
Functional Inversion and Communication Complexity 

Shang-Hus Teng' 
Xerox Corporation 

Palo Alto Research Center 
3333 Coyote Hill Road 

Palo  Alto, California 94304 

Abstract 

In this paper, we study the relation between the multi-party communication complexity over 
various communication topologies and the complexity of inverting functions and/or permuta- 
tions. In particular, we show that if a function has a ring-protocol or a free-protocol of commu- 
nication complexity bounded by Ii, then there is a circuit of size 0(ZHn)  which computes an 
inverse of the function. Consequently, we have proved, although inverting NC' Boolean circuits 
is NP-complete, planar NC' Boolean circuits can be inverted in NC, and hence in polynomial 
time, In general, NC' planar boolean circuits can be inverted in O(n'O~'h-''n) time. Also from 
the ring-protocol results, we derive an n(n logn) lower bound on the VLSI area to layout any 
one-way functions. Our results on inverting boolean circuits can be extended to invert algebraic 
circuits over finite rings. 

One significant aspect of our result is that it enables us to compare the communication power 
of two topologies. We have proved that on some topologies, no one-way function nor its inverse 
can be computed with bounded communication complexity. 

1 Introduction 

One of the most fundamental questions in cryptanalysis is t o  characterize the class of permutations 
(or functions) whose inverse can be computed in polynomial time or by a polynomial size circuit 
[I, 10, 12, 161. Much research in theoretically cryptography has been centered around finding 
the weakest possible cryptographic assumptions required in implementing major primitives [ll, 41. 
However, progress on characterizing permutations with s m d  inversion circuits is very slow [12]. 

In this paper, we study the relation between multi-party communication complexity over vari- 
ous communication topologies and the complexity of inverting permutations and functions We show 
some nontrivial classes of permutations whose inverse can be computed efficiently. 

In particular, we show tha t  if a function has a ring-protocol or a tree-protocolof communication 
complexity bounded by If ,  then there is a circuit of size 0 ( 2 H n )  which computes an  inverse of the 
function. Consequently, we have proved, although inverting NCo Boolean circuits is NP-compiete, 
planar NC' Boolean circuits can be inverted in N C ,  and hence in polynomial time. In general, 
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done while the author was at School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. 

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPT0 '91, LNCS 576, pp. 232-241, 1992. 
0 Springer-Verlag Berlin Heidelberg 1992 



233 

N C k  planar boolean circuits can be inverted in O(nl'g('-')") time. Also from the ring-protocol 
results, we derive an Q(n log n) lower bound on the VLSI area to layout any one-way functions. 
Our results on inverting boolean circuits can be extended to invert algebraic circuits over finite 
rings. 

One significant aspect of our result is that it enables us to compare the communication power 
of two topologies. We have proved that on some topologies, no one-way function nor its inverse 
can be computed with bounded communication complexity. 

2 Definitions 

Let D = (0, l}, i.e., the field Z F ( 2 ) .  Let f : 8" -+ Bm be a boolean mapping from B" to  B". The 
mapping f is a permutation if m = n and j is a bijection. A function g : B" -+ ti" is an inverse of 
f iffor all y E B*, f(g(y)) = y whenever g(y) is defined. In this paper, let On,, denote the set of 
alI boolean mappings from B" to  P. 

A Boolean circuit is a directed acyclic graph whose nodes have indegree either 0 or 2. A node 
of indegree 0 is labeled with a variable, or with a boolean constant. A node with indegree 2 is 
labeled with a boolean function of 2 inputs. A node with a variable label is called an input node 
and the one with outdegree 0 is called an output node. We assume that each boolean circuit is 
d u c e d  in the sense that  no two input nodes share the same label. Each circuit C with n input 
nodes and m output nodes defines, in a natural way, a function, denoted by fc, from 8" to 0". 

A circuit C compufes a function f if fc = f .  A circuit C' is an inversion circuit of f if c' 
computes an inverse of f.  

The non-uniform and uniform versions of the inversion problem are defined a follows. 

Definition 2.1 (Inversion Problem) 

(Non-uniform) Is there a polynomzul size circuit that computes on inverse of a givenfunction 
f E an,"? 

