
On Verification in Secret Sharing

Cynthia Dwork
IBM Almaden Research Center

650 Harry Road
San Jose, CA. 95120

dvork@almaden. ibm.com

Abstract

Verifiable Secret Sharing (VSS) has proven to be a powerful tool in the con-
struction of fault-tolerant distributed algorithms. Previous results show that Un-
verified Secret Sharing, in which there are no requirements when the dealer is faulty
during distribution of the secret, requires the same number of processors as VSS.
This is counterintuitive: verification that the secret is well shared out should come
at a price. In this paper, by focussing on information leaked to nonfaulty processors
during verification, we separate a certain strong version of Unverified Secret Sharing
(USS) from its VSS analogue in terms of the required number of processors. T h e
proof of the separation theorem yields information about communication needed
for the original VSS problem. In order to obtain the separation result we introduce
a new definition of secrecy, different from the Shannon definition, capturing the in-
tuition that ‘‘information” received from faulty processors may not be informative
at all.

1 Introduction

The t-resilient Verifiable Secret Sharing problem (t-VSS) was defined by Chor, Goldreich,
Micali, and Awerbuch [4]. A solution to t-VSS is a protocol for a distributed system of
n processors allowing a distinguished dealer processor to irreversibly commit to a secret
value that can be reconstructed with certainty at a later time, even if the dealer attempts
to block the reconstrution. Specifically, if the dealer is nonfaulty until reconstruction
then no set F of up to t faulty processors can learn anything about the secret before
reconstruction, and the value reconstructed will indeed be the secret value of the dealer.
Moreover, the members of F cannot prevent reconstruction of the committed secret, even
if the dealer is in F.

VSS and its applications have been widely studied in the literature (1, 2,3,6,7 ,8 , 131.
In particuIar, Ben-Or, Goldwasser, and Wigderson showed that in a system of n 2 3t + 1
processors, where t is an upper bound on the number of faulty processors, any function
of n inputs can be computed in such a way that not only can the faulty processors not

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPT0 ’91, LNCS 576, pp. 114-128, 1992.
0 Spnnger-Verlag Berlin Heidelberg 1992

115

disrupt the computation, but they cannot learn any additional information about the
inputs of the nonfaulty processors than that implied by their own inputs and the output
of the function [2] . A similar, slightly weaker, result was obtained independently by
Chaum, Crepeau, and Damgard [3]. In both these constructions, t-resilient VSS is used
to share out the inputs to the function. The VSS protocols in [2, 81 differ from other
VSS protocols in that they are error-free; secrecy is perfect (information-theoretic) and
reconstruction never fails.’ Dolev, Dwork, Waarts, and Yung [7] showed that the bound
of 3t + 1 processors for error-free t-VSS is tight, even in the presence of a broadcast
channel. Moreover, the lower bound holds even for the easier problem of t-unverified
Secret Sharing (t-USS), a relaxation of t-VSS in which there are no requirements if the
dealer is faulty during distribution of the secret. For the remainder of this paper we
discuss only error-free protocols.

That t-USS and t-VSS should require exactly the same number of processors was
puzzling. Error-free verification that the secret is well distributed seemed too powerful
to come at no cost. Indeed, elementary arguments show that some communication among
shareholders of a secret must take place in order to verify that a secret is well shared out.
In this paper we obtain additional information about the structure of this communication.
To do this, we define a very strong version of both VSS and its unverified analogue,
and prove the separation for those problems in terms of the number of processors. By
analyzing the proof of the separation result for the strong versions of the problems we
obtain information about communication necessary during verification in any solution of
the original t-VSS problem.

An interesting by-product of this work is the introduction of what we call effect ively
per fec t secrecy. This new type of secrecy captures the intuition that, loosely speaking,
“information” received from a faulty processor may not be information at all, since the
faulty processor can “lie.” In addition to being useful in obtaining the first separation
result, we feel our definition of effectively perfect secrecy is an interesting step in trying
to capture an appropriate notion of secrecy when the source of information is Byzantine.

The rest of this abstract is organized as follows. Section 2 contains formal definitions
of several variants of secret sharing, of perfect secrecy, and of effectively perfect secrecy.
Section 3 discusses some related results and applies one of these to our context. Section 4
contains the separation result and some of its implications for ordinary VSS. Discussion
and open problems appear in Section 5 .

