
Cryptographic Capsules :
A Disjunctive Primitive
for Interactive Protocols

Josh Cohen Benaloh*

1 Introduction

This paper describes a deceptively (almost embarrassingly) simple technique, that
of cryptographic capsules, which allows Alice to convince Bob that either X or Y is
true without giving Bob any information as to which is the case. Capsules are an
instrumental part of the machinery used to compose ballots in the cryptographic
election scheme of [CoFi85] (see also [Coh86], [Ben86], and [BeYu86]), but they
have far broader applications. Use of capsules substantially simplifies the “zero-
knowledge” interactive proof system for quadratic non-residuosity published in
[GMR85]. Their use also provides a tremendous simplification of the “result-
indistinguishable” interactive proof system published in [GHY85]. Capsules have
been incorporated into the zero-knowledge protocol for interactively proving non-
isomorphism of graphs described in [GMWgG]. Finally, capsules are shown here
to provide a mechanism more efficient than that of [GMW86] by which Alice can
convince Bob (in a zero-knowledge fashion) of the validity of any NP predicate.

Despite their simplicity, it seems that the applications of capsules may go far be-
yond those mentioned here, and capsules have the potential to become a standard
primative construct for many kinds of interactive protocols.

2 Cryptographic Capsules
A cryptographic capsule (or simply capsule) is a randomly ordered collection of
objects, each of which is of some specified form. The order of the elements of
the capsule is randomly permuted to hide which element is of which type; or,
alternately, some easily computable ordering function (such as 5) can be applied
to the capsule to obscure the original ordering.

‘This work was suppor ted in p a r t by the National Security Agency under Grant MDA904-84-H-0004.

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 ’86, LNCS 263, pp. 213-222, 1987.
0 Springer-Verlag Berlin Heidelberg 1987

214

A simple example of a capsule is a pair of integers - one of which is even and
one of which is odd, e.g. (4,13). This capsule, however, is not very interesting
because it is readily apparent which is the odd integer and which is the even
integer.

A somewhat more useful capsule may be an (unordered) pair of integers {n l , n2)
with n1 = plql where p1 and q1 are each primes congruent to 1 modulo 4 and
n2 = p2q2 where p2 and q2 are each primes congruent to 3 modulo 4.

If we assume that distinguishing between these two ca-ses is hard, then this
suggests a simple method for flipping a coin over a telephone. Alice prepares such
a pair and transmits i t to Bob; Bob then selects one element from the pair and
transmits his choice to Alice; finally, Alice reveals the factors of both n1 and 722 to
Bob. We may say that the coin flip is heads if Bob chose the element with factors
congruent to 1 modulo 4 and tails otherwise.

This is not an ideal example, since Alice could have simply transmitted a single
integer of one of the two preceding classes and waited for Bob to guess which
class it was from. The real power of capsules comes from the ability to prove
interactively that a capsule is of the required form without the need to later reveal
secret information about its contents,

3 Residue Classes and Capsules
Most of the interesting applications of cryptographic capsules so far explored in-
volve their use with residue classes. The feature of residue classes which is im-
portant for this application is that two integers can be shown to be of the same
residue class without giving any information about the actual residue classes to
which the integers belong.

Formally, for any given integers n and y , y is said to be an rth residue modulo n
if and only if there exists some integer 2 such that y E 2' (mod n). The following
lemma characterizes residue classes.

Lemma 1 Let p(n) denote the Euler totient function, and choose n and r such
that r lp(n) and r2Jp(n) . If y is relatively prime to n and i s not an rth residue
modulo n, then every w which i s relatively prime to n is expressible as w x'yi
(mod n) for a unique integer i in the range 0 5 i < r .

This i is the residue class of w with respect to n, y, and r .
An important (although slightly variant) special case occurs when r = 2, and

n is the product of two distinct primes. We ignore the choice of y here and denote
the set of quadratic residues by class 0 and the set of quadratic non-residues with
Jacobi symbol 1 by class 1.

A property of residue classes is apparent from the definition.

215

Lemma 2 If x1 and z2 are members of residue classes i l and i2, respectively, then
the product 21x2 is a member of residue class il + i2.

Note that for all integers i, residue classes i and i + r are different denotations
of the same class. The canonical denotation of a residue class I will be the unique
class i with 0 5 i < r such that i = I

Finally, the following lemma shows how two integers can be shown to be of the
same residue class.

(mod r) .

