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Abstract

We present new results on the cryptanalysis of the FEAL-N blockcipher. As a
matter of fact, almost all the attacks of this cryptosystem published so far
are chosen plaintext attacks [3,4,5,7], except the announcement in [7] of a
non-differential known plaintext attack of FEAL-4 which requires about
100000 plaintext blocks. We describe known plaintext attacks of FEAL-4 and
FEAL-6, which require about 1000 and 20000 plaintext blocks respectively and
are based on correlations with linear functions. Using similar methods, we
have also found more recently an improved attack on FEAL-4, which requires
only 200 kmwon plaintext blocks.

1 The FEAL-N cryptosystem

FEAL-N is an N-round blockcipher proposed by NTT [1,2]. The standard version
FEAL-8 1is well suited for a fast software execution. So far, chosen
plaintext attacks of FEAL-4 [3,4] and FEAL-8 [5] and chosen plaintext
attacks that break FEAL-N faster than an exhaustive search for any N < 31
[7] have been published. [7] contains also some bounds on the extension of
differential attacks to known plaintext attacks, and the announcement of a
non-differential known plaintext attack on FEAL-4, which requires about
100000 plaintext blocks.

In this paper we present known plaintext attacks of FEAL-4 and FEAL-6. These
attacks are statistical in nature, and require a limited number of
ciphertext blocks and the corresponding plaintext (about 1000 blocks for the
attack of FEAL-U4 described here, about 200 blocks for an improved attack of
FEAL-4, and about 20000 blocks for the attack of FEAL-6). There are no
particular constraints on the plaintext.
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We are using the following notations :

- If X represents a 32-bit word (x31, Kygr +eee Xy}, X, is the byte
(x31,x30.....x2b); X, is the byte (x23, Xy, 4v000Xg), etc; we also write @
X = (X,, X, X, X3);

- If X and Y are two binary strings of equal length, X®Y represents the
bitwise xor between X and Y;

- If B represents the byte (b7.b6.b5,ba,b3.b2,b1,bo) , the byte
(bs,bu,b3,b2.b1,bo.b7,b6) is denoted by ROT2(B); the byte
(b6.b5,bh.b3,b2,bl.bo.0) is denoted by SH1(B);

- If B, and B, are two bytes, the byte B, + B, represents the sum modulc 256
of the numbers represented by B1 and Bz, using the usual binary convention
(low weight bit right). We also define the ternary operator SBOX :
SBOX(B, ,B, ,€) = ROT2(B,+B,+¢) where € € {0,1}.

The FEAL-N algorithm can be divided in two components : the key schedule and
the data randomizer.

We do not need here to consider the detail of the key schedule : let us only
say that the key schedule transforms the 64-bit secret key into an expanded
key composed of the 2N+16 bytes K, K ,eee, sz15

The data randomization can be split into the three following steps :

The initial step
We start with a 64-bit word (I°, I') as input. Then we compute a new 6l-bit
word (X°,X') defined by :

o _ 10
=1 @ (KZN'K2N01'K2N02’K2N¢3)
x!

0 1
X oI @ (Kyy,, Ky, soK

K

2N+6 " 2N¢7)

The main step

The 64-bit word (X°,X!) is taken as the input to an N round Feistel scheme.
Rounds are numbered from O to N-1. At round i, a new 32-bit word Xi*? ig
produced, given by the equation :

X2 =g (X)) @ xi

The function f, is defined by :
{0,132 = {0,1}32
X = (XD,XI.XZ,XJ) =Y = (Y,.Y .Y,,Y)

2'7°3

where
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SBOX(Y,, X,® X,® K, ,,, 0},
SBOX(Y,, X,, 1)
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The function f, is one to one and depends only on the two expanded key bytes
K,;, andK,,,, In the {usual) 64-bit representation of the Feistel scheme,

the output of round i is the 64 bit word (X'*!', X}*?);

The final step
The 64-bit word (X", X"*!) is taken as input to the final step. The 64-bit
ciphertext block (0°,0!') is defined by :

o _ N+1
0" =X @ (KZN‘8‘K2N09‘K2N‘lO'
ot

N aoxtt e (K K

K
K

2N011)

2N+12' 2N+13" 2N01‘J'K2N015)

2 Principle of the attack

Qur attack is a statistical variant of the well known "meet in the middle”
method. It is based on two kinds of relations

(1) It uses some key-independent statistics which involve the plaintext and
an intermediate block of the FEAL-N data randomizer (say the block X!,
which appears as an input to the last round of the Feistel scheme}.