In some protocols secrecy is imperfect because it relies on public key cryptography; in others, recon-
strution may fail because verification is performed using interactive proof systems techniques.

116

2 Definitions

We consider a completely synchronous distributed system of n processors, {PO,.. . , p , . - l } ,

connected by a complete network of perfectly secure channels. Our definition of protocol
is the standard one. Let E be a finite field with a primitive nth root of unity w , such
that [El > n.

We assume the secrets are always elements of the finite field E . There is a fixed
underlying probability distribution II on messages in E. Information-theoretic (perfect)
secrecy says essentially that the best one can do at guessing a secret is to guess an element
with maximal probability according to II. We say a polynomial is of degree C if it is of
degree a t most C.

Given a protocol P, a processor executing P is a disruptor if it does not follow P
correctly. It can misbehave by not choosing random values according to the distribution
specified by P, by failing to send specified messages, possibly sending arbitrary messages
in their stead, and by making erroneous state transitions. A processor is a gossip if it
follows P correctly but in addition sends extraneous messages labelled as gossip messages.
Since the messages are labelled as extraneous, they are never confused with protocol
messages. A processor is pure if it is neither disruptive nor a gossip. A processor is faulty
if it is not pure.

A solution to the (t , d)-Verifiable Secret Sharing problem ((t , d)-VSS) is a pair of
protocols (PI, Pz), called the distribution and reconstruction protocols, respectively. Let
po be a dinstinguished dealer processor with secret input s. If in PI and 7 2 combined
there are at most t faulty processors (disruptors and gossips), o f which at most d are
disruptors, then the following properties are required.

1. For every adversary strategy, if the adversary d o w s p o to remain pure until the
beginning of execution of Pz2 then until that point no set of up to t faulty processors
has any information (in the information-theoretic sense) about the secret s. More
precisely, for every adversary A, for all pairs of messages m,m' E El and for all

views V of the members of F , Pr [V I A, m] = P r (V I A, m'] , where F is the set
of processors compromised by A and the probabilities are over d choices made by
the processors and by the adversary.

2. Whether or not p o is pure until P2, the value obtained by executing P2 is completely

l'P, may beginlong after 'PI is completed, so the end of PI is not the same M the beginningof 7 '2 . For
most applications some secrets will be dealt out (using P I) , some computations will be performed, and
at some later time the secrets, or some functions of the secrets such ad their sum, will be reconstructed
(using P,).

117

determined by the end of Pl, and remains unchanged regardless of the behavior of
the disruptive processors.

3. If p o is nondisruptive throughout execution of PI then the value obtained when P2
is executed is s, the true secret input of PO.

When t = d this is precisely the usual definition of t-resilient Verifiable Secret Sharing.
The change is the addition of the category of “faulty gossips.” These only affect secrecy
and do not affect reconstructability. This point is subtle, and comes from the fact that
we require perfect reconstructability.

Let Q(.) be a predicate, and let P = (Pl , P2) be a VSS protocol. We say a coaliton of
processors L prematurely learns Q (s) if in some execution 4 of P in which PO has input s
and is pure until execution of Pz, the members of L do not have implicit knowledge3 of
Q (s) before execution of PI but they do have implicit knowledge of Q (s) before Pz.

A protocol solves the (C, t , d)-Strong Verifiable Secret Sharing problem ((C, t , d) -
SVSS), C 2 t 2 d, if in addition to solving (t , d)-VSS it satisfies the following conditions4:

1. If pol with input s, remains pure until the beginning of execution of Pz, then
no coalition L of u p to C pure processors prematurely learns Q (s) for any predi-
cate Q(.).

2. If pol with input s, remains pure until the beginning of 7’2, then the protocol
messages received by L from the nondisruptive processors contain no information
about s.

