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Abstract 

This paper shows how to derive a representation of the participants' knowledge 
in a cryptographic protocol. The modelization is baaed on the assumption that 
the underlying cryptographic system is perfect and is an extension of the "Hidden 
Automorphiam Model" introduced by Merritt. It can be ueed to establish the 
eecurity of the protocob. 

1 Introduction 

A fair amount of research is devoted to developing cryptographic systems that are as 
secure aa possible. Unfortunately, this is not sufficient: if a cryptographic system is used 
in an incorrect protocol, security can be compromised even if the cryptographic system 
is perfect. In the literature, the analysis of the security of the protocols is often strongly 
linked to the particular structure of the used cryptosystem (p0088,  Dam87, EGS861). 

We adopt the point of view of Merritt in [Mer83] who studied the problem of re& 
eoning about cryptographic protocols, assuming the underlying cryptographic system to  
be perfect. In Wer831 and [MW85], a cryptmystem is represented by an algebra (called 
the crypfo-algebra) and its perfection is modeled by the fact that the crypto-algebra is 
isomorphic to  the free algebra of the same type. 

In [TW91], we introduced a new representation of the participants' knowledge. The 
messages and keys whaee 8 participant knows the meaning are represented in his state 
of knowledge by constants of the free-algebra whereas the o n e  whose he does not know 
the meaning are repreaented by variables defined on the free-algebra. This representation 
enabled UB to obtain a new method to prove the security of cryptographic protocols. But, 
as we have seen by studying some examples in VouSl], it is not sufficient because it does 
not model all the inferences and computations that the participants (and opponents) are 
able to make from their states of knowledge. 
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In thie paper, we refine the representation by modeling all the knowledge that a 
participant is able to  obtain. We assume that the set of all the messages and keys 
that a participant knows is closed under the enciphering and deciphering operators. 
However, if in the computation of this closure he finds by two distinct ways the same 
sequence of bite, the participant will often be able to  deduce from that the meaning of 
some messages and keys i.e. to infer from that the values of the free-algebra variables 
representing these measages and keys. In fact, the two ways of computing the same 
sequence of bits correspond to two distinct expressions in the free-algebra; the inferences 
that the participant is able to  draw consist in unifying these two expressions. When 
this unification is not possible, an inconsistency is detected and an attempt at cheating 
is discovered. Moreover, a participant can instantiate some variables of his state of 
knowledge (we talk then about a ‘state of belief’) and try to  obtain some informations 
by inferences. These inferences are also modeled by unifications between expressions of 
the fiee-algebra and the probability that such unifications really bring some informations 
is studied. In fact, other types of inferences exist and are all modeled in this paper by 
unifications or contra-unifications (i.e. elimination of some values from the domain of the 
variables because some expressions in the free or cryptealgebra which could be unified 
correspond to  distinct elements in the other algebra) of elements of the free-algebra or 
the crypt-algebra. 

The main originalities of our method are its generality (we can apply this method to 
protocols using public or private key cryptography, preserving the secret of data, to au- 
thentication protocols, signature schemes,. . . (see [Tougl])), the consideration of the prob- 
abilistic knowledge of the participants and the use of a model based on the assumption of 
a ‘perfect’ cryptosystem. Other papers [BAN89, Bie89, Kem89, Mea89, Var89, MCF871 
mainly prove the security of keys distribution protocols where the probabilistic choice 
does not occur: the properties of the cryptosystem that ensure security are there modeled 
by axiom and the proofi often use logics of knowledge or belief. 

This paper is organized a8 follows. In Section 2, we present our model of the rep- 
resentation of knowledge of the participants in a cryptographic protocol. In Section 3 
(Subsection 3.1), we introduce some examples to show that this model has to be re- 
fined, Afterwards we formalize the inference8 that a user is able to draw from his state 
of knowledge (Subsection 3.2) and we define the notion of ‘inferred state of knowledge’ 
which contains all the informations that a user can obtain by computations and inferences 
(Subsection 3.3). 
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2 Modeling States of Knowledge 

2.1 Modeling the Cryptosystem 

A cryptmystem is seen as an algebraic system called the crypio-algebra C. For simplicity, 
we suppose that the plaintexts and ciphertexts belong to the same set M and the keys 
to a set denoted K .  The operators of the cryptcdgebra C are usually the enciphering 
function E and the deciphering function D which are linked by some relations. 