(Uniform) Given a circuit or (a straight h e  pmgmm) that computes a given function I, 
construct an inversion circuit (with size bounded b y  a predefined function in n and m) off .  

3 Communication Complexity 

For each function f E B,,,, we write f : 2x -+ 2 y ,  where X denotes the set of n inputs and Y the 
set of outputs. 

3.1 Two Party Communication Complexity 

Suppose there are two processors in the system. For each partition (X1,XZ) of X, processor 
1 receives the values of variables in XI and processor 2 receives the values of variables in Xz. 
The two party communication complezify of f with respect to the partition (XI, Xz), denoted by 
Cf(X~,Xz),.is the number of bits the processors, using an optimal protocol, have to exchange, in 
the worst case, in order to jointly compute the values of all outputs o f f  [17, 131. 



234 

Notice that an optimal protocol for computing f with respect to the partition ( X , , X , )  also 
induces a natural partition of Y into (Yl, Y,) such that in the protocol, processor i is responsible 
to compute the values of all variables in l;, ( a  E { 1,2}). 

Let P ( X )  denote the set of all partitions of X and S, the set of all permutations from (1, ..., n }  
to (1, ..., n}. For each r E S,, let 

P * ( x )  = {(t~n(l)r...,~n(k)},{~,(h+l),...r~s(n)}) : 1 I k I 
Definition 3.1 (Two Party Communication Complexity) The symmetric communication com- 
plexity of a function f 6 a,,,, denoted by SC(f), is defined to be 

S C ( f )  = ( x l , ~ ~ p ~ " ) c A ~ l ~ X z ~ ~  

P C ( f )  = 2 E  ( " l , ~ ~ ) ~ ~ ( , ~ c , ( X I , x 2 ) .  

The permutational communication complexity of a function f E a,,,, denoted by PC( f ) ,  is defined 
to be 

It is easy to see that for all function f ,  P C ( f )  5 SC(f). 

3.2 Multi-Party Communication Complexity 

A communication topology of N nodes is a graph G = (V, E) with V = (PO,. . . , P N - ~ }  and E C 
V x V, where V models the set of processors and G models the underlying communication network. 

Each processor p, is a Turing machine which has an input tape, an output tape and a work 
tape. Each edge of G models the communication channel between processors sited at its two ends. 
The whole system forms a computing device where each processor has some information, called 
input of the processor, and the processors want to jointly compute their respective share of outputs 
which are functions of all the inputs. 

The computation is guided by a distributed protocol P which is a set of rules specifying the 
order and content of messages sent from one processor to another. We assume that all processors 
have unlimited computing power and the local computation is free. We only charge for the bits 
transmitted from one processor to the others. One major goal in the field of distributed computing 
is to design a distributed protocol to compute a given function that minimizes the maximum number 
of bits one processor has to receive, to send, or both. 

For each topology G and protocol P ,  let &(P,pi) and $ o ( P , p i )  denote, respectively, the 
maximum number of bits p i  has to receive and send in the worst case. Let wc(P,pi)  = d o ( P , P i )  t 

A distributed protocol P computes afunction f E B,,,, if there is an N-partition ( X O , .  . . , XN--1) 
of X and (YO,. . . , YN-I) of Y ,  where processor p i  receives an assignment zi of Xi as its input, such 
that after running protocol P ,  p; computes yi with y = f(z), where y = (yo,. . . , yjv-1). 

For each function, there is a trivial protocol with null communication cost, i.e., the one which 
assigns all inputs and ail outputs to a single processor. In order to avoid this triviality, we only 
concern ourselves the set of balanced protocols,  

Definition 3.2 (Balanced-Protocols) A partition ( X o , .  . ., X N - ~ )  of X is H-balanced if for 
all 0 5 i 5 N - 1, [ X i [  5 €I .  A protocol P for a function f : 2" 4 7 y  is H-balanced if its 
input-partition is  H -balanced. 