Since this definition is delicate, we give some intuition. Fix an execution of an (1, t , d)-
SVSS protocol, and consider the histories of all pure processors until just before execution
of 772. Then the first additional requirement says that if po is pure at this point then,
for every set L of 1 pure processors, the histories of the members of L do not jointly
have enough information to unambiguously determine anything about the secret not
implicit in ll. Thus, even if members of L were to “gossip” among themselves (in the
colloquial sense), they would not prematurely learn anything about the secret. Since we
think about what the members of the set L could figure out if they were to pool their
information about the execution, we generally talk about coalitions of size C. The second

’Implicit knowledge was defined by Halpern and Moses [ll]. Roughly speaking, the definition says
that at time k in (, L haa implicit knowledge of a fact -$ if and only if 4 holds in all executions of the
protocol in which the joint view of the members of L is identical to their joint view at time k of (.

‘The bounds obtained are a function of max(1, t } , t , and d . Thus, the case in which 1 < t is somewhat
degenerate, so we ignore it in this discussion.

118

additional requirement says that the partial information gained by L necessarily comes
from unreliable sources.

R e m a r k 1 There ezists an adversary strategy against the (t , t) - VSS protocol in 121 that
guarantees that every pure processor other than the dealer prematurely learns the secret.
Thus, the protocol in 121 does not solve even (1, t , t) - S V S S .

To appreciate the significance of the remark, consider the problem of contract bidding.
Let companies X, Y , and 2 be such that

1. Company 2 can beat any bid made by Company X.

2. Company Y cannot match X ’ s bid.

3. Company Y prefers that 2 will win the contract (rather than X).

4. Company 2 wishes to behave legally.

Suppose the bids are placed using 1-resilient verifiable secret sharing, and suppose further
that “legal” behavior includes using any information gained during the distribution of
secrets. If X bids before 2 does, then, using the adversarial strategy mentioned in the
remark, Y can throw the contract to 2 by behaving in such a way that 2 learns X ’ s
bid (and can therefore underbid X). Of course, Y could always just tell 2 its share of
X ’ s bid, but 2 might have no way of determining whether or not Y is telling the truth.
Precisely this point motivates the following discussion and definitions.

Although by definition a secret shared by (f, 2, d)-SVSS enjoys perfect secrecy with
respect to the faulty processors, and some secrecy with respect to small coalitions of
pure processors (that is, coalitions of size at most I), it may not have pcrfect secrecy
with respect to small coalitions. This is because some probabilistic information may be
received from the faulty processors. To see how this might occur, let us say a faulty
processor lies “convincingly” about its share of the secret, before reconstruction, if it
announces a faulty share but no small coalition of pure processors can detect that the
announced share is erroneous5. For example, in Shamir’s scheme for sharing a secret [14],
to ensure secrecy against a coalition of size f the dealer chooses a polynomial P of degree f
whose free term is the secret, and gives to the ith processor the “share” P (i) , 1 5 i 5 n.

In this case it is very easy for a processor to lie convincingly to a coalition o f t nonfaulty

may be possible that, while small coalitions can not detect the fact that the announced share is
erroneous, large coalitions of pure processors can do so; something like this is necesaary so that faulty
shares can be discarded during reconstruction of the secret.

119

procesors about its share: it simply chooses an arbitrary value and claims this is its share.
Since every set of I + 1 points determines a polynomial of degree I the lie is convincing
(plausible).

If the probability is low that a faulty processor can lie convincingly to a small coalition
of nonfaulty processors about its share of the secret, for example, if shares of the secret
are certified with check vectors [13], then a plausible share announced by the faulty
processor carries some informational content. In this case, continuing the example given
above, if the faulty processor were to lie convincingly about its share of a degree I
polynomial by fortuitously managing to certify a false value, and if the values held by
the coalition members together with this value from the faulty processor interpolate to
yield a polynomial whose free term is, say, 5 , then the coalition can conclude that almost
surely the secret is 5 . However, they will not know, in the sense of Halpern and Moses,
that the secret is 5 .

In some scenarios the curious parties have no interests in common with the disruptive
parties. In this case, especially if the protocol is such that it is easy for the faulty
processors to lie convincingly about their shares of the secret, it is not clear what it
means to “learn” something from the faulty processors. We therefore define Effectively
Perfect SVSS, in which we attempt to capture the intuition that information received
from faulty processors may be of no use in determining the secret prematurely. As usual,
we assume the existence of an adversary that controls the selection and behavior of faulty
processors. The intuition to keep in mind is that we want a way of saying that even if
the faulty processors truthfully announce their shares of the secret, no coalition of up
to I pure processors really learns anything about the secret, since the faulty processors
could be lying convincingly about their shares.