Following [MW85], we consider an idealization of the cryptmystem. It is the quotient 
by the relations between e and d of the free algebra of the same type as the crypto-algebra. 
This free-algebra representa the structure of the cryptmystem and is denoted here by 7 .  
The operators of the free-algebra are respectively denoted by e and d corresponding tc  
E and D in the crypto-algebra. The ‘perfection’ of the cryptmystem is modeled by 
assuming that the cryptsalgebra is isomorphic to  the free-algebra. 

2.2 Modeling Participants’ Knowledge 

As in [TWgl], the state of knowledge of a participant is Seen as a partial knowledge of 
the isomorphism (denoted here ’p) between the free and cryptedgebras. 

Definition 2.1 A state of knowledge aboui a cryptosysiem is a subsei of F x C. 

This definition is very general. However, we only consider states of knowledge which 
can be partitioned in three special finite sets F, V and S V :  these states of knowledge 
are called reprresentable. 

1. F (for Fixed) is formed by pairs (a, b) which define a one to one mapping from 
a subset of F to a subset of C. That corresponds to elements the participant 
has seen or that he knew at the start of the protocol and that he can label by a 
h e d  ekment of the free-algebra, The set F will be described by specifying the 
freadgebra component of the pairs. 

2. V (for Variables) is formed by pairs (z,y) where z is a fixed generator of the free- 
algebra whereas y ranges over a subaet of the generators of the cryptsalgebra. 
The pairs of this type correspond to generators of the crypto-algebra that the 
participant has not seen but the existence of which he is aware of; they will be 
represented by a variable denoted by a tilded symbol, Z,  ranging over the image 
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under the isomorphism p-l of the domain of y. The variable y is then called the 
‘dud variable’ of P. In the rest of this paper, we consider V as a set of variables of 
the freedgebra inetesd of a set of pairs. 

3. S V  (for Serni-Variables) is formed by pairs ( 2 ,  a) where, for each pair, a is a fixed 
element of the cryptcdgebra and z belongs to  a finite subset of 

C l ( F  u V) \ (CI(F) u V) 

where Cl(X) (for any subset X of F) denotes the closure of X under the enciphering 
and deciphering operators. These pairs correspond to elements that the user h a s  
seen but is unable to  label. A pair ( 2 ,  a) of S V  is represented by a variable (denoted 
2 ’ )  defined on the free-algebra with an inclusion constraint on this variable in the 
corresponding subset of CI(FUV)\(Cl(F)UV) and occasionally inequality relations 
between variables. 

The participants make some computations on their states of knowledge. We overvalue 
them by assuming that each participant is able to compute the closure Cl(F U S V ) :  this 
closure is called the seen )+action of the participant (because it corresponds to  the closure 
of the set of elements of the cryptedgebra that he has seen) whereas C I ( F )  is called his 
known froction. 

A participant can also consider some instantiations of the variables of his state of 
knowledge: the obtained eet is then called a ‘state of belief’. 

Definition 2.2 A state of belief compatible with a knowledge state K = F U V U S V  C 
3 x C is a mazimal rcstricfion of K io  a one to  one mapping (‘mazimal’ means here thaf 
there is no other tvsiriciion of K t o  a one to one mapping including fhis state of belief). 

Even if the elements of V are represented, for simplicity, BS variables in the free-algebra, 
their free-algebra Components can be fixed whereas their crypt-algebra components vary. 
It is thus more natural to define an instantiation of an element of V as an element of the 
cryptedgebra. On the other hand, the elements of S V  (or more exactly their free-algebra 
componente) are really variables in the free-algebra and are instantiated by elements of 
the free-algebra. By definition, the free-part of an instantiation of the variables of a 
knowledge state is the restriction of this instantiation to the e’lements of SV and its 
crypto-part is its restriction t o  the elements of V. 

For each state of belief Be compatible with a knowledge state K = F U  VUSV,  there 
is one and only one instantiation i of the variables of this knowledge state such that 

Be = F u {(ii, i(q) : ii E V} u { ( i ( z * ) ,  SV(z’)) : z’ E S V }  



where S V  is considered as a function which maps the variable representing an element 
(i.e. a pair) of S V  to its second component. The instantiation i is called the instantiation 
relative to the belief state Be. 

We can divide the set of belief states compatible with a given state of knowledge 
in (finite) equivalence classes for the relation: “their relative instantiations have the 
same crypto-part”. We could obtain a similar relation for the free-part of the relative 
instantiations of the belief states but this relation would not be used below. 

3 Modeling the Possible Inferences of a User from 
his State of Knowledge 

3.1 Problem Statement 

Each participant tries to obtain some additional informations by analyzing his state of 
knowledge. We have overvalued the power of computation of a participant by assuming 
that he is able to compute his seen fraction. But that is not sufficient: we have not 
modeled the different inferences the participant is able to draw by analyzing his seen 
fraction or a finite number of his belief states. 