(2) In addition, the deciphering algorithm provides a key-dependent relation
between this intermediate block and the ciphertext.

An exhaustive search for the wvalue optimizing the agreement between the a
priori  expected statistics (1) and the statistics deduced from the
ciphertext (2} provides the part of the expanded key involved in (2). The
knowledge of this part of the expanded key can be generally used for the
derivation of an additional part of the expanded key, based on further
statistics of the form (1), etc... A full attack consists of the stepwise
derivation of the entire expanded key.

The main difficulty of such an attack is (1), i.e. finding key-independent
statistics. In order to obtain such statistics, our attack uses extensively
the fact that in [0,255] considered as an 8-dimensional vector space over
GF(2) the SBOX operator is nearly linear.

3 A linear approximation of the FEAL S-boxes.

We must find a good linear approximation of the S-box operator. Also we must
find a good approximation of the two following operations in [0,255] :

- addition : (B,B') = (B+B') mod 256

- addition and successor : (B,B'} = (B+B'+1) mod 256

We are led to study the addition in N.
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For n € N°, f_ denotes the following boolean function :

{0'1)2n02 . {O,l}

(xn,....,xo,yn,.....yo) =z
where =z, .,z 2z ,....z, is the binary representation of the sum in N of the
two numbers x and y represented by x x _,....x, and y y,_ ;.Y
respectively.
Proposition

For every n € N ° a best linear approximation of f, is the function £,
defined by :

{0,1}*"% =+ (0,1}

(xn.....,xo,yn,....,yo) - X ©x @y

-1 n

. 22ne2 (1)

Proof

We first state (i}. Our proof is basically the same as the one contained in
[8], where (i) and similar relations are mentioned. On Q = {0,1}?"*?equipped
with the uniform probability we define the boolean random variable ck(lﬁkSn)
of a sample (xn......xo;yn,.....yo) as the left carry generated by adding
the numbers x,_,....x, and y,_ ....y,. For instance c,(1;1)=1 and ¢, (1;0)=0.

We also define the random variable ¢, =0.

Pr ., eq {f, (xy)=f (x,y}}
Prg {x®y ®c =x0®x 0y}
Prg {x,.,=1 A ¢,20) + Pry {x,,=0 A c,=1)
Pro{x, _,=1 Ay _ =0 A c _ =0)
+ Pralx, =0 Ay, =1 Ac, =1}
= Prp{x _,=1}.Prg{y, _,=0}.Prg{c, _, =0}
+ Pro{x, _,=0}.Pro{y, _,=1}.Prg{c,_, =1}
{(we are using the fact that for ¢, €', €" € {0,1} the events
{x,_;=€}, {y,_,=¢'} and {c, _,=€"} are independent)

I

I

1
=7 (Prg{c,_ = 0} + Pro{c, _,= 1}) = T

Thus (i) is proved.

The fact that [ is a best linear approximation of f  is a
consequence of (i). Let L be any affine boolean function on {0,1}%"°?

other than f . We have :

~ 1
d(f_ ,L) = 5 23r*2 (44)
From (i) (ii) and the triangular inequality :
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d(f, , L) sd{(f , f ) + d(f . L) we deduce :
1
d(f,L) = T 2:n*2 Q E.D.
A
Note : of course the function f defined in replacing x _, by y,., in the

~

expression of f 1is also a best linear approximation of f .

The above proposition suggests the following linear approximation for the
addition :

B+ B ~B®B' ®SHI(B') (a)
(for each of the 8 bit positions in a byte, the equality between the bit at
the left and the bit at the right of ~ holds with a probability of at least
0.75 ). Similarly we are led to the following approximation for the addition
and successor operation :

B+B' +1~B®B'®SHL(B') ®1 (b)

Qur attack uses a keyless linear approximation of the encryption scheme
obtained by omitting the expanded key and by replacing the S-boxes with
their linear approximation derived from (a} and (b). If X" denotes one of
the intermediate variables of the encryption scheme, the corresponding value

obtained by replacing the encryption scheme with its keyless linear
D
approximation will be denoted by X .