A protocol ’P = (’Pl,Pz) solves (1, t, +Effectively Perfect SVSS if in addition to
solving (I , t , d)-SVSS it has the following properties.

1. For all adversaries A there exists an adversary A’ such that, for all coalitions L of
at most I pure processors, for every view V obtained by L in some execution (of
P (before the start of 772) with adversary A,

Pr [V Id] = Pr [V I A‘]. (1)

2. If the dealer is not compromised by A‘ before execution of P2, then for all legal
messages m‘

120

Here the notation Pr [V Id] denotes the probability t h a t L has view Y given that the
adversary is A, where the probability distribution is over the choice of the secret as well
as over the space of all coin tosses of all processors and of the adversary A’. Similarly, the
notation Pr [V I A’, m] denotes the probability that L has view V given that the adversary
is A’ and given that the secret dealt out is m, where the probability distribution is the
space of all coin tosses of all processors and of the adversary A‘ (but not over choice
of m).

The intuition is as follows. If Pr [V Id] = Pr [V I A’] then for a.ll L knows during (
(before execution of Pz), the adversary is really A’; if the adversary were really A‘ then
since Pr [Y I A‘, m] = Pr [V 1 A’, m’] the secrecy would be perfect. Thus, if Equations 1
and 2 hold then secrecy is “effectively” perfect (see Remark 2). We quantify m, m’ over
all legal messages, rather than over all elements of E , because i t is possible tha.t not all
elements of E are legal inputs to a given protocol.

Remark 2 T h e de f in i t i on of effectively perfect secrecy i s m o s t interest ing in a s i tua t ion
in which i t i s impossible t o assign a probability dis tr ibut ion to the space of adversaries.
In th i s case the def ini t ion implies that L has no advantage in guessing the message over
s imp ly guessing according to the underlying probability dis tr ibut ion Il.

A protocol solves (I , t , d)-Perfect SVSS if i t solves (I , t , d) - S V S S and in addition
secrecy with respect t o any coalition of C pure processors is perfect. More formally,
for all adversaries A, for all legal messages m,m’, for all coalitions L of up to C pure
processors, and for every view V of L before Pz in an execution in which the dealer
remains pure until Pz,

Pr (V I A,m] = Pr [V I A,m’].

Remark 3 An al ternat ive def ini t ion f o r (C , t , d) - P e r f e c t SVSS would be to take the prob-
abilities over t h e choice of A, and condi t ion only on t h e secret. However, once again, we
can th ink of n o reasonable probability dis tr ibut ion o n adversaries .

For each of these types of Verified Secret Sharing we define a corresponding Unver -
ified version by weakening the problem so that there are no requirements if the dealer
is faulty during the execution of PI. In particular, as observed by MacEliece and Sar-
wate [12], solving (t , d)-Unverified Secret Sharing ((t , d)-USS) is essentially equivalent t o
constructing d-error-correcting codes with the constraint t ha t no t shares suffice to de-
termine anything about the encoded value. This can be done using the d-error correcting
BCH codes of length t + 2d + 1.

121

3 Related Work

As mentioned in the Introduction, secret sharing has been very widely studied. Sim-
ple secret sharing, resilient only to curious coalitions of t gossips but to no disruptors,
was defined by Shamir [14]. &Verified Secret Sharing (what we are calling (t,t)-VSS)
was defined by Chor, Goldwasser, Micali, and Awerbuch [4], whose original solution re-
quired many processors (as a function of t) and waa not error-free. The introduction of
zero-knowledge techniques [lo], particularly in 191, yielded conceptually simple, elegant,
and highly resilient small-error soutions to t-VSS requiring only 3t + 1 processors (see
also [5]). The 3t + l-processor solution due to Chaum, Crepeau, and Damgard [3] enjoys
perfect secrecy and requires no cryptographic assumptions, but has small probability of
error. The first error-free solution to t-VSS was obtained by Ben-Or, Goldwasser, and
Wigderson [2]. Their solution required only 3t + 1 processors, which is optimal, even in
the presence of a broadcast channel [7]. More precisely, the results in [2, 71 show that
error-free (t , d)-VSS can be achieved with t + 2d + 1 processors, and this number is nec-
essary even for the unverified version of the problem, in which there are no requirements
if the dealer is faulty during the distribution protocol. Given a broadcast channel, Rabin
and Ben-Or [13] achieved small-error t-VSS using only 2 t + 1 processors. Given both a
broadcast channel and the ability to achieve obhious transfer, Beaver and Goldwasser
solve the problem in the presence of a faulty majority [l].

