kind of parameter restriction seems not sufficient to detect every
possible attack. As an example, we describe a new attack on RSA-S1. (This
attack was in fact turned out to be a special case of the general attack described
in [12], see also the footnote in the next page.)

In (non-binary) RSA-S1, d is simply decomposed as d = CElf,d, mod
A(n) where fi’s are small positive integers. On request of the client, the server
replies with r, = zd. mod n and the client then computes the signature y as
y = zr’ mod n. To counter Gollmann’s attack (see [ll] for details), Burns
et al. proposed to restrict all fi’s to odd integers (hence no fi is zero). Even
under this restriction, the following attack can be successful.

The server randomly picks two integers, say j and I c , in [1,M] and sends
back correct values for zi for all values of i such that i # j and i # k. In the
latter two cases, the server provides zj = 2xd3 mod n and %k = 2-lxdk mod n.
Then the client will get y = 2fj-fkzd mod n and thus output it only if fj = fk.

There is one thing to note when the client sends 90 instead of 9 in step 7). If the
client signs the same message 5 twice, then the server with knowledge of x d o mod
n can obtain the signature on message x’ of its own choosing. For this, the server
returns z: = (z ‘) ~ O ~ * mod n in step 21, obtains t$’ = w‘(z’)-’ mod n in step 6) and
then replies with w = (ztz)do mod n. Since this w passes the check of step 7), the
server will get yo = (z ’) ~ mod R, the desired signature.

76

Therefore, by observing whether or not the client outputs the result, the server
can determine whether fj equals fk. Similarly, in case that fj # fk, it can also
determine whether a fj = b fk for some small odd integers a and b.

Repeating the above attack, the server can find all j , ’ s if it can meet the same
client as many times as required. Or, using some partial information obtained
from the attack, it can accelerate an exhaustive search. The only way to reduce
this threat is to choose fi’s all distinct, but this is unacceptable in both efficiency
and security. The parameter restriction on RSA-S2 seems more effective, but i t
can be easily seen that a similar strategy of comparing (in this case) two pairs
of elements at a time can substantially reduce the security level. (It is. possible
to completely determine secret vectors for the binary case.)

Multi-round active attacks based on binary tests (even or odd, zero or not,
equal or not, etc.) can be applied to any server-aided protocol as far as the in-
volved secret vectors are fixed (see also [12]). Thus the secret vectors should
be randomly changed in each run (more practically, in limited runs) of the pro-
tocol. This will practically nullify any kind of active attacks on protocols using
the random decomposition of the secret.

In this respect, protocols using a fixed basis, such as KS (Kawamura-Shimbo)
and QS (Quisquater-De Soete) protocols, seem rather disadvantageous, in spite
of their advantage of obvious security against passive attacks. One possible al-
ternative to defeating multi-round active attacks in this kind of protocols is to
construct two-phase variants, like MA-SlM, using the decomposition d = f g
mod A(.). In this case, one o f f and g can be chosen arbitrarily small without
loss of security, as far as it can provide large enough possibilities of decomposi-
tion. This will somewhat reduce the increase of complexity caused by two times
serial execution of the original protocol. More preferably, d may be decomposed
as d = f g + h mod A(n), where f and g are chosen to be of size lA(n)l/2, and h
is computed as h = d - fg mod A(n). Then h needs to be publicly transmitted.

5

Assuming that the use of the same secret vectors is limited to a fixed times of
protocol execution to counter multi-round active attacks, we need some means of
speeding up the preprocessing step. Note that the client may use the same secret
vectors repeatedly unless the failure count associated with the secret vectors
exceeds a fixed ‘threshold (say, five). However, it is clear that random blinding
factors must be refreshed in each protocol execution.

Speeding up the Preprocessing Step

Kawamura [12] has already demonstrated the vulnerability of server-aided protocols
to this kind of attack. He showed that in one of the KS protocols the secret expo-
nent d could be deduced in 680 trials of attack for base b = 16 and, as a practical
precaution, suggested that in order to limit the information leakage, the client refuse
to interact with the same server if the final check fails more than a fixed threshold
value. However, we have to note that although information leakage may be controlled
by limiting the number of failures with the same server, a number of servers may
conspire to find the secret of a specific client. Since partial information can add up to
information sufficient to derive the secret, this precaution seems still unsatisfactory.