Example 3.1 In [TW91], we studied the following example of coin-flip protocol which 
can use any secret key cryptosystem. 

1. A chooses randomly a key k in K and different mesaages ml ,  m2 in {T, H}. A sends 
em1 = E ( k ,  ml) (the enciphering of ml under key k) and em2 = E(L,  m2) to B. 

2. B picks u in {ernl,em2} and sends u to A. 

3. A sends k to B and they both know the answer a of the coin flip by applying the 
deciphering transformation D to u. 

B’s knowledge at the end of the first step is modeled as in Subsection 2.2 by K ( B ,  1) = 
F ( B ,  1) U V(l3, l )  USV(B, 1): 

F ( B , l )  = {T ,H} ;  V(B, l )  = {I}; S V ( B , l )  = {em;,ern;) 

where 

I E IC ; em;, ern; E { e ( i ,  T ) ,  e(i, H)} 
em; # em;. 
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The representation of B’s knowledge has not changed a t  the end of the second step and 
becomes at the end of the third step K ( B ,  3) = F(B,  3) U V ( B ,  3) U SV(B ,  3): 

F ( B , 3 )  = {T, H, k]; V ( B ,  3) = 0; SV(B ,  3) = 0. 

This model ie not sufficient: it only represents the knowledge that B directly obtains 
but not the inferences that he is able to draw. Indeed, at the end of the first step, B 
triea to obtain more informations. For this, he studies some belief states. If he considers 
the right instantiation of the key h, he will find out that it is the right value and B’s 
knowledge at the end of the first step can be represented by K ( B , 3 ) .  We have to prove 
that the probability that happens is zero. Moreover, the transmission of k by A at the 
third step enables B to verify that em1 and em2 had the right form. Otherwise, an 
inconsistency is detected. This is not translated in K ( B , 3 ) .  In fact, B computes his 
seen fraction which contains e ( k , T )  and e(h, H) at the end of the third step; then he 
compares their crypto-algebra components with the crypto-algebra components of em; 
and em; and deduces from that the values of em; and em: if there was no cheat at  step 
1 or detects an inconsistency if there was a cheat. We have to translate these inferences 
in our model. I 

Let us now consider simple abstract examples in order to introduce our model. 

3.1.1 Inferences Obtained by Computing the Participant’s Seen F’raction 

Assume that the state of knowledge K = F U V U SV of a participant is the following: 

The seen fraction of this participant contains the pair formed by the element e(k1, m l )  
and the corresponding element of the crypto-algebra. If the images of e(hl ,ml)  and 
e(?, 6) under this seen fraction coincide, the participant will directly deduce that T = k l  
and 6 = mi: we will say that there has been a unification of the elements e(k1, m l )  and 
e ( z ,  6) of the free-algebra and Z = h1 and 6 = rnl are the constminis requimd by this 
unificatioa. If the image of e(kl ,ml)  and e(?,fii) are different, the user will directly 
deduce that & # k1 or iii # ml: we will then talk about a contra-unifica2ion because it 
is as the opposite of a unification and F # k1 or iir # ml are the constmints required by 
this contra-rnification. 

However, the second components of the elements in the seen fraction of a user are 
fixed sequences of bits. If a given element of the free-algebra has as image two different 
elements of the crypto-algebra, there is some inconsistency in the corresponding state 



30 

of knowledge and a failure is detected: it can be a failure in the communication or a 
cheating of another participant or of an opponent. These cases are treated in the same 
way and reault in the rejection by the user of the current execution of the protocol. 

Moreover, if the domain of the seen fraction of a user contains some variables of V ,  
he directly deduces the value of these variables: they have thus to be removed from 
the set V .  In order to have a uniform model for all the inferences drawn from the 
computation of the seen fraction, we treat this case as a unification of elements of the 
crypto-algebra. Indeed, the state of knowledge K = F U V U S V  is represented by giving 
the free-algebra component of the elements of F ,  the variables of V and S V ,  and the 
corresponding constraints defined in the free-algebra. K can thus be considered as a 
function which aesociatea with the free-algebra component of an element of F its crypto- 
algebra component, to  a variable of V its dual variable, and to a variable of S V  its image 
under SV;  K can then be written in a way rather similar to the representation (1) of a 
belief state 

K = F U { ( C , e )  : C E  V}U{(z' ,SV(2')):2 'ESV} (2)  
where 3' denotes the dual variable of u. If the domain of CI(F u S V )  contains some 
variables of V, each of these variables will have for image under CI(F U S V )  a sequence 
of bits fixed in the crypbalgebra and under V its dual variable: it is then sufficient 
to unify theee two images i.e. to restrict the domain of the dual variable to a singleton 
containing the sequence of bits in order to model the additional information obtained by 
the user. 