(l,t,d)-Strong Verifiable Secret Sharing was defined in [6]. The solution in that
paper requires only max{C, t } + 2 d + 1 processors. In particular, when I , the size of
the coalition of pure processors, equals t, the total number of faulty processors, strong
verification incurs no additional cost in processors over (t , d)-unverified secret sharing.
On the other hand, the paper also showed that if the secrecy with respect to coalitions
of pure processors is required to be perfect then I + t + 2d + 1 processors are necessary
and sufficient. We briefly review those arguments.

Theorem 3.1 [6] A n y protocol for (I , t , d)-Perfect Strong Unverified Secret Sharing re-
guires I + t + 2d + 1 processors. Moreover, this number of processors sufices even for
(I , t , d)-Perfect Strong Verified Secret Sharing.

Proof: By definition, any protocol for (I + t , d)-VSS guarantees perfect secrecy with
respect to any set of I + t players, even if d of these are disruptive. Thus, such a protocol
also solves (I , t , d) -SVSS in which the members of the curious coalition and the faulty
processors number at most I + d in total. The protocol in [7] for (I + t , d)-VSS6 requires
exactly I + t + 2d + 1 processors.

6baaed on the protocol for (I + t , C + t) -VSS in [Z]

122

For necessity, suppose n = C + t + 2d processors suffice for (1, t, d)-SVSS, and consider
an adversary A that always compromises the t processors p1 . . . p t (recall, the dealer is
PO), causing the compromised processors always to truthfully announce their shares in
gossip messages. It is shown in [7] that any n - 2d shares must be enough to reconstruct
the secret. Thus, if n = C + t + 2d then C + t shares suffice. Clearly, for any two legal
messages m and m', with this adversary the view of any coalition of 1 pure processors
when the secret message is m does not occur with the same probability that they do
when the message is m', since the coalition h a s access to C + t shares: its own C shares
plus the t announced shares. This violates perfect secrecy. I

4 Separating Unverified Secret Sharing from Verifi-
able Secret Sharing

4.1 Separating the Strong Versions of the Problems

In this subsection we separate effectively perfect Strong Unverified Secret Sharing, in
which there are no requirements if the dealer is faulty during the distribution protocol,
from effectively perfect Strong Verifiable Secret Sharing. For simplicity, we take a,ll
parameters to be t . The full paper contains results for the general case. We abbreviate
(t , t, t)-SVSS (respectively, (t, t, 1)-SUSS) by t-SVSS (respectively, t-SUSS).

Theorem 4.1 Let n = 4t and let E be a field of at least n + 1 elements with a primitive
nth root of unity w . Let ll be the uniform probability distribution on E. There is an n -
processor protocol f o r t-eflectively perfect Strong Unverified Secret Sharing with message
space E and probability distribution n.

Proof: The protocol is trivia: given input u, the dealer chooses a random polynomial
f(.) E E(.) of degree 2t - 1 with free term u, and sends to each processor p i , 0 i < n,
(including itself) the value f (w ') . The vector of shares is a codeword in the t-error
correcting BCH code of length 4t. To reconstruct the secret, agreement is run on the
shares of all proctsmora and the error-correction procedure for BCH codes is applied to
retrieve f.

Let A be a disrupting adversary. Let E be an execution of the dealing protocol
with disrupting adversary B defined BS follows. B simulates A precisely until A has
compromised t processors. If A compromises fewer than t processors, or if A compromises
the dealer, then B just simulates A. Otherwise, let D be the processon compromised

123

by B and let q be compromised by B no later than any other processor in D. Let B
choose uniformly at random an element sq E R E. B then simulates A in an execution
in which all processors in D - { q } have the shares they actually received in (, but q has
value sq .

