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Abstract 

Recent results in interactive proof systems [12][13] [I] seem to indicate that  it is 
easier for a prover in a single prover interactive proof system to cheat the verifier 
than it is for a prover in a multiple prover interactive proof system. We show that 
this is not the cme for a single prover in which all but a fixed polynomial of the 
prover's space is erased between each round. One consequence of this is that  any 
multiple prover interactive protocol in which the provers need only a polynomial 
amount of space can be easily transformed into a single prover interactive proto- 
col where the prover has only a fixed polynomial amount of space. This result 
also shows that one can easily transform checkers [5] into adaptive checkers [7] un- 
der the assumption that the program being checked has space bounded by a fixed 
polynomial. 

1 Introduction 

Recent results in complexity theory have shown that IP=PSPACE [12][13] and that 
MIP=NEXPTIME [l]. This gives reason to believe that there is a significant difference 
in the power of a single prover interactive proof system versus the power of multiple 
prover interactive proof systems, 1.e. that since the multiple provers are constrained to 
be consistent with each ocher, they cannot cheat the verifier a8 easily, and thus more 
difficult languages can have such proof systems. It has been shown that the same set of 
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languages is accepted by the following three types of interactive proof systems: multiple 
prover systems, single prover systems where the prover is constrained to answer according 
to functions that are fixed in advance, and single prover systems in which the memory 
of the prover gets wiped out between each question (i.e. the prover has no memory of 
the conversation) [9][3]. 

One might conjecture that allowing the prover in a single prover system to have 
partial memory of the conversation could increase his ability to cheat substantially, thus 
decreasing the power of the system. We show that this is not the case: that if there 
is an interactive protocol against a prover that does not remember anything between 
questions, then for any s it can be modified into an interactive protocol that works 
against a prover that remembers s bits between questions. The running time of the new 
protocol is polynomial in the running time of the old protocol and s. Note that the IP 
prover need only remember the history of the conversation between rounds, which is a 
polynomial number of bits (however, here the polynomial is chosen after the protocol is 
decided upon rather than before). 

This result has the following application to cryptography: it shows that two prover 
protocols for identification implemented by two credit cards can be implemented by a 
single credit card, as long as the credit card is guaranteed to have a limited amount of 
memory. 

The results in this paper apply to program result checking as well [5] [TI. They show 
how to transform a checker that works assuming that the program is a f ixed function, 
into an adaptive checker which instead assumes only that the program has polynomial 
space at its disposal. This is interesting because it allows one to assume that the checker 
works even if hardware faults evolve over time, or in the case that the software is written 
such that running the program on certain inputs may have unintended side effects on 
the program’s future behavior. 

A somewhat related result in [lo] shows how to self-correct [S] some functions from 
space bounded tested programs. This result applies only to funccions which are polync- 
mials, and does not show how to give program result checkers for those functions. 

2 Definitions 

We informally describe the following modifications of definitions of interactive proof 
systems and IP given in [Ill: 
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DEFINITION 2.1 A s-space, t-round Interactive Protocol (A, B) i s  a pair of luring ma- 
chines (TM) (A,  B )  which share an input t a p e  (read only). Both have a private read/wde 
work tape and read-only random tape. There are two communication tapes: one which B 
has write-only access to, and A has read-only access to, and one which A has write-only 
access to, and B has read-only access to .  We think of the first tape as containing messages 
sent to, or ‘questions” asked of A, and the second as messages sent to, or “answers” 
to B. The machines take t iurns being active with B going first. Before each message 
to A, all but the firsl s bits of A’s private work tape are erased. A i s  computationally 
unbounded and B is polynomial lime bounded. 

DEFINITION 2.2 Let L c (0, l}*. We say that L has a s-space t-round interactive proof 
system (IPS) if there ezists a T M  V such that 

1. There is a TM P s.t. (P,V) is a s-space t-round interactive protocol and for all 
z E L s.t .  It1 i s  suficiently large, Pr[Vaccepts] > 2/3 (when probabilities are ouer 
coin tosses of P and V).  

2. For all  TM’s PI s.t .  (P’,V) i s  a s-space t-round interactive protocol and for all 
x 4 L s.t. 1x1 is  suflciently large, Pr[Vaccepts] < 1/3 (when probabilities are over 
coin tosses of P’ and V) .  

We say that (P, V )  is a s-space t-round interactive proof system for L. 

Define IP( s , t )  = {LIL has an s-space t-round interactive proof system} 

We may think of P as deterministic, giving optimal answers to maximize the proba- 
bility that V accepts. 

3 Main Theorem 

Theorem 1 If L E IP(0,  t ) ,  then for all s, L E IP(s ,  o ( s t ) ) .  

Proof; 
can construct an s-space O(st)-round interactive protocol for L. 

We show that if there is a 0-space, t-round interactive protocol for L then we 

The 0-space, t-round protocol for L can be run O(s) times in order to reduce the 
error probability from 6 to 62-’. Call the resulting low error protocol CF, and let 



C,“(w, r )  = (xi, yl,.. . , I,, ym) denote the m-round conversation between verifier V and 
prover PI where w is the input, r is the random string used by the verifier, the xi’s are 
the “questions” sent by the verifier to the prover, and the yi’s are the “answers” sent by 
the prover to the verifier (note that rn is O(st ) ) .  

Let @(w, r ,  C,“(.U, r ) )  be the function which the verifier evaluates after the conversa- 
tion in order to decide whether to accept or reject w. 