3.1.2 Inferences Obtained &om the Closure of Belief States 

Let us assume now that K = F U V U S V  is the following knowledge state - 
F = # ; V =  { k , 6 } ; S V  = { e ( z , G i ) } ; i € K , G i ~ M .  (3) 

The user thus knows the element of the cryptealgebra corresponding to e ( z ,  6) but not 
the ones corresponding to and 6. 

Let Be be a belief state compatible with K such that 

Be = { (? ,kc) ,  (%,me)} U { e ( z ,  Gi),SV(e(~,i?i))}; for some LC E K, mc E M (4) 

where K and M represent respectively the set of keys and the set of messages in the 
crypto-algebra. If, in the computation of the closure of the belief state, the encryption 
of me under the key kC gives SV(e(a ,  %)), the user can deduce from this that the value 
of a truly is kc  and that the value of 6 is me. On the other hand, if the encryption of 
me under k" doea not yield S V ( e ( i ,  6)), the user will reject this belief state. 
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However, when we want to  model and systematize this reasoning, we have some 
difficulties in the case where the belief state associates the right values to and iii 
because nothing enablea us to distinguish the case where the image of the free-algebra 
element e ( i ,  ijl) ia computed from the values kC and me from the case where we simply 
take its image under S V .  We have to distinguish these two ways of computing this image. 
Therefore, let us reason on the notion of belief state. 

In a belief state, the variables of V are instantiated by elements of the domain of their 
dual variables without considering the elements of S V  which are expressed as functions 
of those variables: because of the isomorphism between F and C, the variables of V 
appearing in the expressions representing the domain of the elements of S V  cannot be 
replaced by their instantiations except if these instantiations correspond to  their real Val- 
ues. We thus distinguish the variables of V from the free-algebra elements corresponding 
to their instantiations under the isomorphism ’p between F and C. We will denote these 
elements by overindexing them by the letter ‘ f ’  (for fixed and free-algebra). In the 
above example, the belief state becomes 

Be = {(P, he) ,  (mf, me)) u {(e(g, m ) , S v ( e ( i ,  ~ i i ) ) ) ) ; ~  E EC,  me E M. (5)  

Thus, hf  (resp. m’) is the free-algebra element image under ’p-l of the crypto-algebra 
element he (resp. me). 

We proceed then exactly in the s a m e  way as for the computation of the seen fraction 
of a user. If the images of e ( k / ,  m’) and e(g, 6) under the closure of Be are the same, 
we unify these two expreesions and deduce that 

I 

C = k ’ a n d B = m f ;  

if t h e  images are not identical, we deduce by what we have called a “contra-unification’’ 
that 

i # i t ’ o r  iii#m’, 

which amounts to rejecting the belief state Be under consideration. 
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If the encryption of mi under kf is equal to  SV(z*) ,  we can not directly deduce that 
kl = Ci and Gil = m(; that would only be true if the instantiation of z' is correct 
(otherwise, we would have &! = k{ and 5 2  = mi): note that the instantiation i ( z ' )  = 
d(&, e ( ~ 2 , ; i i l ) )  can directly be rejected but not the instantiation i (r ' )  = e ( t 2 ,  f i 2 ) .  

In the same way, if this encryption is not equal to SV(z ' ) ,  we can deduce that # 
C( or m1 # %{, only if the instantiation of I* is correct. 

I 

- 

We see that the conclusions obtained by computing the closure of a belief state can be 
considered only under the auxiliary hypothesis that the instantiation of some variables 
relative to this belief state corresponds to  the current instantiation of these variables. 
When can we remove this hypothesis and really obtain some information to add to the 
st ate of knowledge? 

Before answering this question, let us remark that in the case of the belief state (4), 
we have directly been able to add the deduced information to the state of knowledge 
without any auxiliary hypothesis. The difference between the states of knowledge (3) 
and (6) is that in (3) the set S V  contains an element whose domain can be considered as 
a singleton which only varies when the variables of V vary; whereas in (6) the domain of 
z* contains three elementa and thua for the same values of the variables of V ,  I' can take 
three different values. The problem in (6) appears because two elements in the domain 
of z* have the same form i.e. are unifiable. The instantiation of the element of S V  in 
(3) i.e. the free-part of the instantiation relative to the state of belief (4) is thus always 
correct contrary to  the one relative to the state of belief (7). 