4 The attack of FEAL-4

4.1 Statistics
The attack of FEAL-4 uses key-independent statistics which involve the

intermediate variable X3 and the plaintext. The following diagram shows the
relation between the bytes Xg and Xf and the bytes Xg, Xé and Xi.

x: x? X X’

[} 1 2 3

D—
K, ——»H Se—P— K

X@X, X@X!
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In using the explicit expression of the left S-box S, in the above diagram,
we obtain the relation :

X3 @ Xy = ROT2 (X2 + (X} @ X} )).
Now by wusing the linear approximation of the addition of Section 3 we
obtain :

X3 @ X§ = ROT2(X? @ X} ® X! @ SHI(X} @ X!)).
We call ¢ the function defined by :

@(X") = X ® ROT2(X] @ SH1(X?)).
We can restate the above relation :

@(X?) = ROT2(XZ) @ o(X') (R)

~2 ~L ~2

We studied the statistics of the byte ¢(X}) @ ROT2(X,) @ @(X ), where X, and
~l

X are keyless linear approximations of Xg and X! obtained as explained in
Section 3. These statistics are summarized in Table 1. They are
key-independent, i.e. for each bit position the absclute value of the
deviation from 0.5 is independent of the key. They are non uniform and
express a correlation between a function of X3 (the terp @(X3)) and a
function of the plaintext (the two last terms), so they are of the desired
form.

bit number |average value
0 0.578
0.580
0.667
0.413
0.373
0.434
0.377
0.572

~ AU Ew e

L

Table 1 : Statistics obtained with 10000 blocks.
Only the absolute value of the deviation from 0.5 is significant.

4.2 Derivation of the expanded key

The relation between the bytes Xg and Xf (which are needed for computing the
2 1

expression ¢(X?) ® ROT2(X,) @ ¢(X )} and the 6l-bit ciphertext block (0°,0')

is illustrated in the diagram hereafter :



178

Dt
B, B
K, B‘J\—'_ K
B, X, X!? XX XX
|
i
" e K ={\> :‘ i C\‘ K'l 0 Kﬂ
i
! K
Kn :] Kn—'—f\_’@ \'—'Ku ] Kn "
i
K b
A * A i A

090, 080, 080, OBO,

This diagram shows that X} and X} can be calculated up to the unknown
constants K;¢ and K17 using only the three unknown combinations
B, B, and BJ. A more careful analysis shows that @(X®) can be calculated up
to an unknown constant byte using only the 7 lowest weight bits of
B,, B, and B, and the bit B1[7] @ B2[7], i.e. 22 unknown keybits.

The procedure for testing a value of the 22 unknown bits is the following :
~2 ~l

- for each plaintext block we calculate ROT2(X,) @ (X ). This is done only

once;

- for each ciphertext sample we calculate @(X3) up to a constant, using the

assumed value of the 22 keybits;

- we assign to that 22 keybits value a "criterion value" : the sum of the
absolute wvalues of the deviation from 0.5 of the average of each bit of the
2 o1

byte @(X3) @ ROT2(X,) @ (X ) (this byte is calculated up to an unknown
constant which has no effect on the criterion value).

We select the wvalue of the 22 keybits for which that criterion value is
maximal. In fact if the 22 keybits value is not the correct one, the
calculated o(X3) has no sense and each bit of the studied byte has an
average value close to 0.5.

Experiments prove that this test leads to the correct value of the 22
keybits with only 1000 plaintext blocks and the corresponding ciphertext (we
obtained some good results even with only 300 blocks). In order to improve
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the computation time, we searched appropriately selected parts of the
keybits first. With this improved method, only an half of hour computing
time of a SUNY workstationwas needed for deriving the correct 22 keybits
from 1000 blocks.

Once the first 22 unknown keybits have been derived, new key-independent
statistics must be used for deriving further unknown keybits. This process
is quite similar to the derivation of the expanded key in the chosen
plaintext attack of [5]. We restricted our experiments to the beginning of
the derivation, but there is no substantial difficulty in continuing this
derivation.

5 The attack of FEAL-6

5.1 Statistics

We must now find key-independent statistics which involve the intermediate
variable X°

X!
Stle—
A
—rd g
Kl _—q\_’ea € K.
X, XX X X
a2
DT
G}_B«—f A
S
g
Bl
»H g
B,
Ku —‘J\—’GB 4 - Ku
X, XX X X X X X
B B,
e
o
K,® Kz B n® Ko ar s
Ku Kg
A
Oj@0, dlg0, 0)8q, 080, g o o o
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In the previous Section we have used the approximate relation :
ROT2(XL"1) = @ (X'*?) @ o(X') (R)
For the attack of FEAL-6 we are using another similar approximate relation.
Instead of ¢ it involves a new function denoted by ¥, which is defined by :
wiX') = x} ® x!@ ROT2(SH1(X})) @ X}
We have the following approximate relation :
ROT2(X;* 1) = w(X!) @ ¢(X'*?) (R
We can prove that the bits number 2 of the left and right bytes of (K} are
strictly equal :
ROT2(X;**)[2] = w(X')[2] @ w(X'*2)[2]
For the other bit positions, the correlations expressed by (R) are very low.