$ c ( P , P i ) .  
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Let P c , ~ ( f )  denote the set of all if-baianced protocols that compute f : 2x 4 2 y ,  

Definition 3.3 (Balanced Communicat ion Complexity) For each function f : 2x t 2', 
define' 

@c,df)  = min m y d c ( P , p ; )  
P € P G , H ( f )  

Notice that if the balanced communication complexity of a function f is small, then f can be 
computed by a circuit of small size (The proof of the following lemma will appear in the full paper). 

Proposi t ion 3.1 For each graph G, j a r  each II E a+, each function f : 2x -* 2y can be computed 
0 

The topology of communication networks play an important role in designing communication- 
efficient protocols. The set of communication topologies studied in this paper includes cliques, 
mesh, planar graphs, rings, and trees. The corresponding protocols are respectively called, ideal 
protocols, mesh protocol, planar protocols, ring protocols, and tree protocols. 

by a circuit of size 0 ( 2 H + ' G , K ( j ) n  1 .  

4 Communication Topologies and Functional Inversion 

h this section, we examine the communication power of various topologies induding rings, meshes, 
trees, and cliques. We show that no one-way function (permutation) can be computed on a ring or 
a tree with bounded information exchange between neighbors. 

4.1 Rings 

We now prove that if a function can be computed by an H-balanced ring-protocol with commu- 
nication complexity @H( f), then there is a circuit of size o(P+'JJ(')) which computes an inverse 
o f f .  

Let P be an H-balanced ring-protocol which computes f with communication complexity 
@~(f); let (&, . . . , X N - I )  be the If-balanced partition induced by P on inputs and (YO,. . . ,YN-I) 
the partition on outputs; and let 1 ,  and ri be the number of bits the processor i sends to  processor 
i - 1 and i + 1, respectively. For simplicity, all '+' and '-' (on index) in this section are modulo N .  
Let h = H + @ ~ ( f ) .  By definition, we have I ;  + r; 5 h. 

Let Ui = (ui ,~,  ..., u i , ~ ; )  and = ( w , , ~ ,  ..., qr,) denote the set ofvariables whose values processor 
a sends to  processor i - 1 and i -+ 1 respectively, in the protocol P. 

Notice that the protocol P defines a natural function fi associated with processor i, from 
( X i  U v-1 U Ui+1) to  (Y;. U Cri U K) .  Because f; has only O ( h )  bit inputs, f; is computable by a 
circuit of size 0 ( 2 * )  (see Lemma 3.1). Let C; be such a circuit computing fi. 
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We now define for each y E Bm a digraph G, with the property tha t  G, is not acyclic iff there 

For each output y E a"', let 121; and Ti be 2l* x 2'1-1 x 2'+1 x 2'' matrices whose entries are 
exists z E B" such that I(.) = y. 

defined as follows. 
For each : : 0 5 i 5 t - 1, for each assignment ui, ui-I, u ~ + I ,  vi to Ui, K-1, Ui+l, % 

If there is an  assignment zi to Xi ,  such that fi(Zi,ui-i,ui+i) = (yi,ui,vi)$ 

If there is no such assignment, M,[u,, ui-1, u i + ~ ,  ui] = 0; 
then T,[ui, u i - I ,  u,+I, ui] = Xi and Mi[ui, ui-1, ui+l, ui] = 1; 

We now define the digraph G, = (V,  E )  as 
N-1  

V = u ( { i }  x 0" x a"-') 
,=O 

E = { ( ( i , U i , v i - l ) , ( i +  1 ~ ~ ~ i + l , ~ i ) ) I ~ i [ ~ i , ~ i - l t ~ ~ ; + 1 , ~ i I  = 1) 

Lemma 4.1 G, is not acyclic a8 there ezists z E f?" such that f ( r )  = y .  

Proof: Suppose that there exists z E f?" such that f (z)  = y. Since f can be computed by an 
H-balanced ring-protocol with communication complexity @ ~ ( f )  as above, there are I;, U i r  and vi 
such tha t  ( y i ,  u;, v i )  = f i ( z ; ,  v , - ~ ,  u;+~), and hence, ( ( i ,  u;, v i - ~ ) ,  ( i  + 1, u ; + ~ ,  v ; ) )  is an edge in G,. 
Thus (O,u~,v~-l),(l,u~,v~), ... , ( N  - ~ , u N - ~ , v N - ~ ) , ( O , ~ , ~ N - ~ )  forms a cycle in G,. 