77

5.1 Precomputation of Blinding Factors

Let us first consider a method of accelerating the precomputation of r-g mod
n for random r and g . (We assume that reoe mod n for random r is computed
directly since e is not so large in most cases.) Note first that neither r nor
t = r-g mod n is disclosed since they are used as z = r . xf mod n and 51 =
t . z g mod n (see RSA-SlM). This means that r can be chosen at random in a
restricted domain. One possible way, which we will adopt in this paper, is to use
preprocessing algorithms for random exponentiation such as the one proposed
by Schnorr [17,18]. For this, the prime factors p , q of n are chosen so that a prime
,8 divides both p - 1 and q - 1 and then a base a of order ,8 mod n is randomly
generated. Now the client securely stores a small number of pairs {s, a’ mod n}
with random s E Zp. Then, during an idle time the client can compute and store
several values of ak mod n using a preprocessing algorithm. One of these values,
say a k r mod n, can be used as r and another, say ak‘ mod n, as t . Then g is
determined by g = -k;’kt mod /3.

For security and performance of the above preprocessing method, several
remarks need to be stated.

0 Since r and t are never revealed and are refreshed in every protocol run3,
it seems unnecessary to choose p large. For example, /3 can be a prime of
size 64 N 80. Due to the same reason, de Rooij’s attacks [19,20] on Schnorr’s
preprocessing algorithm cannot not be applied to our application.

0 Due to the small order of a, one can easily find ,8 if any power of a is known.
If p is known, one can find f using zp = df mod n. Thus it is essential to
keep CY and /3 secret. However, note that there exists no known algorithm for
factoring n (for 1.1 2 512) faster with knowledge of ,O of size 64 N 80.

0 From the above remarks, we can see that Schnorr’s algorithm can be safely
used even with smaller sizes of security parameters than those given in [17].
Thus it is possible to compute one value of a’ mod n in around 10 multipli-
cations mod n. For a practical implementation, all computations mod n can
be performed mod p and mod q and then the results can be combined using
the CRT. This will almost halve the computational amount.

5.2

Since the secrecy of d does not rely on the randomness of di’s, we may choose
the integer vector D in some convenient ways. One attractive example (similar
to Strategy C in [l l]) is to decompose d as d = cfg + h mod X(n). Note that
g is determined during the precomputation of r-g mod n. Suppose the case of
non-binary RSA-S1M (see Section 6.2 for the case of RSA-S2M). The client

1. generates random numbers di (1 5 i 5 M - 1) of l-bit size (say, 1 = 80),
2. determines secret integer vectors F = {fi}gl and G = { g i } ~ l l

Random Decomposition of the Secret

The server may obtain r by returning t i = 1 for all values of i . Thus the client must
check that z # 1 before sending z in step 3).

3. computes d~ = (g - CE!' g,di)gkl mod p (adds some multiples of ,f3 if

4. finally computes h as h = d - cfg mod A(n) with random c E [0, A(n)).

Here di(1 5 i 5 M), c and h are public numbers transmitted in step 1). To reduce
the communication complexity, the client may generate di(1 5 i 5 M - 1) and c
from a small initial seed using a common pseudorandom number generator (e.g.,
a linear congruential generator). Then it will suffice for the client to send just
the seed, d~ and h. Differences from the original RSA-S1M are that the server
returns zi = zCdi mod n in step 2) and one more value zh = zh mod n in step
4). (Note that q, is needed at the end of step 5).)