Lemma 3 Two integers x1 and x2 which are relatively prime to n are of the same
residue class with respect t o n, y, and r i f and only i f there exists some integer v
such that vr = z1/zz (mod n).

Thus, to prove tha t two integers are of the same residue class, it is necessary
only to exhibit an rth root of their quotient.

4 Some Applications

4.1 Elections
In the cryptographic election work of [CoFi85], each voter prepares, as a ballot,
a capsule which consists of of a random member of residue class 0 (denoting a
no vote) and a random member of residue class 1 (denoting a yes vote). Later,
each voter will designate one of the components of his or her capsule as the actual
vote. The votes can then be multiplied together, and (by Lemma 2) the resulting
product is a member of residue class t , where t is the total number of yes votes.
A powerful agent (such as a government) which holds the factorization of the
modulus n used can then prove to all participants that the computed product is of
residue class t without giving any additional information about the residue classes
of the factors, thus protecting the privacy of the individual votes.

Where do capsules come in? It is essential that the vote cast by each voter be
a member of either class 0 or class 1. If a voter were, for example, able to cast a
vote of class 1,000,000, then this one vote would increment the tally by 1,000,000.
The voter, however, does not want to reveal to which of class 0 or class 1 his or
her vote belongs.

To prove that a chosen capsule C is of the required form, a voter engages in
an interactive proof (see [FMR84] and [GMR85]). Each voter prepares a set B of
(say) 100 additional capsules - each one, as the original, consisting of a random
member of residue class 0 and a random member of residue class 1. Random bits
are then generated', and used to partition B into sets S and T. The capsules of

'We assume here tha t some generally trusted source of randomness can be obtained, perhaps by XORing
random bits generated by all (or some trusted subset) of the participants. In the other protocols described,
the number of agents is small (usually two), and the challenging agent can generate its own random numbers.

216

set S are all “opened” t o prove that they each consist of a proper no vote and a
proper yes vote. (To open a capsule, a voter “opens” each component 20 of the
capsule by revealing integers z and i, i E (0, l}, such that w -= z‘yi (mod n) -
see Lemma 1.) Each capsule in T is shown t o be “equivalent” to C by showing
that it has one component of the same class as the first component of C and
one component of the same class as the second component of C. (Recall that by
Lemma 3, two integers can be shown to be of the same residue class by showing
that there quotient q is an rth residue, and this in turn can be shown by exhibiting
an rth root of q.)

Once this process has been completed, it is known that every capsule in S is
of the required form (one integer of class 0 and one integer of class l), and every
capsule of T is of the same form as C. Thus, C is of the required form unless
every capsule in T is improper. Since the partition of B into S and T was chosen
randomly after the capsules of B were prepared, C could only be improper if the
partition were somehow guessed in advance. But the probability of doing this
successfully is only 1 in 2”’. Hence, there is extremely high confidence tha t C is
a proper capsule, and the voter can then vote by selecting one of the components
of c.

Formal proofs tha t this procedure does not yield any extraneous information
are included in [CoFi85].

4.2 Quadratic Residuosity
The work on elections has been previously published (besides [CoFi85], see [Coh86],
[Ben86], and [BeYu86] for some extensions), and the above sketch is included only
to motivate the use of capsules. In section 4.2, we shall examine how the use of
capsules can greatly simplify protocols which have been published in [GMR85] and
[GHY85].

4.2.1 Zero-Knowledge Non-residuosity

In [GMR85], a protocol is given whereby Alice convinces Bob that a given y
is not a quadratic residue modulo a given n. (It is presumed that Alice has
the factorization of n and tha t Bob does not.) Alice convinces Bob tha t y is
not a residue by demonstrating her ability to distinguish members of a set X of
randomly chosen residues from members of a set Y consisting of elements formed
by multiplying other randomly chosen residues by y. If y were a residue, then all
of the elements of X and Y would be random residues (class 0), and Alice would
have no hope of distinguishing between them with better than a 50% chance. I€,
however, y is not a residue, then the elements of Y would be random elements
of class 1. With the factorization of n, Alice can distinguish between elements of
class 0 and elements of class 1 flawlessly.

217

In order to avoid acting as a residuosity oracle for Bob, Alice wants to be
certain that the numbers she distinguishes between are generated by the protocol,
i.e. before telling Bob whether a w which he has produced is a residue or a non-
residue, Alice wants t o be certain that Bob already knows which is the case (under
the assumption that y is not a residue). To accomplish this, the authors include
a rather cumbersome protocol in which Bob prepares (say) 100 elements of both
types, “opens” those designated by Alice, opens additional elements to balance
the types remaining, and applies one of four functions to w and each remaining
element u according to the classes of w and u.