On the other hand, since each simple cycle in G, contains exactly one node from 

{ i )  x B'* x ~ 1 - 1 .  

Hence each simple cycle of G, is of the form 

(0, u O t  " N - l ) ,  (1: U l r  "O), .-. t ( N  - 1, UN-1, V N - Z ) ,  (0, u0, vN-1). 

By definition of G,, there exists xi, such that (y,, u,, vi)  = f , ( t i ,  vi-1, ui+l), and therefore f(z) = y. 
0 

We now show how to invert f ,  given C;. 
Inputs: y E B m .  

compute the matrices M, and Ti for 0 5 i 5 N using C,; 
construct the digraph G,, using M i ' s ;  

if G, has no cycle, then output that there is no x such that f(z) = y; 

otherwise, compute a cycle of G, (0, uo, U N - ~ ) ,  ..., ( N  - 1, U N - 1 ,  U N - ~ ) ,  (0, UD, U N - ~ ) ,  and 
output Z = ( X O  ,..., XN-I), where zi = T , [ u i , ~ i - l , u i + l , ~ i ] .  

It is easy to check tha t  the above algorithm runs in time O(2'n). Let C be a circuit that 
simulates the above algorithm, we have, 

Theorem 4.1 For each f E f?,,,,, if there is an H-balanced ring-protocol computing f with com- 
munication complexity @~(f), then there is a circuit of size O(2H+4H(f)n) which compufes an 
inverse off. a 

We say a function f E f?,,,,,, is h-ring-partitionable if it can be computed by an  IT-ring protocol 
such tha t  H + @jy(f) 5 h. 

Corollary 4.1 Iff is O(1og n)-ring-parlitionable, then there is a polynomial size circuit computing 
0 an inverse o f f .  Hence, there is 710 one-way junction which is O(1og n)-ring-partitionable. 
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4.2 Trees 

We now show that if a function f can be computed by an 11-balanced tree-protocol with communi- 
cation complexity @ ~ ( j ) ,  then there is a circuit of size 0 ( 2 H + * ~ ( / ) n )  which computes an inverse 

Without loss of generality, we can assume that trees are rooted. But in the tree-protocol, 
each node can communicate with any of its neighbor (children and parent). For simplicity of the 
presentation, we further aSsume that the trees are binary, i.e., each node has at most two children. 
Our results can be extended to any bounded degree tree. 

Let P be an 11-balanced tree-protocol computing f with communication complexity @ ~ ( f ) ;  
let (XO, . . , , XN-I) be the H-balanced partition 'induced by P on inputs and (Yo,. . . , Yrg-1) be 
the partition on outputs. For each node i in a given tree, let p ( i ) ,  l c ( i ) ,  rc( i ) ,  be its parent, left 
child, and right child, respectively. Let c(z) be a child of i. Let pi, 1, and r; be the number of bits 
the processor z sends to processors p ( i ) ,  l c ( i ) ,  and rc ( i ) ,  respectively. Let h = H -+- a&). By 
definitions, we have p;  t 1, t ri 5 h. 

o f f .  

We now reduce the inversion problems to the following consistency problem on trees. 
A labeled tree is a 3-tuple (T, F, 2) where T is a rooted tree with N nodes (0, .., N - l}, 

2 = ( 2 0 , .  . . , Zjv-l}, and G = {go,. . . ,g;-l). Each node i in T is associated with a set Zi of k; 
boolean variables and a (ki + kp(i) + /qC(,) + kvc(,))-place boolean function gi which only depends on 
variables with node i and with neighbors of node i .  An assignment to variables in 2 satisfies g i ,  if 
the value of g; is 1 under this assignment. 

Definition 4.1 (Consistency Problem o n  Trees) Given a labeled tree (T, G ,  Z), compute an 
assignment of Z which satisfies all functions gi ,  0 5 i 5 N - 1. 