Note also that with the notation used in relations ( 5 )  and (7), the variables of V 
appear only in the instantiated values of the elements of S V .  The different constraints 
are thus necessarily the result of a unification of the instantiated values of variables of S V  
with other computed elemente and are valid only if these instantiated values correspond 
to the real values of the elements of S V .  We thus see that the auxiliary hypothesis 
is concerned only with the elements of S V ,  i.e. with the free-part of the instantiation 
relative to  the belief state. 

A constraint will be added to the state of knowledge of a user only if it is valid for 
every instantiation of the elements of S V .  For a given instantiation of the variables of V ,  
we have thua to successively study the different possible instantiations of the variables of 
S V :  a constraint will then only be considered if it appears for all the instantiations of the 
variables of SV.  In other words, a constraint will be added to the state of knowledge of a 
user only if it is required by the unifications and contra-unifications made in the analysis 
of each of the states of belief whoee the relative instantiations have the same crypto-part. 
At the end of Section 2, we have grouped these belief states in an equivalence class for 
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the relation 
“their relative instantiations have the same cryptGpart”. 

Each equivalence claw contains a finite number of belief states because the domain of 
the elements of SV expressed in t e r m  of the variables of V is finite. 

A constraint on the variables required by a unification or contra-unification in the 
computation of the closure of a belief state can be added to  the state of knowledge only 
if it i deduced from the computation of the closure of each (nonrejected) belief state 
of a same class. We will then say that this constraint is characteristic o f t h e  constdered 
class. A way of obtaining the constraints characteristic of a class consists in taking the 
disjunction of all the constraints required in the analysis of the belief states of this class. 

Remark 3.1 In the case of the above example ( 6 ) ,  each instantiation of the variables 
kl, ka, %I, %a leads to an equivalence class which contains three belief states correspond- 
ing to  the three poesible instantiations of 2.. If the encryption of mi under ki is equal 
to  SV(z’), the constraint 

I -  

is characteristic of the class of the belief state Be given in (7) and can be added to the 
state of knowledge (6), but if this encryption is not equal to  SV(r’), the constraint 

is characteristic of the class of Be. I 

We assume that a uBer is able to  compute the closure of any fixed finite number 
of belief states. The best strategy to  add as much information as possible to a state 
of knowledge seem to consist in analyzing all the belief states of some classes (rather 
than to  consider some belief states of some classes): the disjunction of the obtained 
constraints can then directly been added to  the state of knowledge without any auxiliary 
hypotheais. Because these clamea are finite, we can assume that a user is able to compute 
the closure of all the belief states of a fixed finite number of classes. A user who wants 
to obtain a maximum of informations will thus choose a finite number of classes and 
analyze all the belief statee of these classes: the choice of a finite number of belief states 
without considering their belonging to  the equivalence classsea would be much less useful 
because the constraints obtained by their analysis would only be valid under the auxiliary 
hypothesis that the corresponding instantiation of the variables of SV is correct. 

. 
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3.1.3 Summary of the Possible Inferences 

The seen fraction of a user and the closure of each belief state of a finite number of chosen 
classes are successively examined. Several ca8e9 can appear. 

0 When two elements of the free-algebra (resp. of the crypto-algebra) have for image 
(resp. are image of) a same element of the crypto-algebra (resp. of the free-algebra), 
we have to be able to unify these two elements; if it is not possible, either a failure is 
detected if the seen fraction of the user is analyzed or, in the case of the computation 
of the closure of a belief state, this belief state is rejected. Note that the rejection 
of a belief state can be translated as a constraint on the variables: at  least one of 
the variables is not instantiated as specified in this belief state. If all the belief 
states are rejected at the end of the analysis, a cheating has been detected. 

0 If two unifiable elements (i.e. such that we can reduce the domain of the variables 
80 that they become equal) of the free-algebra have different images in the crypto- 
algebra, we introduce what we call a contra-unification, i.e. we exclude the values 
of variables which would unify these two elements. 

In the case of the computation of the seen fraction, the constraints required by the 
unifications and contrwmifications are directly added to the state of knowledge; in the 
case of the closure of a belief state, they are added only if they are characteristic of 
the class of this belief state. Moreover, the domains of the variables satisfying all these 
constraints have to  be not empty; otherwise an attempt to cheat is again detected and 
the current execution of the protocol is stopped and rejected. 

Now, we are going to formalize 811 these different concepts. 

3.2 Unifiable Elements 

Before building the inferred state of knowledge of a user, which has to  contain all the 
informatiom directly obtained or deduced by this user, we need to  introduce some defi- 
nitiona and make some remarks. 