This method of decomposition has several advantages : smaller number of
pseudorandom bit generation, no inversion mod A(.) and dramatic reduction of
the server's computation complexity. Note that evaluating many exponentials
with the same base can be substantially speeded up by using precomputation
[14,21]. However, this decomposition definitely gives up keeping about IA(n)I - 21
bits of information on d and thus may be subject to some attacks exploiting this
fact. One possibility is to apply Wiener's attack [22] on short RSA secret keys
using continued fractions. But this kind of attack seems not applicable to the
above case. Note that if c is chosen in the interval [0, [A(.)/ fgl) , then Wiener's
attack may be successful unless e and L = gcd(p - 1, q - 1) are large.

To see this, let h = ch, + h, (0 5 h, < c) and note that ed = ec(fg +
h,) + eh, = 1 + F (n - p - q + 1) where a common factor of K and L can be
cancelled out. Let A = nh' + (1 - eh,)L. Then we get 2 = 1 (fg+h,)L(l - '1
with 6 = v. Thus the continued fraction attack will be successful if
6 < .&-. This condition holds as far as IfgLl is a little less than ln1/2.
Here we need to find the correct value of A by guessing K(< e) and L. But e
is usually small and L is also small if not intentionally chosen to be large. Thus
one can try all small values of K and L within certain bounds and apply the
continued fraction algorithm to find the prime factors of n. This analysis shows
that we had better choose c over [O,A(n)) rather than taking other measures.
Note, however, that in our decomposition c may be chosen over [0, [A(n)/fgl)
since we have already chosen L large enough to defeat the above attack. On
the other hand, we can avoid most weaknesses which may potentially exist by
setting c = 1 (i.e., 21 N IA(n)l) at the expense of more computations.

lPl < I) and f = EEl fidi and

6 Improving Performance of Non-binary Schemes

We now assume that the client checks the computation result and that the
preprocessing phase is carried out in each run of the protocol. Then the last
threat to server-aided protocols will be the implementation-dependent attack
(e.g., see [ll]). Suppose that the computation of (say) z = CfiEl z, mod n
should be done in a step-by-step manner, considering the storage limitation of
typical smart cards. That is, the server supplies one value of zi at a time and
the client multiplies it into the partial result. This type of processing makes it

79

possible for the server to monitor the client's computation time to deduce the
weights of fj's. Thus, to avoid this attack, the client has to spend the same
amount of time on each computation step or it can compute z after receiving
and storing all t i 's at a time. We adopt the latter strategy and propose a method
for improving the performance of non-binary schemes.

6.1 The Case of RSA-S1M

Suppose that d is decomposed as described in Section 5.2. Let fi = cfCZ1 2j-l fij

and gi = XF- 2j-lgij with fij, gjj E {0,1}. These K-bit integers are chosen
so that the total binary weight of F = {,fi}& and G = {gi}gl respectively is
at most W, i.e. Weight(F)=Weight(G) 5 W . Then the value of z in step 3)
(similarly y in step 5) can be computed as

3 -1

23-1
K M

% = r a n (H Z ; ' ~) modn . (3)
j=1 k l

For this, the client receives all zi's at a time (hence it needs M temporary
registers for them) and then performs the following algorithm.

receive and store all t i ' s ;
t := 1;
for j := K to 1 step -1

t := z2 mod n;
for each i, if(fjj = 1)

z := zzi mod n;
t := zr mod n;

It can be easily seen that the above algorithm can compute z in at most
K+W-1 multiplications (K-1 squarings + W multiplications). Note that if the
total weight of secret integers are chosen to be less than W , then we need some
simulation of multiplications to prevent the implementation-dependent attack.

We now consider the computational complexity for finding the secret d . Let
Sf = {C:, fidi(Weight(F) 5 W} and Sg = {cEl gidjlWeight(G) [W/21}.
The most promising way to find d would be an exhaustive search based on
the equation 1 - eh - ecfg* = ecfg' mod A(n). That is, the server computes
21-eh-ecf9* mod n and zeefg0 mod n for all possible values of f , g* and go
such that f E Sf and g*,go E Sg and then searches for equality by sorting all
these values. This will reveal the secrets f and g. Therefore, the computational
complexity for this attack will be about N log, N operations where N, the total
number of values to be sorted (disregarding a factor 2), is given by

