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Abstract 

In this paper, we prove two new combinatorial characterizations of authenti- 
cation codes. Authentication codes without secrecy are characterized in terms of 
orthogonal arrays; and general authentication codes are characterized in terms of 
balanced incomplete block designs. 

1 Introduction 

In this paper, we prove some new characterizations of authentication codes. By a charac- 
terization theorem, we mean a theorem of the form “an authentication code with certain 
properties exists if and only if a certain combinatorial structure exists”. Typically, the 
properties of the authentication code that are considered are natural, desirable properties 
such as having the minimum possible deception probabilities and the minimum number 
of encoding rules. 

In the past, bounds have been proved on these quantities, and constructions have been 
given for classes of authentication codes that meet such bounds with equality. Many of 
these constructions have used combinatorial designs. The characterizations in this paper 
show tha t ,  in certain casea, the known constructions are essentially the “only way” to 
obtain codes with the specified properties. Of course, a characterization of this type has 
intrinsic interest. However, a characterization also proves that it is impossible to  find 
“different” constructions from those already known. 

In this paper, we prove two new characterizations of this type. The first result (The- 
orem 3.1) concerns authentication codes without secrecy, i.e. codes where an observed 
message can correspond to only one possible source state. Such a code is equivalent to 
one where a message consists of a source state concatenated with an authenticator. A 
code where the deception probabilities and the number of encoding rules meet the lower 
bounds with equality is equivalent to a combinatorial design called an orthogonal array. 
This characterization has been previously proved in the case where the number of possible 

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPT0 ’91, LNCS 576, pp. 62-73, 1992 
0 Spnnger-Verlag Berlin Heidelberg 1992 



63 

Source states is at most 1 + the number of possible of authenticators. Here, we extend 
the characterization so that this assumption is no longer needed. The proof uses an 
elegant linear-algebraic technique which has not previously been used in authentication 
theory. 

Our second characterization concerns “general” authentication codes. Again, we con- 
sider those codes where the deception probabilities and the number of encoding rules are 
the minimum possible. It has been previously shown that such a code can exist only 
if a certain balanced incomplete block design (BIBD) exists. Conversely, it  has been 
previously shown that one can use the BIBD to construct the desired code if the source 
states are known to  be equiprobable. In this paper, we complete the characterization by 
showing that the assumption of equiprobable sources is necessary. Our result is stated 
as Theorem 4.1. 

Finally, the second characterization can be extended to include codes that,  in addition, 
An extra numerical condition is necessary and sufficient to provide perfect secrecy. 

provide secrecy (see Theorem 4.2). 

The paper is organized as follows. Section 2 gives necessary background from the 
theory of authentication codes. In Section 3, we prove our characterization for authen- 
tication codes without secrecy. In Section 4,  we prove the characterization of general 
authentication codes. 

2 Basic results on authentication codes 

The general theory of of unconditional authentication has been developed by Simmons 
(see e.g. [Sill and [Si2]), and has been extensively studied in recent years. In this section, 
we will give a brief review of some relevant known results concerning authentication 
without secrecy. 

I 

1 In the usual model for authentication, there are three participants: a t ransmi t ter ,  a 
receiver, and an opponent.  The transmitter wants to communicate some information to 
the receiver using a public commmunications channel. The source s i d e  (or plaintext) 
is encrypted to obtain the message (ciphertext), which is sent through the channel. An 
encoding rule (or key) e defines the message e(s )  to be sent to communicate any source 
state s. Each encoding rule will be a one-to-one function from the source space to the 
message space. We assume the transmitter has a key source from which he obtains a key. 
Prior to any messages being sent, this key is communicated to the receiver by means of 

’ 

’ 
1 a secure channel. 
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We will use the following notation. Let S be a set of t source states; let M be a 
set of v messages; and let E be a set of b encoding rules. Since each encoding rule is a 
one-to-one function from S to M ,  we can represent a code by a b x k matrix, where the 
rows are indexed by encoding rules, the columns are indexed by source states, and the 
entry in row e and column s is e(s). We call this matrix the encoding rnatrzt. For any 
encoding rule e E E ,  define M ( e )  = {e(s) : s E S), i.e. the set of valid messages under 
encoding rule e.  For an encoding rule e ,  and a message m E M(e), define e-'(rn) = s if 
e(s) = m. 