The notion of ‘domain’ which is very usual in mathematics can seem a little strange 
here for the elements of V: as we have defined in Subsection 2.2, the domain of these 
elements is the free-algebra subset corresponding to the domain of their dual variable. 
Moreover, by extension, we say that the domain of a constant of the free-algebra or the 
cryptedgebra is the singleton including this constant. 
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As we have seen above, in a given state of knowledge K = F U V U S V ,  the variables 
introduced in the free-algebra are the variables of V and SV,  and those introduced in 
the crypto-algebra are the dual variables. The free and crypto-algebras components of 
the elements of the seen fraction and of the closure of a belief state can be expressed in 
t e r m  of the corresponding variables. The problem is to unify two elements of one of the 
two algebras. 

Let A be the free-algebra or the crypto-algebra; the set of variables defined in A 
given the state of knowledge K of a UBer is denoted VA. As we have seen previously, 
the variables of VA are introduced in the representation of the state of knowledge K and 
thus depend on this state of knowledge. Let us consider the elements of A which can 
be expressed in t e r m  of the variables of VA and of the corresponding enciphering and 
deciphering operators. Unifying two elements of A in the state of knowledge K amounts 
to limiting the domain of the variables of VA 80 that these two elements are equal for 
the remaining values of the variables. 

Let K = F U V U S V  be a (assumed to be representable) state of knowledge, the set 
VA is finite and can be denoted 

with the constraints 
~1 E Du,,...,vn E Dun 

where D,,, . . . , D,. denote respectively the domain of u 1 , .  . . , u,,. An element of A ex- 
pressed in t e r m  of 0, 1,. . . or n variables of A and of the enciphering and deciphering 
operators is denoted by an expression like 

its domain is 
{~zP(vI,.*-,~~): ~1 E Duly ..., t ~ n  E Dun} 

and is denoted here briefly 
ezp(Du, 1 * * * 1 Du.). 

The unification of the two elements ezpl(v1,. . . , u,) and e z h ( u 1 , .  . . , u,) amounts to 
replacing their domain by the eet 

We will call this set the parametric inter8ection of the domains of the elements 
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b e c a w  it is the union on all the variables of the intersection of the domains of these two 
elementa i.e. 

We would like to reduce this intersection to  the two equivalent forms 

(ezpl(v1,.  . . ,vn)  : ~i E D&,.  . . , vn E Dv,} or { e z p ? ( v l , .  . . , v " )  : ~i E Du,, . . . , un E DI,) 

where D:, C D u l , . .  .,DUD C D,, or to a finite (disjoint) union of such sets. In our 
notation, the two sets above are respectively represented by 

etpl(D:,, . . . , DUD) and e z n ( D i l , .  . . , DUD). 
When such a reduction is possible, we say that the parametric intersection of the domains 
of the two elements is projectable and we have the following definition, 

Definition 3.1 Let K = F U V U S V  be a given state of knowledge; A denotes the 
f n e  o r  crypto-algebra and VA = { v ~  ,..., v,} (v1 E D,, ,..., vn E Dv,) is the set  of 
uariablees in A when  D,, denotes the domain of ui ( i  = 1,. . . l n ) .  Let e z p l ( v l , .  . . , u,) 

and  ezpz(v1,. . . , V n )  be two elements of A expnssed in terms of the variables of VA and 
the operators o f d .  The pammetnc  iniersection of their domains is projectable in the 
stale of knowledge K a! f h e n  is a finite partition of this intersection, denoted 

((ezpl(o1, .. . , U n ) , ~ i  E D?;,.. .,on E D?:];i = 1, .  ..,PI 

such thaf, for every i = 1,. . . r, 

DP) c D,,, . . . , LIP: c DUD 

Intuitively, the parametric intersection of the domains of two elements of A is projectable 
in K if it can be partitioned in a finite number of sets which can be represented by any 
of the two expressions representing the initial domains but where the variables VA vary 
on more limited do&. 

The unification of the twoelemente ezpl(u1,. . . , u,) and ezpz(v1,. . . , un) of Definition 
3.1 will eonrist in replacing the domaina of these elements by their parametric intersection 
i.e. in requiring of the variables of VA the following additional constraint 

i/(q E D$') A .. . A u,, E Dt.)); 
i=l 

this constraint is called the 'constmint required by the unification'. 
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Moreover, the contraunification of the two elemenb 

ezpl(u1,.  . . , vn) and ezpl(u1,. . , ,vn)  

of Definition 3.1 will consist in preventing these two elements from belonging to the 
parametric intersection of their domains i.e. in requiring of the variables VA the following 
additional constraint 

r 

4 D?) v . . .v  un 4 D??); 
i=l 

this constraint is called the ‘constmint required by the contraunification’. 

