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A b s t r a c t  

A secret sharing scheme permits a secret to be shared among participants in 
such a way that  only qualified subsets of partecipants can recover the secret, but 
any non-qualified subset has absolutely no information on the secret. The  set of 
all qualified subsets defines the access structure to the secret. Sharing schemes are 
useful in the management of cryptographic keys and in multy-party secure protocols. 

We analyze the relationships among the entropies of the sample spaces from 
which the shares and the secret are chosen. We show that there are access structures 
with 4 participants for which any  secret sharing scheme must give to a participant 
a share at  least 50% greater than the secret size. This is the first proof that there 
exist access structures for which the best achievable information rate (i.e., the ratio 
between the size of the secret and that of the largest share) is bounded away from 
1. The bound is the best possible, as we construct a secret sharing scheme for the 
above access structures which meets the bound with equality. 

1 Introduction 

Secret Sharing is an important tool in Security and Cryptography. In many cases there is 
a single master key that provides the access to important secret information. Therefore, 
it would be desirable to keep the master key in a safe place to avoid accidental and 
malicious exposure. This scheme is unreliable: if the master key is lost or destroyed, 
then all information accessed by the master key is no more available. A possible solution 
would be that of storing copies of the key in different safe places or giving copies to 
trusted people. In such a case the system becomes more vulnerable to security breaches 
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or betrayal [Sham], [De]. A better solution would be breaking the master key into pieces 

in such a way that only the concurrence of certain predefined trusted people can recover 
it. This has proven to be an important tool in the management of cryptographic keys 
and in multy-party secure protocols (see for example [GoMiWi]). 

As a solution to this problem, Blakley [Bl] and Shamir [Sham] introduced (k,n) 
threshold schemes. A ( k , n )  threshold scheme allows a secret to be shared among n 
participants in such a way that any k of them can recover the secret, but any k - 1, 

or fewer, have absolutely no information on the secret (see [Simm] for a comprehensive 
bibliography on (k, n) threshold schemes). 

Ito, Saito, and Nishizeki [ItSaNi] described a more general method of secret sharing. 

An access structure is a specification of all the subsets of participants who can recover 

the secret and it is said monotone if any set which contains a subset that  can recover 
the secret, can itself recover the secret. Ito, Saito, and Nishizeki gave a methodology to 

realize secret sharing schemes for arbitrary monotone access structures. Subsequently, 
Benaloh and Leichter [BeLe] gave a simpler and more efficient way to realize secret 
sharing schemes for any given monotone access structure. 

An important issue in the implementation of secret sharing schemes is the size of 

shares, since the security of a system degrades as the amount of the information that 
must be kept secret increases. Unfortunately, in all secret sharing schemes the size of the 
shares cannot be less than the size of the secret'. Moreover, there are access structures 
for which any corresponding secret sharing scheme must give to at least a participant a 

share of size strictly bigger than the secret size. Indeed, [BeLe] proved that there exists 
an  access structure for which any secret sharing scheme must give to some participant a 
share which is from a domain larger than that of the secret. Recently, Brickell and Stinson 

[BrSt] improved on [BeLe] by showing that for the same access structure, the number of 
elements in the domain of the shares must be at  least 215'1 - 1 if the cardinality of the 
domain of the secret is ISI. Ideal Secret Sharing schemes, that  is sharing schemes where 
the shares are taken from the same domain than that of the secret were characterized by 
Brickell and Davenport [BrDa] in terms of rnatroids. 

All above results regarding the size of the domain of the shares and that of the secret, 
can be interpreted as relations between the entropies of the corresponding sample spaces 

'This property holds since non-qualified subset of participants have absolutely no information on the 
secret. If we relax this requirement (as is done in ramp schemes) the size of the s h w s  might be 1- 
than the size of the seuet.  
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when onIy uniform probability distribbtions are involved. A more general approach has 

been considered by Karnin, Greene, and  Hellman [KaGrHe] who initiated the analy- 

sis (limited to threshold schemes) of secret sharing schemes when arbitrary probability 

distributions are involved. 