Suppose the opponent has the ability to introduce messages into the channel and/or 
to modify existing messages. When the opponent places a (new) message m' into the 
channel, this is called tmpersonatzon. When the opponent sees a message m and changes 
it to a message m' # m, this is called substitution. In either case, his goal is to have 
m' accepted as authentic by the receiver. That is, if e is the encoding rule being used I 

(which is not known to the opponent), then the opponent is hoping that rn' = e(s) for \ 
some source state s. I 

We assume that there is some probability distribution on S, which is known to all the 
participants. Given the probability distribution on the source states, the receiver and 
transmitter will c h o w  a probability distribution for &, called an encoding strategy. Once 
the transmitterlreceiver have chosen the encoding strategy, it is possible to determine, 
for i = 0,1, a probability denoted P d , ,  which is the probability that the opponent can 
deceive the transmitter/receiver by impersonation and substitution, respectively. 

P d ,  is calculated as follows. The opponent can compute, for each message m, a 
quantity payoff(m) which denotes the probability that m will be accepted as authentic 
by the transmitter/reciever. It is easy to see that 

{ e € E . r n € M ( e ) }  

Then it follows that c payoff(m) = k. 
I m e M l  

Hence, there exists a particular message mo E M such that payoff(rn0) 2 k / w .  Further, 
Pdo = k / v  if and only if payoff(m) = k / v  for every message m. We summarize this as 
follows. 

Theorem 2.1 [Sill Pdo 2 k / u .  Furiher, P d o  = k / v  if and only if 

for every message m. 
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Now, let’s turn our attention to the computation of Pd,. The situation is quite differ- 
ent depending on whether we have an authentication code without secrecy as opposed to 
a general authentication code. Let’s first consider authentication codes without secrecy. 
This means that e(s) = e’(s ’ )  only if s = s’; i.e. the message uniquely determines the 
source state, irrespective of the encoding rule being used. Hence, we can partition the 
set of messages M into E subsets M , ,  s E S, such that M, = {e(s) : e E I } .  

Suppose Pda = k / v .  For codes providing authentication without secrecy, this can 
happen only if 1M.I = v / k  for every source state s. In this situation, we can define a 
set A of L‘ = v / k  authenticators and a mapping 9 : .,bi 4 A such that,  for every s E S, 
{d(m) : m E M , }  = A. We can then obtain an isomorphic code by defining for every 
encoding rule e an aufhenf ica l ion  rule e @  defined by ed(s) = q$(e(s)) for every source 
state s. In this new code, every message consists of a source state concatenated with 
an authenticator from A, i.e. source state s is mapped to (s,e+((s)), where e 4  is an 
authentication rule. In terms of L? = Id/, we have Pdo = l/e. 

We will henceforth assume that every message consists of a source state with a con- 
catenated authenticator, since there is no loss of generality in doing so. Also, we will think 
of I as being a collection of authentication rules, and we will speak of an  authentication 
matr ix  rather than an encoding matrix. 

Suppose the opponent sees the message rn = (s, a)  in the channel. He can substitute 
this message with any message m’ = (s’, a’) ,  where s’ # s. Denote by payoff(m, m’) the 
probability that the message rn‘ will be accepted as authentic, given that rn is observed in 
the channel. Denote by eo the authentication rule being used by the transmitter/receiver 
(again, we emphasize that eo is unknown to the opponent). Then we have the following: 

Now, it follows that c w y o f f ( m ,  (S’I a’))  = 1 
a’EA 

for any s‘ # s. Hence, for every s‘, there exists an authenticator a’ = f (m,  s’ )  such that 
payof  f ( r n ,  m’) 2 l /e,  and it follows that P d ,  2 I/!. 

Suppose that Pda = l/e. Then, from Theorem 2.1, we have 

C p ( E = e ) = -  1 
{e:e(s)=o,c(s’)=a‘} e ’  
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Hence, we obtain the following theorem. 