80

For a practical estimation of the performance, we have chosen the attack-
ing complexity of 272 operations. Thus we have to choose parameters so that
JVlog2 N > 272 (i.e., \N\ ~ 66). Note that for the above attack the server also
needs a storage of order N. Table 1 summarizes the resulting performance for
some small M's. The number of multiplications required of the client, COMP,
is given by 2{K + W) — 1. The number of |n|-bit blocks to be communicated,
COMM, is 2M + 5, where for simplicity we counted the seed, <1M and h al-
together as two blocks (see Section 5.2). For these figures we did not take into
account the final check. Thus if e = 3, COMP needs to be increased by 2. Or if
the protocol in Section 3 is used, COMP and COMM should be increased by
6 and 2 respectively.

M

K

W

COMM
COMP

3

15

15

11

59

4

13

13

13

51

5

11

11

15

47

6

9

13

17

43

7

8

13

19

41

8

7

13

21

39

9

8

81

23

37

Table 1 : Selected parameters for RSA-S1M

The actual performance needs to be evaluated by considering the commu-
nication speed of the client (e.g., 9.6 Kbps for typical smart cards, but there
exist smart cards with much faster interfaces, from 19.2 up to 115.2 Kbps) and
the storage (RAM) available (typically 128 ~ 512 bytes). Note that the client
may store M 2,'s in EEPROM if it does not have a sufficient RAM space, since
they need not be updated during the computation.4 In this case the client has
to write 2M |n|-bit numbers into EEPROM. Finally note that the server has to
perform M exponentiations with /-bit exponents in each phase and two full size
exponentiations (for c and h, see Section 5.2). The PC with a DSP accelerator
card (e.g., see [23]) seems powerful enough as a practical server.

6.2 The Case of RSA-S2M

Applying the same technique to RSA-S2M, we can further reduce the client's
computation time. For the sake of simplicity, we here assume that reduction of
|n|-bit number to ^p-bit number and multiplication of two ^-b i t numbers take
the same time. Then, even for the case where the client computes z and y using
the CRT, it can be seen that the signature can be generated in the equivalent
of 2 + ^ multiplications mod n. Let us consider the performance of
non-binary RSA-S2M in more details.

4 Typical EEPROM has a byte-write time of 5 ms (2 ms with recent technology) and
thus writing a 512 bit number consumes about 320 ms (128 ms, resp.). However, with
somewhat complicated coding it is possible for the smart card to perform EEPROM
writes in parallel with other operations.

81

The secret d can be decomposed as d = fg + h mod X(n) as follows. Without
loss of generality, we assume that p < q. The client

1. generates M — 1 random numbers dj(l < i < M — 1) of size |n|/2,
2. selects secret integer vectors Fj = {fj^iLt1 and G; = {ffji}^ (j = 1,2)

such that Weigh ty UF2)<W and Weight(G! U G2) < W,
3. computes rf^f = (ffo — 9')9\M mod /?+ ifc/3 where go is a value determined

during precomputation of t, g' — ̂ ^t^19udi modp— 1 and k e [0,p//?),
4. computes diif+i = g — Y^,iLi 92i^i mod q — 1 where g = g' + djagiM mod

mod5. computes dM+2 = / - ^2Zi fadi m o d 9 ~ l w h e r e / = £i=T
p — 1 and finally h = d — fg mod A(n).

The client can send x, n, <iM, <̂ M+i; ̂ M+2, A and the seed used to generate dj(l <
» < M — 1). The remaining part of the protocol should be clear from the above
decomposition and the original protocol RSA-S2M.