From the relations :
ROT2(X2) ~ y(X3) ® ¢(X') and
ROT2(XY) = ¢(X3) @ y(X3)

we deduce
ROT2(X?) ® y(X') = ROT2(X!) ® ¢(X5)

We studied the statistics of the byte :
sl ol :‘JJ 5
ROT2(X,) ® y(X ) ® ROT2(X,) ® (X )
~2 ol
where X, and X are keyless approximations of X? and X! calculated from the
puy 4
plaintext as explained in Section 3 and X, is an approximation of X, which
is derived from X5 and the ciphertext by using a keyless approximation of
A

the decryption scheme. We are using X, instead of X? {which would have given
better statistics) in order to restrict the number of unknown keybytes
involved in the calculation of the above expression to only four unknown
combinations B, B,, 83 and B, (which are defined in the above diagram}.

The obtained statistics are given in Table 2. They are key independent, i.e.
for each bit position the absolute value of the deviation from 0.5 is
independent of the key. The bit number 2 differs strongly from 0.5.

bit number|average value
0 0.498
0.499
0.624
0.493
0.497
0.501
0.499
0.496

~ O T W N

Table 2 : Statistics obtained with 100000 blocks
Only the absolute values of the deviations from 0.5 are significant
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5.2 Derivation of the expanded key

The attack method is similar to the one used for FEAL-4. We show the very
beginning of the attack, i.e. the procedure for the test of a value of
Bland B, (more precisely for the test of the 7 lowest weight bits of
B, and B,and of the bit B [7]®B,{7], i.e. 15 bits)

~? ~l
- for each plaintext block we calculate ROTZ2(X ) and ¢(X ) . This is done
once only;
- for each ciphertext block we calculate X? and Xg up to the unknown
constants K, and K,,,using B, and B,. We calculate then approximate values
of X7 and Xg from X3, Xg and the ciphertext , using a keyless linear
approximation of the left and right S-boxes in the first round of the

o
decryption scheme. We also calculate X o from the obtained approximate value
of X5 and the ciphertext, using a keyless linear approximation of the second
round of the decryption scheme (all the calculations are represented in the
diagram of Section 5.1);

- we assign to B, and B, a criterion value : the absolute value of the
average deviation from 0.5 of the obtained approximate value of the bit
2 ~l adh

ROT2(X, }[2] @ y{X )[2] @ ROT2(X,)[2] @ w(x®)[2] .
We finally select the value of the 15 unknown bits for which the criterion
value is maximal.

The experiments of this attack made with 20000 plaintext blocks and the
corresponding ciphertext led to the correct value of the 15 keybits. The
derivation of these 15 bits took approximately 10 hours computation time on
a SUN4 workstation ({(using a non optimised Pascal program). We did not
experiment the whole continuation of the derivation of the expanded key, but
there is no substantial difficulty in continuing the derivation.

Partial experiments of a similar attack based on the function ¢ of Section 4
showed that it should be possible to reduce the number of blocks required to
a few thousands, at the expense of increasing the number of unknown keybits
in the first step of the attack. This other attack requires an exhaustive
search of the four bytes B , B,, B3 and B with 3000 blocks; its full test
was not within the reach of our computer.

6 Improved results on FEAL-4

The above attack on FEAL-6 suggested us an improvement to the FEAL-4 attack
described in Section 4. The new attack is entirely based on the approximate
relation (fl), as for the FEAL-6 attack. It requires about 200 plaintext
blocks. According to our experiments, the derivation of the first 12 unknown
keybits takes 20 seconds on a SUN4Y workstation. Our estimate of the time
required for the entire key derivation is a few minutes.
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{ Conclusion

The attacks presented here are an example of the use of correlations with
linear functions for the cryptanalysis of blockciphers. They belong,
together with the differential attacks [4,5,6,7], to a broader family of
statistical attacks. They use approximate relations in the same way as
differential cryptanalysis uses caracteristics [6]. The relations (R) and
(R} are similar to eight one-round caracteristics each (one for each
bit position), and the statistics used for the attack of FEAL-4 and FEAL-6
are similar to 2-rounds caracteristics and Y4-rounds caracteristics
respectively. A known plaintext attack of the standard version FEAL-8‘'would
require an efficient 6-rounds approximate relation. We do not know whether
such relations can be found.
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