Theorem 2.2 {St!?] Suppose we  have an  authentication code withouf secrecy i n  which 
Pdo = k / v  = I/[. Then Pdl  2 l / e .  Further, Pd, = l/&! if and only ij 

f o r  every  s, d, a, a', s # s' 

The above considerations also lead to a lower bound on the number of authentication 
rules and a characterization as to when equality can occur. We give this characterization 
in terms of orthogonal arrays, which we now define. An orthogonal array OA(n ,  k ,  A )  
is a An2 x k array of n symbols, such that in any two columns of the array every one 
of the possible n2 pairs of symbols occurs in exactly X rows. If X = 1, then we write 
OA(n,  k). Orthogonal arrays are well-studied structures in combinatorial design theory, 
and are equivalent to other structures such as transversal deaigns, mutually orthogonal 
Latin squares and nets. 

Theorem 2.3 [StZ] Suppose w e  have on authentication code wiihout secrecy i n  which 
Pdo  = Pdl = k / v  = l / f .  T h e n  b 2 12, and equality occurs if and only i f  the authentication 
m a t r i z  is  a n  orthogonal orray OA(t', k )  and ihe authentication rules are used wi th  equal 
pro bobility. 

Proof: Suppose Pd, = Pd, = k / v  = l/e. Let s # s'. Then, for every a,a', I{e : e ( s >  = 
a, e(s')  = a'}[ 2 1. Hence, 6 2 t2. 

In order that 6 = t2, it must be the case that l{e : e(s) = a, e(s') = a'}I = 1 for every 
8 ,  a', u, a', where s # 8'; and p(E  = e )  = 1/12 for every e E E .  The authentication matrix 
is clearly an orthogonal array OA(t?, k). 

Conversely, suppose we star t  with an orthogonal array OA(l ,  k ) .  Use each row as an 
authentication rule with equal probability 1/P2. Then we obtain a code with the stated 
properties. 0 

The above theorem provides a nice characterization, as far as i t  goes. However, 
existence of an OA(P,k) requires that k 5 t + 1. The two parameters t and .! are 
independent parameters, so it is also of interest to characterize authentication codes in 
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the situation k > e + 1;  i.e. when v < kZ - t .  We shall do this in Section 3. The 
characterization involves orthogonal arrays with X > 1. 

Let's turn to general authentication codes. Now, the set & is a set of encoding rules. 
As before, we compute a quantity p a y o f f ( m .  m') which is the property that the receiver 
will be deceived by a substitution of m by m'. We have 

{e:meM(e)}  

Fix a message m. Then we can compute Ern,+,, p a y o f f ( m ,  m') = k - 1. Hence, there 
exists a message m' = f ( m )  such that 

k - 1  
P a y o f f ( ?  ml) 2 XI 

and it follows that P$l >_ (k - l ) / ( v  - 1 ) .  

Theorem 2.4 [Ma], [Stl] I n  a n y  authentication code, Pa, 2 (k - l ) / ( v  - 1). Fudher,  
Pdl  = (k - l ) / ( v  - 1) i f  and only ?f 

C ~ e . r n , r n ~ ~ M ( e ) ~  P(E = e)P(S = ' - ' (m>)  - k - 1 
v - 1 

- 
C{e:rncM(e)}  P ( E  = e ) p ( S  = e - ' ( m ) )  

for all m, m', m # m ' .  

If we have a code in which Pda = k / u  and p d l  = (k - l ) / ( v -  l), then we can obtain an 
immediate lower bound on the number of encoding rules and a partial characterization. 
We need the concept of a balanced incomplete block design, or BIBD.  A ( v ,  k, X)-BIBD 
is a pair (X,d) ,  where 1x1 = v is a set of elements called points and d is a family of 

k-subsets of X (called blocks) such that every pair of points occurs in exactly X blocks. 
It is not difficult to see that every point occurs in precisely r = X(u - l ) / (k  - 1) blocks 
and that the total number of blocks is 6 = Av(v - l)/(k(k - 1)). 

Theorem 2.5 [Ma], [St2] Suppose we have an authenttcataon code zn which Pd,, = k / v  
and Pdl = (k - l ) / (v  - 1). Then b 2 (u2 - v ) / ( k 2  - k), and equality can occur only 2.f 

the rows of the encoding matrix. taken as unordered sets, form a ( v ,  k, 1)-BIBD. 