We extend the approach of [KaGrHe] to general access structures deriving several 

relations among the entropies of the secret and those of the shares even when partial 
informations are taken into account. When we restrict probability distributions to be 
uniform, our results implies an improvement over the above mentioned results on the size 
of shares. 

In this paper we prove that for any secret sharing scheme, for any set A of participants 
which are not qualified to recover the secret, the average uncertainty on each share of 

participants in another set B given that the shares of A are known ( A  and B are sets of 
participants such that they can recover the secret by pooling together their shares) must 

be at least as great as the a pnon uncertainty on the secret. This is a generalization and 
also a sharpening of a result in [KaGrHe]. We also analyze the relationships between the 
size of the shares and that of the secret. We improve on the result of [BrSt] proving that 

there are access structures with 4 participants for which any secret sharing scheme must 
give to some participant shares which are from a domain of size at least IS(',', IS1 being 

the secret domain size. In other words, we show that the number of bits needed for a 

single share is 50% bigger than those needed for the secret. This is the first proof that 
there exist access structures for which the best achievable information rate (i.e., the ratio 

between the size of the secret and that of the largest share) is bounded away from 1. We 
construct a secret sharing scheme for the above access structures which meets the bound 

with equality. Finally, the bound is generalized to access structures with any number of 
participants. 

2 Preliminaries 

In this section we shall review the informat.ion theoretic concepts we are going to use. 
For a complete treatment of the subject the reader is advised to consult [CsKo], [Gal, 
[Shan]. 

Given a probability distribution { ~ ( Z ) } ~ ~ X  on a finite set X ,  define the entropyof X ,  
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H(X), as 
H ( X )  = - c P ( . )  1% P(r)2. 

X t X  

T h e  entropy H(X) is a measure of the average information content of the elements in X 
or, equivalently, a measure of t h e  average uncertainty one has about which element of the 
set X has been chosen when the choices of the elements from X are made according t o  the 

probability distribution { p ( ~ ) } ~ ~ x .  I t  is well known t h a t  H ( X )  is a good approximation 
to the average number of bits needed t o  faithfully represent the elements of  X .  The 

following useful property of H(X) will be  used in the following: 

where H ( X )  = 0 if and only if there exists +o E X such that  p ( r o )  = 1; H(X) = 1% 1x1 
if and only if p ( z )  = l/lXl, Vz E X. 

Given twosets  X and Y and a joint probability distribution { P ( Z , Y ) } ~ ~ X , ~ ~ Y  on their 
Cartesian product, the conditional entropy H ( X I Y ) ,  also called the equivocation of X 
given Y, is defined as 

The conditional entropy can be written as 

H ( X I Y )  = C p ( y ) H ( X I Y =  Y) 
YfY 

where H ( X ( Y  = y) = - CIcx p ( z ( y ) l o g p ( t ( y )  can be interpreted as t h e  average uncer- 

tainty one has  about  which element of X has been chosen when the choices are made 
according to the  probability distribution p ( ~ J y ) ~ ~ ~ ,  t h a t  is, when it is known tha t  the 

value chosen from the set Y is y. From t h e  definition of conditional entropy it is easy to  

see t h a t  

H ( X ( Y )  2 0 .  (2) 

T h e  entropy of the joint space X Y  satisfies 

H ( X Y )  = H ( X )  + H ( Y I X )  = H ( Y )  + H ( X I Y ) .  (3) 

T h e  mutual information between X and Y is defined by 

I ( X ; Y )  = H ( X )  - H ( X I Y )  

'All logarithms in this paper are of base 2 

(4) 
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and enjoys the following properties: 

qx; Y )  = I ( Y ;  X), 

and 
I ( X ; Y )  2 0. 

H ( X )  1 H(S1Y). 
From which one gets 

The conditional mutual information is defined by 

I ( X ; Y ( Z )  = H ( X I Z )  - H ( X l Y 2 ) .  