For simplicity, we assume that the parametric intersection of the domains of any two 
elements of the free or crypto-algebra is projectable in any state of knowledge of a user. 
Note that, in most practical cases, the partition in Definition 3.1 includes only one term. 

We can now precisely define ‘unification’ and ‘contra-unification’. 

Definition 3.2 

Two elements of the free-algebm o r  of the crypto-algebra are unifiable in a sfafe of 
knowledge K = F U V u S V  if the parametric intersection of their domains is not 
empty. 

Let El and E2 be two unifiable elements of the free (resp. crypto)-algebra in a sfate 
of knowledge K = F U V U S V .  

The unification of El and E2 consisfs in limiting the domains of the variables of 
V and S V  (resp. of the dual variables) by some c o n s h i n t s  such that El and E2 
become equal and vary in the parametric intersection of their initial domains. The 
constraints on the variables are called the constraints required by the unification. 

The contra-unificationof El and E2 consists in limiting the domains of the variables 
of V and S V  (resp. of the dual variables) by some constmints such fhaf El and 
E2 can not become equal and thus can not belong to the parametric infersection of 
their  initial domains. The constrainfs on f h e  variables are called the constraints 
required by the confm-unijicafion. 

3.3 Inferred States of Knowledge and “Known F’ractions” of the 
Participants 

When can we conclude that a state of knowledge is consistent or, on the contrary, that an 
attempt of cheating has occurred? As we have already mentioned previously, we analyze 
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the seen fraction of a user, then successively the closure of belief states belonging to a 
finite number of equivalence classes as defined in Subsections 2.2 and 3.1.2. All the free- 
algebra elements (resp. crypbalgebra) which have the same image in the crypto-algebra 
(resp. which are the image of an identical element of the fiee-algebra) must be unified: if 
they are not unifiable, the state of knowledge is said to be inconsisient in the  case of the 
seen fraction of the user or the belief state is rejected in the case of the closure of a belief 
state. The unifiable elements remaining in the free-algebra are then contra-unified. All 
the required constraints have to  be ‘compatible’ i.e. there must be at  least one value in 
the domain of the variables which satisfies all these constraints. More generally, we have 
the following definition 

Definition 3.3 

A relation included in 3 x C is consistent if 

- all  the elements 

* of the  domain which have the same image on one hand o r  

* of the codomain which are image of an  identical element of the domain 
on the other hand 

are unifiable and 

- all  the constraints required 

* by these unifications and 
* by the contra-unifications of the unifiable elements of the domain which 

have not the same image 

are compaiible. 

The unified function of a consistent relation f included in F x C is the one t o  one 
function obtained by 

- unification of the elements of the domain (tcsp. codomain) which have the 
same image in ihe codomain (resp. are image of an identical element of the 
domain) and 

- contra-unification of the other unifiable elemenis of the domain. 

The procedun to obtain the unified function from a consistent relation is called the 
unification of this relation. 

The unified function of a relation can be seen as this relation to which the constraints 
required by the possible unifications and contra-unifications are imposed. 
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We want to  apply these definitions to  the state of knowledge of a participant in an 
execution of a protocol in order to  determine if he will accept or reject this execution. 
A state of knowledge is said ‘consistent’ if the probability that the different inferences 
drawn by the corresponding participant (for any adopted strategy) do not introduce any 
inconsistency is 1, i.e. if the probability that this participant chooses to  analyze a finite 
number of classes of belief states such that all the deduced informations are compatible 
is 1. (Remark that, if the number of classes is infinite, that does not necessarily mean 
that all these informations have to be compatible for every choice of a finite number of 
classes). 

In the following definition, we explicitly consider a state of knowledge and the corre- 
sponding sets F, V, SV as sets of pairs belonging to  T x C. 

Definition 3.4 A state of knowledge K = F U V U SV is consistent if 

1. Cl(F U SV)  U V is consistent and 

2. the probability to choose a fixedfinite number (which depends on the computational 
power of the corresponding user) of classes of belief states compaiible with IC such 

that all the following constraints are compatible is 1 (for any adopied strategy lo  
choose the belief states). These constraints are 

the constraints required by  the unification of Cl(F U S V )  U V ,  

the constraints representing the rejection of the belief states belonging to one 
of these classes and  whose closure is not consisient, 

the consiraints required b y  the unification of the closure of the consisleni belief 
stales of these classes and characteristic of at least one of these. 