The simple process of grouping the elements into capsules eliminates the need
for the balancing and the four separate functions (as well as the accompanying
analyses). The process is essentially the same as a one voter election (Bob is the
voter and Alice is the government).

Bob sends Alice a w generated either as a residue or as a product of a residue
and y. Bob then prepares and sends to Alice (say) 100 capsules, each of which
consists of a randomly chosen residue and the product of y and another random
residue. Alice then randomly decides for each capsule whether or not it is to be
opened. Those capsules designated by Alice are opened by Bob proving that they
are of the stated form. From each remaining capsule, Bob chooses one element,
which shall be denoted by z, and shows that z is of the same class as w by revealing
a root of the quotient z / w - this demonstrates that if Bob can determine the class
of z, he can also determine the class of w since they are the same by Lemma 3.
As before, unless Bob already has sufficient information to determine the class of
w without Alice’s help, Bob has only 1 chance in 2loo of successfully answering
Alice’s challenges.

4.2.2 Result-indistinguishable Residuosity

[GHY85] generalizes the result of [GMR85] in such a way that an observer, Carol,
watching the protocol between Alice and Bob gains no information from the pro-
tocol as to whether *4lice convinced Bob that a given z was or was not a quadratic
residue.

The key addition to the protocol of [GMR85] is the inclusion of a third set of
possibilities. Instead of choosing w from among just two sets X and Y , Bob may
select from an additional set 2. Members of X are randomly generated residues
(class 0); members of Y are randomly generated non-residues (class 1) - these can
be produced by multiplying random residues by a known non-residue y; finally,
members of 2 are generated by multiplying random residues by z (all elements of
2 are of the same class as 2).

To prove to Alice that she is not providing Bob with too much information,
Bob must send Alice the (scrambled) members of 4 sets (essentially of the form
of X , Y , 2, and z - a complementary set to 2 needed to maintain symmetry).

218

The remainder of the protocol is similar to [GMR85], except that the unrevealed
portions of four sets instead of just two have to be simultaneously balanced (neces-
sitating an even more arduous analysis), and a four by three table of functions is
needed corresponding to which set w is a member of and which class each unopened
element is a member of.

By using three-component capsules, the protocol of [GHY85] can be simplified
tremendously. Bob simply prepares a master capsule C, cosisting of one member
of each of X , Y , and 2, and (say) 100 additional scratch capsules of the same form.
Alice designates some subset of the scratch capsules, and Bob opens these. Bob
then shows that each remaining scratch capsule is equivalent to C by matching
components and showing that their quotients are residues. Alice (now convinced
that C was generated as required) tells Bob which capsule component is of a class
diflerent from the other two - thus transmitting to Bob the class of z .

The chance of Alice being fooled into revealing excessive information to Bob is
only 1 in 2loo. The chance of Alice fooling Bob in one iteration of this protocol is
1/2, so by iterating the process, Bob can obtain extrememly (exponentially) high
confidence that he has not been misled. Finally, it is not hard to show that Carol
receives absolutely no information from watching this protocol that she could not
have obtained on her own.

The necessary proofs of both [GMR85] and [GHY85] remain unchanged except
for some straightforward simplifications and the removal of some analyses which
are no longer necessary when the revised protocols are used.

4.3 Graph Non-isomorphism

One example in which capsules are useful without the aid of residue classes is seen
in a protocol for graph non-isomorphism described in [GMW86]. Their original
protocol closely followed the non-residuosity protocol of [GMR85]. Here, a prover
designates a graph H given by the verifier as either a permutation of graph GI
or of graph G:! only after being convinced that the prover already holds such
a permutation. Their protocol now incorporates capsules in a manner similar
that described in Section 4.2.1 (residue classes are replaced by the equivalence
classes induced by graph isomorphism, and class equivalence is demonstrated by
exhibiting permutations). With this modificiation, their protocol and its analysis
have been simplified.