Proof: For every two distinct messages, rn ,m' ,  I {e  : m,m' E M ( e ) } l  3 1. Hence, 
b 2 ( u z  - v ) / ( k 2  - k). If b = (v2 - u ) / ( k z  - k), then l{e : m,m' E M ( e ) } l  = 1 for every 
m,m'. 
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The following partial converse was shown in [St2]. 

Theorem 2.6 [Stl] Suppose there i s  a ( v ,  k, l ) -BIBD. Then there exists an authenti- 
cation code for k equiprobable sources in which Pdo = k / v ,  P d ,  = (k - l)/(v - 1) and 
b = ( v 2  - u)/(k2 - k). 

Proof: For every block A E A, arbitrarily define an encoding rule e A  such that { e A ( s )  : 

s E S }  = A .  Use every encoding rule with equal probability l / b .  0 

In Section 4, we complete the characterization by showing that existence of an au- 
thentication code with Pdo = k/v, p d ,  = (k - l ) / ( v -  1) and b = ( v 2  - u ) / ( k 2  - k )  requires 
that the source states and encoding rules be equiprobable. 

3 Authentication without secrecy 

Suppose there is an authentication code (without secrecy) for L source states, having b 
authentication rules and e authenticators, such that Pd0 = P d ,  = I/!. Denote M = s x 
A; M is the set of messages. For an authentication rule e E €, M ( e )  = ( ( 8 ,  e ( s ) )  : s E S }  
is the set of messages arising from authentication rule e .  

Define a kt-dimensional real vector space V having as its basis B = {m : m E M } .  
For every authentication rule e E &, define a vector Z = CIES (s,e(s)). For every s E S, 
define = CoEA (s, a). Next, define x = CmEM fii = EIES c. Finally, for every 

- 
rn = (s, a) E M ,  define V, = e&,,,(,,=,p(E = e)F. 

Using Theorems 2.1 and 2.2, it  is not difficult t o  see that 

- 1 -  
u, =m+ -(X -q. L 

Now fix a source state sj E S. Define V’ = (B’), where 

B’ = {c: s E 3,s # s j } u { z :  e E €1. 
Note that the dimension of V’ is at most b + k - 1. We shall prove that I/‘ = V .  

First, from Theorem 2.1, we observe that 
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$0 x E V’. Next, we have 

so 21J, E V’. At this point, we have { K  : s E S} 
that 

V‘. Then it follows from Equation (1) 

- 1 -  
u, - -(X - K )  = m E V‘ e 

for any m E M .  Hence. V’ = V 

Since V has dimension k e  and it is generated by B’, a set of b + k - 1 vectors, we 
have that 6 2 k ( t  - 1) + 1. 

Now, let’s consider the case of equality, i.e. b = k(! - 1) + 1. In this case, B’ is a 
basis for V .  We shall show that every authentication rule is used with equal probability 
l / b ,  and that the matrix of authentication rules is an orthogonal array OA(e ,  k ,  A) ,  where 
X = b / t 2 .  

Fix an authentication rule ei  E f. Using Equations (1) and (2)’ we compute 

But we also have that V, = eCeEE,e(s)=a p ( E  = e ) F ,  where rn = (s, a),  by definition. 
Hence, we have 

Since B’ is a basis for V ,  we can extract the coefficient of 5 and we obtain t k p ( E  = 
e i )  = 1 + (k - l ) p ( E  = ei) .  Hence, p ( E  = e,) = l/(k(!- 1) + 1) = l/6. Since e; was an 
arbitrary authentication rule, it  follows that all authentication rules are used with equal 
Probability l / b .  

NOW, define the b x k authentication matrix M = (aij) where a i j  = e i ( s j ) ,  1 5 i 5 b,  
l < j l k .  