Notice that H ( X 1 Z Y )  = CyrY p ( y ) H ( X I Z ,  Y = y), where 

H(XlZ,Y= Y> = -CP(z~ lY) logP(z lYz) .  
r.2 

When no ambiguity arises we will drop the comma in H ( X ( Z ,  Y = y). 

I ( X ;  Y (2) satisfies three important properties, 

I(,Y;YJZ) 2 0 

I ( X ; Y I Z )  = r ( Y ; x l z )  

(5) 

and 
I ( X ; Y Z )  = I ( X ; Z ) +  Z(X;YJZ). 

3 Secret Sharing Schemes 

A secret sharing scheme permits a secret to be shared among n participants in such a 
way that  only qualified subsets of them can recover the secret, but any non-qualified 
subset has absolutely no information on the secret. 

Giver? 8 set. P, an access structure on P is a family of subsets A 2'. The closure 

of a family of subsets A C_ 2p, is defined as closure(A) = {A' : A E A,A A' C 
p } .  A natural property for an access structure A is that of being monotone ,  i.e., A = 
closure( A). 
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Let P be a set of participants, A be a monotone access structure on P and S be the 
set of secrets. Following the information-theoretic approach of [KaGrHe] and [KO], we 

say that a Secret Sharing Scheme is a sharing of secrets among participants in P such 
that 

1. A n y  qualified subset can reconstruct the secret.  
For all A E A, H(S1A) = 0. 

2. A n y  non-qualified subset has absolutely no information on the secret.  
For all A $! A, H(S1A) = H(S) .  

Remark 1. Notice that H(SIA)  = 0 means that each set of values of the shares in 

A determines a unique value of the secret. In fact, by definition, H(S1A) = 0 implies 

that Va E A with p(a) # 0 3s E S such that p(sla) = 1. Moreover, H(SIA) = H ( S )  
means that S and A are statistically independent, i.e., Va E A Vs E S, p(s1a) = p ( s )  
and therefore the knowledge of a gives no information about the secret. Notice that the 

condition H ( S ( A )  = H ( S )  is equivalent to say that Va E A H(SIA = a) = H ( S ) .  

Shares given to the participants are not necessarily to be taken from the same domain. 
For instance, let the set of participants be P = { A ,  B ,  C,  D }  and consider the access 

structure AS consisting of the closure of the set { { A ,  B } ,  (8 ,  C}, {C, D } } .  Let the secret 
s be a uniformly chosen n-bit string. A possible secret sharing scheme for AS consists 
of uniformly chosing 3 pairs of strings whose XOR give the secret s, that is such that 

s = a @ b l  = b2$cr = c2$d  and giving shares a to A ,  b l ,  62 to B ,  c1, c2 to C and d to D. 
The size of the shares given to B and C is twice the size of the shares to A and D ,  and 

the size of the secret itself, that is we have H ( B )  = H(C)  = 2 H ( A )  = 2 H ( D )  = 2 H ( S ) .  

Karnin, Greene, and Hellman [KaGrHe] proved that in any threshold scheme any set 
X i  from which the i-th share is taken satisfies H ( X , )  2 H ( S ) .  What is the uncertainty 

on the shares for general access structures when other shares are known? Assume a set 

of participants Y cannot determine the secret, but they could if another participant (Or 
group of participants) X would be willing to pool its own share. Intuitively, for general 
access structures, the uncertainty on the shares given to x is at least as big as that on 
the secret itself, from the point of view of Y .  Otherwise, the set of participants Y would 
have some information on the secret and could decrease their uncertainty on S .  This 
is formally stated and proved in the next lemma which constitutes an extension and a 

sharpening on Theorem 1 of Karnin, Greene and Hellman [KaGrHe]. 
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Lemma 3.1 Let Y 4 A and X U Y E .A. Then H ( X ( Y  = y) 2 H ( S )  for  each possrble 
value y in Y .  