The consistency problem on trees can be solved in 0 ( 2 w ( k ' ) n )  time by RAKE operation 
[9, 8, 21. Recently, the author gave an optimal O(1ogn) time algorithm for this problem when 
( m a ;  k;) is a constant [14]. 

Let Ui = ( U i , l r  ..., u ~ J , ) ,  V; = ( q l ,  ..., ~ i , ~ , ) ,  and W; = (wj , l ,  ..., wi,J denote the set of variables 
of whose values processor i sends to processors p(i), Ic(i) ,  and ~ c ( i ) ,  respectively, in the protocol 
'P. Notice that the protocol P defines a natural function 1, associated with processor i ,  from 
Xi U UPpc(j)) U Up(vc(i)) U Wc(p(i)) to Y; U U, U V,  U Wi. Because f, has only O(h) bits inputs, fi is 
computable by a circuit of size O(2") (see Lemma 3.1). Let Ci be such a circuit computing fi. 

Now, let Zi = Xi U Ui U M U Wj and let gi be a function from ( X i  U U,, ( ,c ( ,~~ u Up(+)) U WE(,,(,)) U 

V; u V;. u Wi) to B such that g; has value 1 if 

(Yi U ui U K U wi)  = fi(Xi U Up(ic(i)) U Up(?c(i)) U wc(p(i)))* 

iFrom the above discussion, we have the following lemma (the proof will appear in the full 
paper). 

L e m m a  4.2 for  each y E B"', fo r  each assignment z to XI there is an assignment, u; to Ui, ui to 

K, and w; to Wi satisfying all gi if f ( z )  = y. 

Therefore, for each y E Bm, in 0(2'?1) time, we can, using the algorithm for consistency 
problem on trees, compute an z E B", such that f(z) = y (if such an z exists). Let C be a circuit 
that simulates the above algorithm, we have, 
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T h e o r e m  4.2 For each f E L?,,,, if there is an H-balancea iree-protocol computing f with com- 
munication complexity ~ , i ( j ) ,  t/ien there is an inversion circuit of size o (P+*~( f )n )  for  f .  0 

We say a function J E B,,,,,, is ti-tree-partilionalle if it can be computed by an H-tree-protocol 
such that H + Q H ( J )  _< h. 

Corollary 4.2 Iff is O(1ogn)-trce-partitionable, then there is a polynomial size circuit computing 
0 an inverse off. Hence, there is no one-way function which is O(1ogn)-tree-partitionable. 

4.3 Cliques 

In the above two subsections, we show that if the balanced communication complexity (on trees 
or rings) of a function is small, then there exists a small size circuit computing an inverse of the 
function. Of course, the results depend critically on the topology of the communication networks. 
To what topology can our resuits be extended? We first observe that our result can be extended 
to O(1ogn) by n meshes (the proof will appear given in the full paper). 

Theorem 4.3 For each f E B,,,, if there is an II-balanced mesh-protocol on the O(1ogn) x 
n mesh computing f with communication complezity QH( f), then there ezists a circuit of size 

0 0 ( 2 H + @ ' H ( f ) n 2 )  which computes an inverse of j. 

It is remain open whether the similar result exists for an n by n mesh. 
We now show, it is unlikely to extend the results to all topologies with bounded degree. We 

say a function j E L?,,,,,, is k-partitionable i f  there is a k-balanced protocol on an n-clique with 
communication complexity @ H ( / )  bounded above by k. 

Theorem 4.4 I f  N P  # P ,  ihere is a 6-partitionable function f such that no polynomial sire 
circuit computes an inverse of f. a 

Proof: This theorem follows simply from the following lemma. 

Lemma 4.3 (Garey and Johnson) The SAT problem, in which each clause contains at most 3 
variables or the negation of variables and each variable or its negation is in at most three clause, 
is NP-complete. 0 

partitionable, nor O(1og n)-tree partitionable. 
Corollary 4.3 If  N P  # P,  there is a 6-partitionable function f which is neither O(logn)-ring 

Similarly, we have, 

Corollary 4.4 If  N P  # T(rLpo'~'og), there is a G-partitionable function f which is neither p ly log-  
ring partitionable nor plylog-tree partitiona6le. a 

'In this paper, the notation of N P  # P denote that there is an NP function which can not be computed by a 
polynomial size circuit. 
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5 Inverting Planar Circuits 

A boolean circuit C is planar if (1) the underlying graph of C is planar and (2) all inputs are on 
the same face of the underlying graph, (this face is called the input face). 