5 Boolean Circuit Satisfiability
Very recently (also in [GMW86]), Goldreich, Micali, and Wigderson gave a simple
and elegant zero-knowledge interactive protocol to prove for any k that a graph
is k-colorable without revealing any information about a specific coloring (note
that it is assumed that the prover possesses a k-coloring of the graph). Because

219

k-colorability is NP-complete, this means that any positive instance of a problem
in NP for which a prover holds a certificate (e.g. a satisfying assignment for
a Boolean formula) can be reduced to graph colorability and shown in a zero-
knowledge fashion to be a positive instance, The only assumption made is the
existence of a probabilistic cryptosystem which is implied by the existence of a
one-way permutation ([GoMi84] ,[Yao82]).

In this section, we shall examine an alternate approach which gives the same re-
sult by a very different method. The method uses capsules to give a zero-knowledge
protocol to interactively prove that a given Boolean formula (or arbitrary Boolean
circuit with in-degree 2) has a satisfying assignment. Brassard and Crepeau in
[BrCr86] independently of both this work and [GMW86] have achieved the same
result, and a similar result is given in [Cha86].

The major advantage of this method over the original is efficiency. When a
Boolean formula or circuit is reduced to a colorability graph, the number of vertices
and edges in the resulting graph is linear in the size of the Boolean formula.
Each stage of the interactive proof protocol of Goldreich, Micali, and Wigderson,
however, requires a new encryption of the entire graph; and for any fixed confidence
level desired, their protocol requires a number of stages which is linear in the
number of edges in the graph. Thus, the number of probabilistic encryptions
required by this protocol grows quadratically with the size of the graph (or circuit).
Because of the local nature of the method presented below, re-encryption is not
necessary, and the number of probabilistic encryptions required grows only linearly
with the size of the circuit (or graph).

The major disadvantage of this method compared to the original method is
that the new procedure requires a (seemingly) stronger cryptographic assumption.
Although both methods require a probabilistic encryption function - the best
known of which is based on residue classes ([GoMi84]), the method given here
requires a probabilistic encryption function for which two encrypted values can
be proven (in a zero-knowledge manner) to be encryptions of the same value.
Although this property is easily achieved by the residue class based probabilistic
encryption (Lemma 3), it is not at all obvious that every probabilistic encryption
function has this property. However, by observing that the problem of inverting
a probabilistic encryption function is itself in ,UP, the original Goldreich, Micali,
and Wigderson result can be applied to show that the cryptographic assumption
required here is, in fact, no stronger than the assumption of the existence of an
arbitrary probabilistic cryptosystem.

5.1 The Satisfiability Scheme

The basic idea of the scheme is again deceptively simple. If Alice wants to prove to
Bob that a given formula is satisfiable (and Alice has a satisfying assignment), Alice
begins by choosing a n n which is the product of two large primes and providing

220

Bob with n and a y (with Jacobi symbol 1) which is not a quadratic residue
modulo n. This is merely the establishment of a probabilistic encryption function.
Alice can convince Bob that y is a non-residue by engaging in the non-residuosity
protocol of section 4.2.1 or by choosing n of a special form so that (for instance)
y = -1 is a non-residue.

Alice then draws a circuit t o compute the Boolean function (in the obvious way),
selects a satisfying assignment and sends Bob an encryption of this assignment (for
each variable, Alice sends Bob a residue if that variable is False/O/Off and a non-
residue if that variable is True/l /On). Alice then encrypts the output of each gate
of the circuit in the same manner and sends Bob these encrypted values as well.

For each gate in the circuit, Alice then interactively proves t o Bob tha t the gate
computes the required function. The computation of an AND gate will be shown
here, and other Boolean functions will become apparent.

To prove that a given gate computes an AND on its inputs, a full t ruth table
for AND is used. There are, of course, four possibilities: either both inputs and
the output are 0; the first input is 0, the second is 1, and the output is 0; the first
input is 1, the second is 0, and the output is 0; or both inputs and the output
are 1. A four-component capsule can now be prepared such that each of the four
components of the capsule is itself an ordered triple. To compute AND, the four
(unordered) components of the capsule consist of (ordered) triples whose elements
are members of residue classes (O,O,O) , (O , l , O) , (l , O , O) , and (1,1,1). Once a
capsule C is interactively proven t o be of this form, Alice selects the component
which corresponds to t h e actual input and output values of the gate and proves
that they match by releasing a square root of each quotient.

To prove that a capsule C is of the above form, Alice prepares many (say 100)
capsules of this form and Bob selects an arbitrary subset to be opened. Alice
then proves that each unopened capsule matches C by matching corresponding
components and releasing square roots of the quotients of all three elements of
each triple t o show tha t they do, in fact, match.