Proof. I ( X ; S ] Y  = y) can be written eithei as H(,YJY = y) - H(X1SY = y) or as 
H(SlY= 9) - H ( s l X Y =  y) .  Hence, 

H ( X I Y  = Y) = H(XlSY = y) + H(S(Y = y) - H(S1XY = y) 

H(XISY= y) + H(SJY  = y) = 

2 H(SIY=y) 

= H ( S )  

The second line follows from the first, since H ( S l X Y )  = 0 implies H ( S l X Y =  y) = 0 for 

0 all y such that p(y) > 0. 

By averaging on the elements y E Y we get that, in the same hypothesis of Lemma 

3.1, it holds H ( X I Y )  2 H(S) .  Because of (6), we obtain that H ( X )  2 H(S) ,  for each 

X C P ,  which is essentially Theorem 1 of [KaGrHe] generalized to monotone access 
structures. 

Next lemma implies that the uncertainty on shares of participants, who cannot recover 
the secret, it cannot be decreased by the knowledge of the secret. 

Lemma 3.2 If X U Y A then H ( Y I X )  = H ( Y ( X S ) .  

Proof. The conditional mutual information I ( Y , S I X )  between Y and S given X can 
be written either aa H ( Y 1 X ) -  H ( Y ( X S )  or as H ( S 1 X ) -  H(S1XY). Hence, H ( Y ( X )  = 
H(YIXS)+ H ( S ] X )  - H ( S l X Y ) .  Because of H ( S l X Y )  = H ( S I X )  = H(S) ,  for X U Y  4 
A, we have H ( Y 1 X )  = H ( Y ( X S ) .  a 

h m n a  3.3 Let  X , Y ,  Z C P .  I f X  u Y E A then H ( Z ( X Y )  5 H(Z1X.S) .  

Proof. The conditional entropy H ( Z S l X Y )  can be written either as H ( Z l x Y )  + 
H(S1XY.Z) or as H ( S ( X Y )  + H ( Z [ X Y S ) .  Since X u Y E A it foI1ows H ( S ( X Y )  = 0 

and H ( S 1 X Y Z )  = 0. Hence, H ( Z ( X Y )  = H ( Z S 1 X Y )  = H ( 2 l X Y . S ) .  B e c a m  of 

I ( Z ; Y I X S )  2 0 one has H ( Z ( X Y S )  < H ( Z ( X S )  and the lemma follows. a 
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4 Bounds on the size of shares 

Benaloh and Leichter [BeLe] gave the first example of an access structure for which 
any secret sharing scheme must give to some participant shares which are from a d s  
main larger than that of the secret. The access structure they considered is AS = 
closure{ { A , E } ,  (8 ,  C}, {C, D } } .  Recently, Brickell and Stinson (BrSt] showed that 
there are only two access structures with 4 participants which are the closure of a graph 

(i.e., the closure of a family whose elements are pairs of participants), satisfying above lim- 
itation. Such access structures are AS and AS2 = closure { A ,  E } ,  { E , C } ,  {C, D}, { B ,  D 
In this section we first give a lower bound on the entropy of the  spaces from which the 

shares for the access structure AS are taken. Then, we use this result to prove an 
analogous lower bound for AS2 and more general access structures. 

{ 

A secret sharing scheme for AS satisfies 

1. H ( S ( A E )  = H(S(BC)  = H ( S ( C D )  = 0. 

2 .  H(SIA) = H(SIB)  = H(SIC) = H(SID)  = H(S /AC)  = H(SIAD) = H(S) .  

We also have H(S1ED) = H ( S ) ,  but we will not make use of it. Now we state our lower 
bound. 

Theorem 4.1 Any secret sharing scheme for AS satisfies 

H ( E C )  >_ 3 H ( S ) .  