To get the attacking complexity, let S g = { £ i l i gudi |WeightfG!) < [^ 2] }
and S f = {YiiLt1 fudilWagMFi) < \W/2]}. The attacking server com-
putes gcd(xCJ^ — xx~eh~e9f mod n,n) for all possible values of </, f* and f
: If Weight(G^) < [W/2], then the server can find the prime factor p with
g G S g and /* , / ° e S f . Otherwise, i.e. if Weight(G2) < \W/2], we have
g e {Sg -(- dju+i), f* € Sf and f° € {Sf + dM+2} and thus the prime factor
q can be found. Note that in either case f* + f covers all possible values of / .
The number of possible values that xt9i* mod n can take is given by

AT =
{MK\^ f(M + l)K\
(» ?(' ; (5)

This birthday-type attack needs about iV(log2 -
order N (see Section 5.2 in [13]).5

operations and a storage of

M [| 3
K
W

COMM
COMP

3141

21

16

26.5

4 | 5

9

19

18

24.0

8

19

20

23.5

6

7

17

22

22.0

7

7

17

24

22.5

8

6
17

26

22.0

9

5

17

28

21.5

Table 2 : Selected parameters for RSA-S2M

Table 2 shows the resulting performance of RSA-S2M for the complexity of
272 operations (i.e., |iV| ~ 60). Here COMP denotes the equivalent number of
s A naive approach to performing the required gcd computations would require about

V̂2 operations. We are indebted to Be'guin and Quisquater [13] for knowing that
there exists an algorithm with complexity of iV(log2 N)2 operations.

82

multiplications mod n, evaluated under the previous assumption on multiplica-
tion and modular reduction, which can be shown to be A' + 0.5(M + W) + 3.5.
COMM is computed as 2M + 10 (counting the seed and d M as one block). As
for the three values, Z M + I = zdw+l mod n, V M + ~ = rdw+l mod n and %h = xh
mod n, the client may request each of them at the time when it is needed, since
they are used at the end of some computations. Thus it suffices for the client to
store only M values during the computation of each phase.

7 Concluding Remarks

In this paper we have investigated various security issues on server-aided RSA
computation protocols, mainly focused on the two-phase protocols, RSA-S1M
and RSA-S2M1 and provided possible improvements.

We described new one-round active attacks that can be applied to any pro-
tocol for server-aided RSA computation if the final result is not checked. AS
a practical countermeasure, we presented an efficient protocol for server-aided
validation of the computed signature. This protocol allows the client to check
the correctness of the computation result at most six modular multiplications,
irrespective of the size of the public exponent. We also showed that the pre-
processing step should be carried out in each protocol execution to counter
multi-round active attacks and discussed possible means of speeding up such
preprocessing. Finally, using a new method for selecting (secret and public) pa-
rameters, we proposed modifications of RSA-S1M and RSA-S2M and analyzed
their performance. The resulting protocols seem to be quite efficient.

There may be a slight disadvantage in two-phase protocols : the require-
ment of precomputation. Though precomputation for each signature generation
is not much expensive (e.g., about the equivalent of 10 multiplications mod
n, see Section 5.1), the client has to store a certain (predetermined) number
of precomputed values so that several signatures can be generated successively
without time delay due to precomputation. If this is still undesirable in practical
applications, we may use a modification of RSA-S2 by the same technique, in
which such precomputation is unnecessary. However, in this case the computa-
tional load of the client will be somewhat increased, compared to RSA-SBM.
The protocol proposed by Bhguin and Quisquater [13] has some advantage over
two-phase protocols in this connection, since it also uses no precomputation. But
it can be seen that using our proposed technique will give better efficiency in
both computation time and storage usage than using the algorithm in [14].

Acknowledgement : The authors would like to thank Philippe Bdguin, Tsu-
tomu Matsumoto and Shin-ichi Kawamura for providing some corrections and
helpful comments on an earlier version of this paper.

References
1. T.Matsumoto, K.Kato and H.Imai, Speeding up secret computations with inse-

cure auxiliary devices, In Proc. of Crypto'88, Springer-Verlag, LNCS 403, 497-506
(19?0).

83

2. J.J.Quisquater and M.De Soete, Speeding up smart card RSA computation with
insecure coprocessors, In Proc. Smart Card 2000, North-Holland, 191-197 (1991).