Finally, Alice interactively proves that the output of the circuit is 1 by proving
that this value is a non-residue as in section 4.2.1.*

Remark Some gates may be computed without the need for an interactive proof.
For example, an encrypted value may be complemented simply by multiplying it
by y , and the XOR of two or more encrypted values is represented by their product
(Lemma 2).

A mechanism which could obviate the need for any interactive proofs t o verify
gate validity is highly desirable. An encryption homomorphism which allows the
direct computation of AND or OR together with NOT would of course suffice,
and this would allow satisfiablitiy t o be proven with a single interactive proof of

*Chaum points ou t in his work t h a t with a slight modification of this protocol, t h e need for this final
interactive proof can be eliminated.

22 1

the value of the output. However, no such probabilistic encryption has yet been
found.

6 Conclusions
The method of cryptographic capsules, especially (but not exclusively) when com-
bined with residue classes, seems to be a powerful tool with many applications.
This simple tool makes possible several protocols which would be impractical or
completely impossible without them. In addition, several previously published
protocols can be significantly simplified by the use of capsules.

It is believed tha t capsules may have many applications which go well beyond
those described here, and they may become a standard tool in the design of inter-
active protocols.

Acknowledgements
The author would like to express many thanks to Oded Goldreich, Shafi Gold-

wasser, Neil Immerman, Jerry Leichter, Ruben Michel, and David Wittenberg for
their help in developing this work and to Mike Fischer who, in addition to giving
much guidance and many helpful criticisms, orgininally suggested the use of the
term “capsules”.

References
[Ben861

[BeYu86]

[B r Cr8G]

[Cha8G]

[CoFi85]

Benaloh, J. “Secret Sharing Homomorphisms: Keeping Shares of a
Secret Secret.’’ C r y p t o ’86, Santa Barbara, CA (Aug. 1986).

Benaloh, J. and Yung, M. “Distributing the Power of a Govern-
ment to Enhance the Privacy of Voters.” Proc. 5th ACM S y m p . on
Pr inc ip l e s of Distributed Comput ing , Calgary, AB (Aug. 1986), 52-
62.

Brassard, G. and Crepeau, C. “Zero-Knowledge Simulation of
Boolean Circuits.” Cryp to ’86, Santa Barbara, CA (Aug. 1986).

Chaum, D. “Demonstrating that a Public Predicate can be Satisfied
Without Revealing Any Information About HOW.” C r y p t o ’86, Santa
Barbara, CA (Aug. 1986).

Cohen, J. and Fischer, M. “A Robust and Verifiable Cryptograph-
ically Secure Election Scheme.” Proc. 2Gth IEEE Symp. on Founda-
tions of C o m p u t e r Science, Portland, OR (Oct. 1985), 372-382.

222

[Coh86] Cohen, J. “Improving Privacy in Cryptographic Elections.” TR-454,
Yale University, Departement of Computer Science, New Haven, CT
(Feb. 1986).

Fischer, M., Micali, S., and Rackoff, C. “A Secure Protocol
for the Oblivious Transfer.” Presented at Eurocrypt84, Paris, France
(Apr. 1984). (Not in proceedings.)

Galil, Z., Haber, S. , and Yung, M. “A Private Interactive Test of a
Boolean Predicate and Minimum-Knowledge Public-Key Cryptosys-
terns.” Proc. 26th IEEE Symp. on Foundations of Computer Science,
Portland, OR (Oct. 1985), 372-382.

Comput. System Sci. 28, 2 (Apr. 1984), 270-299.

Goldwasser, S., Micali, S., and Rackoff, C. “The Knowledge of
Complexity of Interactive Proof-Systems.” Proc. 17th ACM Symp. on
Theory of Computing, Providence, RI (May 1985), 291-304.

Goldreich, O. , Micali, S . , and Wigderson, A. ”Proofs that Yield
Nothing But their Validity and a Methodology of Cryptographic Pro-
tocol Design.” Proc. 27th IEEE Symp. on Foundations of Computer
Science, Toronto, ON (Oct. 1986), 174-187.

Yao, A. “Theory and Applications of Trapdoor Functions.” Proc.
23’d IEEE Symp. on Foundations of Computer Science, Chicago, IL

[FMR84]

(GHY851

[GoMi84] Goldwasser, S. and Micali, S. “Probabilistic Encryption.” J.

(GMR851

[GMW86]

[Yao82]

(Nov. 1982), 80-91.