An ‘inferred state of knowledge’ is a state of knowledge increased by all the infor- 
mations that the corresponding participant can deduce by inferences as specified in the 
following definition. 

Definition 3.5 Given a consistent d a t e  of knowledge K = F U V U SV and a finile 
number of classes of belief states compatible with K ,  the inferred state of knowledge is 
the state o f  knowledge K;  = Fi u V; u Sli: obtained from K b y  the addition o f  a l l  the 
constraints 

required b y  the unification of Cl(F U S V )  U V ,  
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representing the rejection of the belief s tates  belonging t o  one of ihe considered 
classes and which closure is not consistent,  

required b y  the unification of the closure of the consistent belief s tates  of these 
classes and characterist ic of at least one of these.  

Note that the inferred state of knowledge defined in Definition 3.5 depends on the 
choice of the classes of belief states: when we do not specify the chosen classes, we talk 
about ‘an’  inferred state of knowledge. 

The purpose of a malicious participant is to detect the belief states whose closure is 
consistent. If the number of classes of belief states is finite, the participant can analyze 
the consistency of the closure of each state of belief in that case, we assume that n (the 
number of classes whose all the states of belief can be examined) is larger than the total 
number of classes of belief states. If the number of classes of belief states is infinite, an 
exhaustive analysis is impossible; the participant can test the consistency of the closure 
of belief states of only a finite number of classes that he chooses. 

Remark that if its set SV is empty (it is for example the case in a simple state of 
knowledge), the state of knowledge I< is always consistent and can not be increased: the 
inferred state of knowledge is identical to the initial state of knowledge K .  

An inferred state of knowledge is thus a representation of all the information that 
the user is able to obtain. We can extend the definition of the ‘known fraction of a user’ 
from that.  

Definition 3.6 Given  a state of knowledge K and an inferred state of knowledge Ki = 
F, U K U SK,  the inferred known fraction of the corresponding user  i s  the closure of Fi 
under  the operations of the free and crypto-algebras whereas the inferred seen fraction of 
this u s e r  is the closure of (Fi U SK)  under the s a m e  operations.  

Note that these inferred known and seen fractions are not unique but depend on the 
choice of the classes of belief states (because the given inferred state of knowledge Ki 
depends on that choice): when we do not specify the chosen classes, we talk about ‘an’ 
inferred known fraction and ‘an’ inferred seen fraction. 

Example 3.2 The knowledge states of user A at the different steps of Example 3.1 are 
always simple: they are thus consistent. Whereas, a t  the end of the first step, B has an 
infinite number of belief states which correspond to the different possible instantiations 
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of the variables &, em; and em;: these belief states are divided in an infinite number of 
equivalence classes depending on the instantiation of z. When user B chooses a finite 
set of classes of his belief states, i.e. in fact a finite set of instantiations of the variable 
&, two cases are possible: 

0 if the real instantiation of 1 is chosen, B will find out, by unifications, that it is 
the right value; B's inferred state of knowledge is then 

F ( B ,  1) = {T ,  HI k); V ( B ,  1) = O;SV(B, 1) = 0; 

if the real instantiation of is not chosen, all the belief states of the chosen classes 
are rejected and the chosen values of & are removed from its domain; B's inferred 
state of knowledge is his initial state of knowledge where a finite number of values 
are removed from the domain of &. 

Note that,  in any case, there still are values of the variables which satisfy all the required 
constraints: the states of knowledge are thus consistent. 

The security of our coin-flip example is preserved only if B is not able to find the value 
of the variable 1. Intuitively, choosing the real value of has a probability equal to zero 
and in the other case, rejecting a finite number of belief states does not matter. In the 
full paper, we will prove this formally by applying the probabilistic measure introduced 
in [TouSl]. Moreover, when B analyzes his seen fraction at  the end of the third step, this 
fraction contains e(k,T),  e ( k , H ) ,  em;, em;. If the crypbalgebra components of em; 
and e ( k ,  2") or e ( k ,  H )  are identical, B deduces the values of em; and em;. Otherwise, 
an inconsistency is detected. I 

4 Conclusions 

We have proposed a model of all the knowledge that a participant in a cryptographic 
protocol can obtain by inferences and computations. Among other things, our model 
enables us to  represent the probabilistic knowledge of the participants in a cryptographic 
protocol and to  prove some probabilistic properties of these protocols. This representa- 
tion is necessary to  enable us to  find out by the method described in [TWSl] and [TouSl] 
all the possible attacks of the participants and of the intruders against cryptographic 
protocols. 
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