The proof of effectively perfect secrecy rests on two claims, whose proofs are omitted
for lack of space.

Claim 4.1 Le t (be a n ezecut ion of the t-SUSS protocol w i t h adversary B. Le t L be a
set of t processors pure in (and n o t containing t h e dealer. Le t V be L's view during (.
T h e n P r [V I 81 where t h e probability space is ouer choice of secret as

well as t he r a n d o m choices o f all processors and of t he adversary.
= Pr [V I A]

Claim 4.2 Le t (be a n ezecut ion of t he t-SUSS protocol w i t h adversary 5 , and let L be
a set o f t processors pure in (and n o t containing the dealer. Le t V be L's view during (.
Then for all messages m,m', if the dealer is n o t disrupted b y B t h e n P r [V I B,m] =
Pr [V I B,m'] , where t h e probability space is over all r a n d o m choices of t he processors
a n d of B.

Thus, the conditions of Equations 1 and 2 are satisfied. This completes the proof of
the theorem. I

Theorem 4.2 t -E f f ec t i ve l y Perfect Strong Verifiable Secret Shar ing requires 4t + 1 pro -
cessors, f o r all t > 2.

Proof: Suppose for the sake of contradiction that the theorem is false. Let P = (Pl,Pz)
be a protocol requiring only n < 41 processors. Let adversary A be as follows. In PI,
A compromises a set D of t processors, chosen uniformly at random from the set of all

n - 1 processors not containing the dealer. A allows the execution to be failure-free; the
point of compromising the processors is to give A access to their message histories and
random choices. Before execution of 7'2 each processor in D broadcasts its entire history
during the execution of 'PI . That is, each processor broadcasts its complete message
history (sent and received), and all random choices made during the execution of 'PI.
For every coalition L of at most t pure processors, for all m # m' and for all views V
of the members of L, Pr [V I A,m] # Pr [V I A,m'], since, together with the (truthful)
history announced by D, the members of L have n - 2 t shares, which by a result in [7]
suffice to reconstruct the secret.

124

Now, let A' be any disruptive adversary other than A. To satisfy the constraint that
for aJl coalitions L of up to t pure processors, not containing the dealer, and for all views
Y of L, Pr [Y 1 A'] = Pr [Y 1 A] (Equation l), adversary A' must choose the set D
with the same probability distribution as A, must never disrupt execution of PI in a
way detectable by any coalition o f t pure processors not containing the dealer, and must
announce a supposed history of D before execution of 73. Moreover, the members of D
must send the same message to every processor other than the dealer and other members
of D, just as they would do under control of A; for if some member of D were to send
different messages to, say, p and q, then the set L = { p , q } would be able to distinguish
A' from A. This is where we use the condition t 2 2.

Consider a particular execution (of PI with adversary A'. Let the processors be
divided into four disjoint groups R, S, TI W , each of size at least 1 and at most t , where
the dealer is in T and the processors in S have been compromised by A'. Let CY, p, ~ , 6 be
the histories, respectively, of R, S, T, W at the end of (. We say (results in apr6. Let y
be the history announced by the members of S. Note that since A always compromises
exactly t processors, A' must do so as well, so IS1 = t .

For A' not to be distinguished from A by R, for some vectors of histories 41,42 there
must exist a failure-free execution ER of PI resulting in f.Yya14-2. Similarly, for some
c1, c2 there exists a failure-free execution Ew resulting in ~ 1 7 ~ 2 6 .

Since R has history CY in both (and ER, the messages exchanged between R and W
are the same in < as in ER. Similarly, since W has history 6 in both < and E w , the
messages exchanged between R and W are the same in (as in Ew. Thus the messages
exchanged between R and W are the same in executions ER and Ew. Since S has
history y in Ew and ER, the messages exchanged between S and W are the same in
executions ER and Ew. For the same reason, messages exchanged between S and R are
the same in executions ER and Ew.

Consider an execution of PI with the following adversary B. The processors in T
are faulty (including the dealer). They act toward the members of R and S as in exe-
cution ER, while acting toward the members of W as in execution Ew. At the end of
PI, with the adversary following this strategy, the vector of histories is ay * 6, where we
have omitted the history of T because these processors are faulty.