Proof. From (4) we get that H ( B )  = H ( B J C A )  + I (B;CA) .  From (7) and (9) we 
get that  H(EICA) = H(SIC.4) + H(B1CAS) = H ( S )  + H(E1CAS). Therefore, using 
formulae (4) and ( 3 )  we get 

H ( B )  = H ( S )  + H(B1CAS) + H(.4) i- H(Cl,4) - H(A1B) - HICIAB). (10) 

Consider now I(BC; S) that can be written either as H(BC) - H(BCIS) = H(BC)  - 
H(BIS)  - H(C1SS) or as H ( S )  - H(S1BC) = H(S) .  We obtain 

H(BC)  = H ( S )  + H(BIS) + H(ClBS) 

= H ( S )  + H ( B )  + H(C1BS) (from Lemma 3.2) 
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= H ( S )  + H ( S )  + H(B1CAS) + H ( A )  + H ( C [ A )  - H(AIB)  - H(C(AB)  

+H(CIBS) (from (10)) 

(from Lemma 3.3) 2 2H(S)  + H(B(CAS)  + H ( A )  + H(CI.4) - H(AJB) 

2 2 H ( S )  + H ( A )  - H(A1B) + H(Cl.4) (from (2)) 

2 2 H ( S )  + H(C1A) (from (6)) 

2 2 H ( S )  + H(C1AD) (from (8)) 

2 3 H ( S )  (from Lemma 3.1) .  

0 

The following corollary to Theorem 4.1 is immediate from (3) and (6). 

Corollary 4.1 A n y  secret shanng scheme for AS .satisfies 

H ( B )  + H(C) 2 3 H ( S ) .  

A consequence of above corollary is that either B or C must have entropy at  least 

1.5H(S), that is 50% bigger than that of the secret. Recalling that the entropy of i tset  
is a good approximation of the average number of bits needed to represent an element 
of the set, we get that  there is a share whose size is at least 50% bigger than the secret 
size, 

Benaloh and Leichter [BeLe] proved that for the access structure AS it must hold 
either > ($1 or (C( > IS(, where with IS} we denote the number of different secrets and 
with IB1 (ICl) the number of different shares that can be given to B (C). Then, Brickell 
and Stinson [BrSt] improved on [BeLe] proving that the number of possible shares either 

for B or for C must be at least 2)Sl - 1. Our Corollary 4.1 implies the following sharper 
lower bound. 

Corollary 4.2 Suppose the secret i s  uniformly chosen in S .  A n y  secret shanng scheme 
for  AS satxsjies eriher IBI 2 ]S(l or ICI 2 IS/' 5, 

Proof. If the secret is uniformly chosen in S we have that H ( S )  = log(S(, and from 
Corollary 4.1 it follows H ( E )  + H(C) 2 3 log ( S ( .  Hence, either B or C have entropy at 
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least 1.510gISI. Assume H(B) 2 1SIoglS/ .  From ( I )  we have IBI 2 2 H ( B ) ,  and thus 
the number of different shares for B must be greater than or equal to Z1.510g's ' ,  which 

0 implies that IBI 2 lSl'.5, 

Notice that Corollary 4 .1  gives a more general result, since it takes into account the 
probability distribution according to which the secret and the shares are chosen. 

Remark 2. The bound given by Corollary 4.2 is the best possible. Indeed, consider the 
following secret sharing scheme for AS. For a binary secret s E S = (0, l}, uniformly 
choose 2 pairs of bits whose XOR give the secret s, that is such that s = 63 b = C@ d 
and give share a to the participant A, bd to B ,  c to C ,  and d to D .  It can be easily seen 
that this scheme meets all requirements for a secret sharing scheme, and that moreover 

H ( A )  = H(C)  = H ( D )  = H ( S )  = 1 while H ( B )  = 2 and H(BC)  = 3 H ( S ) .  If a >bit 
secret sosl E (0, 1}2 is to be shared, then the following scheme can be used. For i = 0,1,  

uniformly choose bits a;, b , ,  c , ,  d,, such that ai 63 b, = c, @ d ,  = si and give share aoal to 

A ,  bodobl to B ,  coclal to C and dodl to D. This is a secret sharing scheme which satisfies 

H ( A )  = H ( D )  = H ( S )  = 2 and H ( B )  = H ( C )  = 1.5H(S) = 3. The generalization to 
n-bit secrets, as well as to non-binary cases, is straightforward. In general, if Is1 = q 2 ,  

q integer greater than 2, the above procedure yields a scheme for which (A1 = ID1 = q2 

and JBJ = JCI = q3 = (qZ) '  5 .  