Consider any message rn = ( s , a ) ;  since p ( E  = e) = l / b  for any el we have the 
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eauation 

We write this equation with respect to the basis B. Define r ,  = l{e E & , e ( s )  = a}l, 

and for any m’ = (s ’ ,~ ’ ) ,  s’ # s, define Am,, = I{e E E , e ( s )  = a,e(s’) = a’}/. Then we 
obtain the following relation: 

Extracting the coefficient of Ri, we see that r,,, = b / ! .  Then extracting the coefficient 
of any m’ (m’ = ($‘,a’), s’ # s) , we see that Ammp = b / t 2 .  Since m is an arbitrary 
message, it follows that the authentication matrix M is an OA( t ,  k, A). 

Conversely, suppose we start with an orthogonal array OA(t ,k ,X)  . Use each row 
as an authentication rule with equal probability l/(Xt2). Then we obtain a code with 
Pdo = P d l  = i/e. 

We summarize the above discussion in the following theorem, which complements 
Theorem 2.3. 

Theorem 3.1 Suppose we have an authentication code without secrecy in which Pdo = 
Pdl  = k/v = 1/L. Then b >_ k ( t  - 1) + 1, and equaliiy occurs af and only if the authen- 
ticaiion matn’z is an orthogonal array OA(!, 6 ,  A) where X = (k(f - 1) + l)/lz and the 
authentication rules are used with equal probability. 

4 GenePal authentication codes 

Suppose there is an authentication code for k source states, having b encoding rules and 
u messages, such that Pdo  = k / u  and P d l  = (k - l ) / (v  - 1). Recalling Theorem 2.5, we 
know that 6 2 v(u - l)/(A(k - 1)) and equality can occur only if the encoding matrix is 
a ( u ,  k ,  l)-BIBD. Here, we consider the case of equality, i.e. b = u(u - l ) / ( k ( k  - 1)). 

From Theorem 2.4, i t  must be the case that 
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for all m # m‘,m # m*. As noted earlier, since b = v ( v  - l ) / ( k ( k  - l)), it follows that 
l i e  : rn, rn’ E M(e) } l  = 1 for all rn # rn’. Hence, it follows that 

p (  E = e)p(S = s) = p (  E = e’)p( S = s’) 

if e(s) = e’(s’). 

For any rn E M ,  let 

x m  = C p ( ~  = e ) p ( S  = e-’(rn)). 
(e:mEM(e)} 

Then, 
Xm p ( S  = s ) p ( E  = e )  = - 
r 

for all e ,  s such that e(s) = rn (recall that r = ( v  - l ) / ( k  - 1) is the number of encoding 
rules in which any message rn occurs). Also, note that CmEM xm = 1. 

Now, for a n y  e E E ,  we have 

JES mEM(e) 

Fix a message mo. Now, applying Theorem 2.1 and Equation (3) ,  we get the following: 

1 1 
r r 

= (l--)zrno + -  
since CmEM xm = 1. Solving for xmo, we get 

k l r  r 
r r - 1  bk 

2 m o  = (; - -)- = -. 

This quantity is independent of rno, so we have 

1 
p(E  = e ) p ( S  = s) = - bk 

for all s E S, e E C. Fixing e and summing over s, we get p(E = e )  = l / b  for every e E E .  
Similarly, fixing s and summing over e, we get p(S = s) = l / k  for every s E S. Hence 
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both the set of source states and the set of encoding rules must be equiprobable in order 
to obtain the desired deception probabilities. 

Summarizing this discussion, we have our main theorem. 

Theorem 4.1 Suppose we haue an authentication code in  which Pdo  = k / v  and Pa, = 
(k - l)/(v - 1). Then b 2 (u2 - u ) / ( k 2  - k), and equality occurs i f  and only if the rows 
of the encoding matrix (taken as unordered sets) form a (v, k, l ) -BIBD,  and both the 
source states and encoding rules are equiprobable. 

We can extend this result to  include codes that provide perfect secrecy. The following 
theorem follows immediately from Theorem 2.5 and [St2, Theorem 6.41. 

Theorem 4.2 Suppose we haue an autheniication code which provides perfect secrecy 
and in  which pdo = k/v and P d ,  = ( k  - l ) / ( v  - 1). Then b 2 ( u 2  - u ) / ( k 2  - k), and 
equatity occurs if and only if v - 1 0 mod k ( k  - l) ,  there ezisls a (v ,  k, l)-BIBD, and 
boih the source states and enccding rules are equiprobable. 
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