For histories 7 , s, t , w , let PZ(rstw) denote the outcome of P2 when the members of
R, S, T, W begin 'pz in the states they would be in had they finished P i with histories
r , s, t , w , repectively, and were there to be no other faulty behavior in "2.

125

Let v = P ~ (c Y ~ u ~ u ~) . Since ER is failure-free and results in ~ ~ 7 ~ 1 a 2 , it must be the
case that P Z (L Y ~ U ~ ~) = v , since otherwise, by choosing between a2 and 6, the members
of W could control the outcome of Pz after execution ER of PI. This implies that
P z (a 7 ~ 6) = v , since otherwise, after arranging an outcome a7 * 6 of 7’1, adversary 5
could control the outcome of Pz by choosing between r and a1 to determine its starting
state in Pz.

We now argue that P , (L Y ~ T ~) = P z (r ~ 7 ~ 6) (= IJ). This is because otherwise, after
execution ((which results in aPr6 and in which only the members of S are faulty), the
members of S could control the outcome of Fz by choosing between p and 7. Thus, if V
is the view of the members of R after (and after the members of S have announced 7,
then for a.ll IJ’ # v,

Pr [V I d’ ,v] # Pr [Y I d’,w’] .
This violates Equation 2 in the definition of effectively perfect secrecy. Thus, no adver-
sary A‘ satisfying Equation 1 can also satisfy Equation 2. I

4.2 Implications for t - V S S

As we have seen, the distribution phase for t-USS requires only a single round of message
exchange (the dealer sends a share to every player other than itself). An elementary
hybrid argument shows that additional communication is required for the distribution
phase of t-VSS. The proof of Theorem 4.2 yields information about the structure of this
additional communication.

Let n = 3t + 1 and consider any n-processor protocol P = (PI , Pz) for t-VSS (what we
have been calling (t , 2)-VSS). Let us emphasize certain points in the proof of Theorem 4.2.

1. LY and 7 “fit,” that is, there exists a failure-free execution of PI that results in
w y u l u ~ , for some ala2. We defined IJ to be P ~ (L Y ~ u ~ u ~) .

2. 7 and 6 “fit.”

3. PI, lTl, IWI 5 t.
4. From these three points alone we concluded that the secret dealt out during (was

also IJ. For example, we did not need that 7 and T fit, and we did not need to know
r or 6.

Since we did not need that 7 and r fit, the members of S could be lying in 7 about their
communication with the members of T . In particular, they could be lying about what

126

they received from the dealer. However, since 7 fits 6, the members of S are not lying
about their communication with W.

We obtained points (1) and (2) above from the definition of effectively perfect secrecy.
Suppose we are given a failure-free execution of a distribution protocol in which the
members of R have history a. Given a, if we had any way of knowing that a history 7 ,
fitting with a, also fits the history of W , whatever that history may be, then we could
determine the secret, provided the sizes of the sets S, TI W satisfy condition (3). Thus,
the proof of Theorem 4.2 shows that the secret is completely determined by a and the
communication between the members of S and W during the distribution protocol. Since
IRI 5 t , a itself cannot hold any information about the secret. Thus there must exist
some communication between S and W . If we assume processors only communicate
with explicit messages (and not via timeouts) this tells us a fair amount about the
communication needed even in failure-free executions of the dealing protocol.

For example, if we choose R, S, and T each to have size exactly t , then W has
size 1. The above discussion implies there must be communication between S and W.
Varying our choice of W over all processors in T other than the dealer we conclude
S must communicate with every processor not in R U S, except possibly the dealer.
(Communication with the dealer can be argued separately.)

5 Discussion and Open Questions

This research was motivated by a desire to understand on an intuitive level precisely what
must occur during verification that a secret is well distributed. By focussing on secrecy
with respect to small coalitions of pure processors we were able to separate a strong
version of Verified Secret Sharing from its Unverified analogue. To do this we introduced
the notion of effectively perfect secrecy. As we saw in Section 4.2, examination of the
proof of Theorem 4.2 yields information about the structure of communication during
the distribution phase of any protocol for the original t-VSS problem. An example of the
type of structure discovered was given in that section. More complete analysis remians
to be performed.