Let P denote any prover that can remember s bits between questions. 

We are now ready to present the protocol: 

s-space O(st)-round interactive protocoi: 
On input w: 
1. Run protocol Cg(w, P) = ( X I ,  y1,. . . ,xm, ym). If @ ( w ,  r ,  CF(w, r)) = “REJECT” 

2. Do 3m times: 
then reject and halt. 

Pick i ER [l, m] 
Verifier asks question xi and receives answer yi. 
If y; # 6; then reject and halt. 

3. Accept w.  

Proof of Correctness of s-space O(st)-round protocol: If w E L,  then it is obvious 
from our assumption that L E IP(0,  t )  that there is a prover P which can only remember 
s bits after every question such that Prr[@(w,  T, C,“(w, r ) )  = “ACCEPT”] >_ 2/3. 

To prove the theorem for the case when w is not in L, we need to show that no prover 
that can remember s bits is likely to fool the verifier into accepting L. 

We first note that any space s prover p can be viewed a8 a collection of 2’ functions 
in the following manner: consider a deterministic finite state automaton with 2* states, 
where each state i is labeled with function Pi.  The transitions between functions are 
labeled by all the possible questions that a verifier could ask of the prover. Then the 
prover is at  one of the 2# states, and whenever the verifier asks a question, the prover 
answers the question according to the function which labels the state, and goes to a new 
state according to the transition function applied to the current state and the question 
just asked by the verifier. 

For fixed i, we say that P is Pi-bad for w if @(w, r,  Cgi(w, r ) )  = “ACCEPT” (where 
the prover Pi is the prover which answers according to function P i ) .  Since Cg, is a 
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0-space interactive protocol for L with error 5 Q2-”, we know that r is Pi-bad with the 
same probability. We say that r is p - b a d  for w if there is an i such that r is Pi-bad for 
w .  Since there are only 2. Pi’s, Pr[r  i s  - bad for w ]  5 2* . $2-’ = 1 6 ’  

For each r, one of the following three cases must hold 

1. @(w, r, C;(W, r)) = “REJECT”, in which case the verifier rejects. 

2. r is p-bad for w .  By the above reasoning, this case happens with probability 5 1/6. 
3. @ ( w ,  r ,  C;(w, r ) )  = “ACCEPT”, but r is not j -bad  for w. Thus for all i ,  

@(wl r, Cgi(w, r )  = (all b l ) ,  . . . , (a,,,, a,,,)) = “REJECT”. 

Then for all i ,  there is a j such that zj = aj but yj # b j  (since the conversations cannot 
be the same, and the verifier follows the same algorithm, the first difference must come 
from the prover). Therefore, no matter which state the prover is in during a loop of Step 
2 of the protocol, the probability that a question is asked for which the answer yj # gj is 
at least l/m. After 3m times, the probability that the verifier will not reject is at most 
e-3 .  

Thus, if w is not in L ,  the verifier will reject with probability at least l -3-e-3  2 2/3. 

4 Bounding the Power of an s-space Prover. 

The transformation used in the proof of Theorem 1 works only for deterministic provers, 
since a legitimate probabilistic prover might cause the verifier to reject in Step 2 by 
giving inconsistent answers to its questions. One can replace any probabilistic prover 
with an “optimal” deterministic prover, but this new prover may have much greater 
computational requirements. Hence, such a simple fix will not allow us to  carry over our 
results to program result checking. 

However, we can use the general idea used in the proof of Theorem 1 to directly 
bound the advantage of an s-space bounded prover over a 0-space bounded prover. Our 
theorem is as follows:’ 

This result was independently discovered by Lund (personal communication). 
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Theorem 2 Suppose ihat in an interactive protocol (PI V )  the prover's memory is  par- 
tially erased at most t tames. Lei P, be a prover thut as allowed t o  remember s bits between 
partial erasures, and let PO be an optimal prover fhat is not allowed t o  remember any bats 
between erasures. Then, f o r  all x ,  

< 28t .  
Pr[(P, ,  V )  accepts I ]  

Pr[(Po, V )  accepts 21 - 

Proof: We assume without loss of generality that P, is deterministic, and denote by 
p the probability that (P,, V) accepts z. We now construct a 0-space boun'ded prover 
Po such that (PO, V )  will accept I with probability at least 2-"p. PO works exactly as 
does P,, except that whenever its memory is (totally) erased it sets the first s bits of its 
memory to a random s-bit string. 

Suppose that (P,, V) accepts when V uses r as its random input. It suffices to show 
that (P0,V) will accept with probability 2-" when V uses r as its random input. Let 
,'$ denote the contents of the first s bits of P,'s memory after the ith (partial) memory 
erasure. With probability 2-'*, it will be the case that for each i ,  1 5 i 5 t ,  PO will fill 
its memory with after the ith memory erasure. Whenever this happens, the behavior 
of PO will be identical to that of P,, and V will accept. Thus, (PO, V) will accept with 
probability at least 2-'* whenever (P,, V) accepts, and the theorem follows. 

Thus, any protocol which achieves a sufficiently low probability of error, using suffi- 
ciently few memory erasures, is automatically robust against an s-space bounded prover, 
without modification. Therefore, given an interactive proof system robust against 0- 
space bounded provers, using only t memory erasures, one needs only to reduce the error 
probability to less than .2-'* , while preserving the total number of memory erasures. 
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