We now show the relationship between the depth of a planar boolean circuit and the balanced 
communication complexity (on ring) of the function i t  computes. 

Lemma 5.1 lf a function f E B,,,,,, can be computed by a planar circuit of depth d, then f is 
O( d)-ring-parlitionable. 

Proof: Without loss of generality, we can assume that C is embedded on the surface of a cylinder 
with the input face at  the bottom if the cylinder (see Figure 1). 

n 

Figure 1: Embedding Planar Circuits on a Cylinder 

Since the height of C is d, C has a (1/3,2/3)-separator of size d [6 ,  71 that  (1/2,2/3)-splits the 
inputs (See Figure 2). 

Figure 2: Partition of a Circuit by a h-separator 

By recursively applying the separator partition, we can partition the circuit into n' components, 
CO, . . . , L',,L~, each contains at  most h-inputs. We say two components are neighbors, if they share 
some nodes which are removed during the partition. From the construction above, it follows that 
each component has a t  most two neighbors. Moreover, no pair of neighbors share more than d 
nodes which are removed, and hence, without loss of generality, we assume Ci has neighbor Ci-1 

and C;+l. Therefore, we have an d-balanced ring-protocol with n' nodes, where the processor on 
node i evaluates the component C; and communicates with processor on node i - 1 and i + 1 to 
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evaluate the nodes on the separator. Clearly, the communication complexity @ H (  f )  is bounded by 
O ( 4  0 

cornpuled by  a circuit of size 0 ( 2 d n ) .  
T h e o r e m  5.1 I f f  can be computed by a planar circuit of depth d ,  then an inverse off can be 

0 

A function f E P"'" is NCk-computable if f can be computed by an O((logn)k)-depth circuit 
of polynomial size. It is NCk-planar-computable if it can be computed by a O((logn)k)-depth 
planar circuit of polynomial size. 

Corol lary 5.1 If  N P  # P ,  then there is an NCQ function which can not be computed by an NC' 
planar circuit. 0 

Combining with a result of IIastad [3], 

Corollary 5.2 if P # NC' ,  then there is an NCo permutation which can not be computed by an 
NC'  planar circuit. 0 

Note that in the definition of the planar circuit, it is crucial to  impose the restriction a l l  inputs 
are on the same face. When this restriction is removed, the class of resulting circuits is called 
geneml planar circuits. The computational power of general planar circuit is greater than planar 
circuit (the proof will appear in the full paper). 

T h e o r e m  5.2 If  N P  # P, there is a function f computable by a geneml planar circuit with 
constant depth and polynomial sire, whose inverse is not computable by any polynomial size circuit. 
0 

6 Area Requirement of One-way Functions 

In this section, we prove a lower bound on the VLSI area requirement of one-way functions in 
Thompson model [15,5] where all inputs and outputs are on the boundary of the Thompson grid. 
We can prove (the proof will be in the final version) 

Theorem 0.1 If a function f has a circuit with layout area A, then there is a circuit of size 
0 

Corollary 6.1 For all one-way junctions f, the area required to layout f is at [east Sl(n1ogn). 

0(2A/n)  computing an inverse of f .  

7 Final Remarks 

All results presented in the above section are stated in the non-uniform form. Similar uniform 
version of the results can be proven. We also consider the parallel complexity of inverting boolean 
circuits. Those results will be included in the full paper. One interesting question remain open is 
to  what topology can our upper bound result be extended. In particular, it is interesting t o  know 
whether similar results can be obtained on TI by n meshes. 
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Finally, we have also obtained some results t ha t  relates the twepa r ty  communication complex- 
ity to the complexity of inverting permutations. Those results will be included in the  final version 
of the paper. 
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