Assume that all shares for participants are chosen from the same space K .  As a conse- 
quence of Corollary 4.2 we get that the i n f o r m a f i o n  rote log(Sl/loglKI (as defined in 

[BrSt]) for any secret sharing scheme for AS is at  most 2/3. The scheme above described 
has an information rate of exactly 2 / 3  when IS1 = q 2 .  Thus, the bound of 2/3 is optimal 
for AS and settles a problem by [BrSt]. 

The bound given by Corollary 4.1 is t,he best possible for non-uniform distributions, 
well. The construction of a secret sharing scheme which meets the bound with equality 
is a bit involved and will be given in the final version of the paper. 

Our lower bound also holds for AS2 which is the closure of the family 

{ { A , B ) , { B , C ) ,  { C , D ) , { B , D } } .  

It is easily seen that Theorem 4.1 also applies, since in the proof we did not make aY 
use of the relation H(S1BD)  = H ( S )  (for AS2 it holds H(S1BD) = 0). Hencefrom, the 
following theorem holds. 
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Theorem 4.2 Any secret sharing scheme for AS2 satisfies 

H(BC)  3 3 H ( S )  and H ( B D )  >_ 3 H ( S ) .  

Remark 3. The bound given by Theorem 4.2 is best possible for uniform distributions. 

Indeed, consider the following secret sharing scheme for AS2. For a binary secret s E 

S = ( 0 ,  l}, uniformly choose 2 pairs of bits whose XOR give the secret s E S ,  that is 
such that s = a @ b = c @ d and give share a to participant A,  b to B,  ac to C, and ad 

to D. This is a secret sharing scheme which satisfies HIBC) = H ( B D )  = 3H(S) .  The 
scheme can be easily generalized to any non-binary space. 

An immediate consequence of Theorem 4.2 is the following corollary. 

Corollary 4.3 If the secret i s  unzformly chosen In S then any secret shanng scheme for 
AS2 satrsfies etther 

P I  2 IS(' 5 1  

or 

ICl >_ and (D( 2 IS(' '. 

Remark 4. A close look to the proof of Theorem 4.1 reveals that exactly the same 

bound (i.e, H(BC)  2 3 H ( S ) )  holds for any access structure r for 4 participants A ,  B ,  C,  
and D, satisfying {AB},{BC},{ACD) E r and {AC},{B},(AD} @ r. The  minimal 
such structure is the closure of { { A E } ,  { B C } ,  { A C D } } ,  which has Iclosure(r)l = 7. 

Finally, exploiting the structure of AS, we can prove the following result. 

Theorem 4.3 There is an access structure of n 2 5 participants, for which any scheme 
requires a total entropy of 

n 

H ( S , )  2 ( 3 n / 2 ) N ( S ) .  

Proof. Consider the 'circular' access structure defined as the closure of the following set 

{{W*}, {XZ,X3) I , . . ,  {x"-l,Xd,{x",xl}}. 
For each pair of set of shares ,Y, and ,Y,+l, we have H ( X , )  + H(Xi+l) 2 3 H ( S ) .  More- 

Over, H(X1) + H(X,) > 3 H ( S ) .  Summing over all pairs we get H ( X 1 )  + H(X,) + 
c:=;' H(dYt) + f f ( X i + l )  2 3nH(S) .  Hence, Ty?, H ( X i )  >_ (3n/Z)H(S\. n 
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