3. C.S.Laih, S.M.Yen and L.Harn, Two efficient server-aided secret computation pro-
tocols based on addition chain sequence, In Proc. of Asiacrypt’91, S.V., LNCS 739,
450-459 (1993).

4. T.Matsumoto, H.Imai, C.S.Laih and S.M.Yen, On verifiable implicit asking pro-
tocols for RSA computation, In Proc. of Auscrypt’92, S.V., LNCS 718, 296-307
(1993).

5. S.Kawamura and A.Shimbo, Fast server-aided secret computation protocols for
modular exponentiation, IEEE JSAC, 11(5), 778-784 (1993).

6. S.Kawamura and A.Shimbo, Performance analysis of server-aided secret computa-
tion protocols, %ns. IEICE, 73(7), 1073-1080 (1990).

7. A.Shimbo and S.Kawamura, Factorization attack on certain server-aided secret
computation protocols for the RSA secret transformation, Elect. Lett., 26(IT),

8. B.Pfitzmann and M.Waidner, Attacks on protocols for server-aided RSA compu-

9. R.J.Anderson, Attack on server-aided authentication protocols, Elect. Lett., 28(15),

10. S.M.Yen and C.S.Laih, More about the active attack on the server-aided secret

11. J.Burns and C. J.Mitchell, Parameter selection for server-aided RSA computation

12. S.Kawamura, Information leakage measurement in a distributed computation pro-

13. P.BCguin and J.J.Quisquater, Fast server-aided RSA signatures secure against ac-

14. E.F.Brickell, D.M.Gordon, K.S.McCurley and D.B.Wilson, Fast exponentiation

15. J.Hastard, On using RSA with low exponent in a public key network, In Proc. of

16. T.Matsumoto, K.Kato and H.Imai, How to ask and verify oracles for speeding up

17. C.P.Schnorr, Efficient identification and signatures for smart cards, In Proc. of

18. C.P.Schnorr, Efficient signature generation by smart cards, J. Cryptology 4 (3),

19. P.de Rooij, On the security of the Schnorr scheme using preprocessing, In Proc. of

20. P.de Rooij, On Schnorr’s preprocessing for digital signature schemes, In Proc. of

21. C.H.Lim and P. J.Lee, More flexible exponentiation with precomputation, In Proc.

22. M. J.Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans. Inform.

23. S.R.Dusse and B.S.KaJiski Jr., A cryptographic library for the Motorola DSP 5600,

1387-1388 (1990).

tation, In Proc. of Eumryp t ’92 , S.V., LNCS 658 (1993).

1473 (1992).

computation protocol, Elect. Lett., 28(24), 2250 (1992).

schemes, IEEE Trans. Computers, 43(2), 163-174 (1994).

tocol, IEICE Trans. Fundamentols, E78-A(1), 59-66 (1995).

tive attacks, In this proceedings.

with precomputation, In Proc. of Eurocrypt’92, S.V., LNCS 658, 200-207 (1993).

Crypto’85, S.V., LNCS 218, 403-408 (1986).

secret computations (Part 2), IEICE TR, IT89-24 (1989).

Crypto’89, S.V., LNCS 435, 239-252 (1990).

161-174 (1991).

Eurocrypt’91, S.V., LNCS 547, 71-78 (1991)

Eurocrypt’93, S.V., LNCS 765, 435-439 (1994).

of Crypto’94, S.V., LNCS 839, 95-107 (1994).

Theory, IT-36, 553-558 (1990).

In Proc. of Eurocrypt’90, S.V., LNCS 473, 230-244 (1991).

	Security and Performance of Server-Aided RSA Computation Protocols
	Introduction
	Proposed Active Attacks
	Attack on RSA-S1M
	Attack on RSA-SPM

	Integrating Server- Aided Verification
	Multi-Round Attacks Under Parameter Restriction
	Speeding up the Preprocessing Step
	Precomputation of Blinding Factors
	Random Decomposition of the Secret

	Improving Performance of Non-binary Schemes
	The Case of RSA-S1M
	The Case of RSA-S2M

	Concluding Remarks
	References