We do not have a lower bound on processors needed for effectively perfect (1, t , d)-
SUSS, nor even for effectively perfect t-SUSS (the case in which all three parameters are
the same). The proof of Theorem 4.1 relies on the fact that every vector of 21 shares is in
a sense equally probable, so the t faulty players can always make up a vector of t shares
that fits with those shares held by the coalition of pure processors, whoever may he in the
coalition. Interestingly, it is possible to show that if the faulty processors only wish to lie

127

convincingly to a particular coaltion of pure gossips then it is possible to use polynomials
of degree t (rather than of degree 2t - 1, as done in the proof of the Theorem), in which
case 3t + 1 processors suffice.

Although our bound on effectively perfect t-SVSS is tight, in the general case there is
a gap between the lower bound of .!+3d+ 1 processors for effectively perfect (I , t , d)-SVSS
and the upper bound of C + t + 2d + 1.

Acknowledgements I am grateful to Stephen Ponzio for many hours of discussion.
My original proof of effectively perfect secrecy for the protocol in Theorem 4.1 held only
for static adversaries. Ponzio suggested the modification of B used to prove the result
for dynamic adversaries. Discussions with Joe Kilian and Larry Stockmeyer were also

helpful; I thank them both.

References

[l] D. Beaver, and S. Goldwasser, Multiparty Computation with Faulty Majority,
Proc. 30th Symp. on Foundations of Comp. Science, pp. 468473, 1989.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation, Proc. 20th Symp. on
Theory of Computing, pp. 1-10, 1988.

(31 D. Chaum, C. Crepeau, and I. Damgard, Multiparty Unconditionally Secure
Protocols, Proc. 20th Symp. on Theory of Computing, 11-19, 1988.

[4] B. Chor, 3. Goldwasser, S. Micali, and B. Awerbuch, Verifiable Secret Shar-
ing and Achieving Simultaneity in the Presence of Faults, Proc. 26 Symp. on
Fiundations of Computing, pp. 383-395,1985.

[5] B. Chor, and M. Rabin, Achieving Independence in Logarithmic Number of
Rounds, Proc. 6th Annual ACMSymp. on Principles of Distributed Computing,
pp. 260-268 (1987).

[6] C. Dwork, Strong Verifiable Secret Sharing, to appear, Proc. 4th Internationd
Workshop on Distributed Algorithms (1990), Springer Verlag.

[7] D. Dolev, C. Dwork, 0. Waarts, and M. Yung, Perfectly Secure Message Trans-
mission, Proc. 31st Annual Symposium on Foundations of Computer Science,
pp. 36-45 (1990).

128

[8] P. Feldman, and S. Micali, Optimal Algorithm for Byzantine Agreement, Proc.
20th Symp. on Theory of Computing, pp. 148161, 1988.

[9] 0. Goldreich, S. Micali, and A. Wigderson, How to Play Any Mental Game,
Proc. 19th Symp. on Theory of Computing, pp. 218-229, 1987.

[lo] S. Goldwasser, S. MiCali, and C. Rackoff, The Knowledge Complexity of In-
teractive Proof-Systems, Proc. 17th Annual ACM Symposium on Theory of
Computing (1985), pp. 291-304.

[ll] J. Halpern and Y. Moses, Knowledge and Common Knowledge in a Distributed
Environment, JACM 37(3), pp. 549-587,1990.

[12] R. McEliece and D. Sarwate, On Sharing Secrets and Reed-Solomon Codes,
CACM 24(9), pp. 583-584, 1981.

(131 T. Rabin, and M. Ben-Or, Verifiable Secret Sharing and Multiparty Protocols
with Honest Majority, Proc. 21st Symp. on Theory of Computing, pp. 73-85,
1989.

[14] A. Shamir, How to Share a Secret, CACM 22, pp. 612-613, 1979.

	Introduction
	Definitions
	Related Work
	Separating Unverified Secret Sharing from VerifiableSecret Sharing
	Separating the Strong Versions of the Problems
	Implications for t-VSS

	Discussion and Open Questions
	Acknowledgements
	References

