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1 Introduction 

This paper describes a deceptively (almost embarrassingly) simple technique, that 
of cryptographic capsules, which allows Alice to  convince Bob that either X or Y is 
true without giving Bob any information as to which is the case. Capsules are an 
instrumental part of the machinery used to  compose ballots in the cryptographic 
election scheme of [CoFi85] (see also [Coh86], [Ben86], and [BeYu86]), but they 
have far broader applications. Use of capsules substantially simplifies the “zero- 
knowledge” interactive proof system for quadratic non-residuosity published in 
[GMR85]. Their use also provides a tremendous simplification of the “result- 
indistinguishable” interactive proof system published in [GHY85]. Capsules have 
been incorporated into the zero-knowledge protocol for interactively proving non- 
isomorphism of graphs described in [GMWgG]. Finally, capsules are shown here 
to provide a mechanism more efficient than that of [GMW86] by which Alice can 
convince Bob (in a zero-knowledge fashion) of the validity of any NP predicate. 

Despite their simplicity, it seems that the applications of capsules may go far be- 
yond those mentioned here, and capsules have the potential to become a standard 
primative construct for many kinds of interactive protocols. 

2 Cryptographic Capsules 
A cryptographic capsule (or simply capsule) is a randomly ordered collection of 
objects, each of which is of some specified form. The order of the elements of 
the capsule is randomly permuted to hide which element is of which type; or, 
alternately, some easily computable ordering function (such as 5 )  can be applied 
to the capsule to obscure the original ordering. 
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A simple example of a capsule is a pair of integers - one of which is even and 
one of which is odd, e.g. (4,13). This capsule, however, is not very interesting 
because it is readily apparent which is the odd integer and which is the even 
integer. 

A somewhat more useful capsule may be an (unordered) pair of integers {n l ,  n2) 
with n1 = plql where p1 and q1 are each primes congruent to 1 modulo 4 and 
n2 = p2q2 where p2 and q2 are each primes congruent to 3 modulo 4. 

If we assume that  distinguishing between these two ca-ses is hard, then this 
suggests a simple method for flipping a coin over a telephone. Alice prepares such 
a pair and transmits i t  to  Bob; Bob then selects one element from the  pair and 
transmits his choice to  Alice; finally, Alice reveals the factors of both n1 and 722 to  
Bob. We may say that  the coin flip is heads if Bob chose the element with factors 
congruent to  1 modulo 4 and tails otherwise. 

This is not an ideal example, since Alice could have simply transmitted a single 
integer of one of the  two preceding classes and waited for Bob to guess which 
class it was from. The real power of capsules comes from the ability to  prove 
interactively that a capsule is of the required form without the need to  later reveal 
secret information about its contents, 

3 Residue Classes and Capsules 
Most of the interesting applications of cryptographic capsules so far explored in- 
volve their use with residue classes. The feature of residue classes which is im- 
portant for this application is that  two integers can be shown to be of the same 
residue class without giving any information about the actual residue classes to 
which the integers belong. 

Formally, for any given integers n and y ,  y is said to be an rth residue modulo n 
if and only if there exists some integer 2 such that y E 2' (mod n). The following 
lemma characterizes residue classes. 

Lemma 1 Let p(n) denote  the  Euler totient function, and choose n and r such 
that r lp(n)  and r2Jp(n ) .  If y is relatively prime to n and i s  not an rth residue 
modulo n, then every w which i s  relatively prime to n is expressible as  w x'yi 
(mod n) for a unique integer i in the range 0 5 i < r .  

This i is the residue class of w with respect to n, y, and r .  
An important (although slightly variant) special case occurs when r = 2, and 

n is the product of two distinct primes. We ignore the choice of y here and denote 
the set of quadratic residues by class 0 and the set of quadratic non-residues with 
Jacobi symbol 1 by class 1. 

A property of residue classes is apparent from the definition. 
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Lemma 2 If x1 and z2 are members of residue classes i l  and i2, respectively, then 
the product 21x2 is  a member of residue class il + i2. 

Note that for all integers i, residue classes i and i + r are different denotations 
of the same class. The  canonical denotation of a residue class I will be the unique 
class i with 0 5 i < r such that i = I 

Finally, the following lemma shows how two integers can be shown to be of the 
same residue class. 

(mod r ) .  

Lemma 3 Two integers x1 and x2 which are relatively prime to n are of the same 
residue class with respect t o  n, y, and r i f  and  only i f  there exists some integer v 
such that vr = z1/zz (mod n). 

Thus, to prove tha t  two integers are of the same residue class, it is necessary 
only to exhibit an rth root of their quotient. 

4 Some Applications 

4.1 Elections 
In the cryptographic election work of [CoFi85], each voter prepares, as a ballot, 
a capsule which consists of of a random member of residue class 0 (denoting a 
no vote) and a random member of residue class 1 (denoting a yes vote). Later, 
each voter will designate one of the components of his or her capsule as the actual 
vote. The votes can then be multiplied together, and (by Lemma 2) the resulting 
product is a member of residue class t ,  where t is the total number of yes votes. 
A powerful agent (such as a government) which holds the factorization of the 
modulus n used can then prove to all participants that the computed product is of 
residue class t without giving any additional information about the residue classes 
of the factors, thus protecting the privacy of the individual votes. 

Where do capsules come in? It is essential that the vote cast by each voter be 
a member of either class 0 or class 1. If a voter were, for example, able to cast a 
vote of class 1,000,000, then this one vote would increment the tally by 1,000,000. 
The voter, however, does not want to reveal to which of class 0 or class 1 his or 
her vote belongs. 

To prove that a chosen capsule C is of the required form, a voter engages in 
an interactive proof (see [FMR84] and [GMR85]). Each voter prepares a set B of 
(say) 100 additional capsules - each one, as the original, consisting of a random 
member of residue class 0 and a random member of residue class 1. Random bits 
are then generated', and used to  partition B into sets S and T. The capsules of 

'We assume here tha t  some generally trusted source of randomness can be obtained, perhaps by XORing 
random bits generated by all (or some trusted subset) of the participants. In the other protocols described, 
the number of agents is small  (usually two),  and the challenging agent can generate its own random numbers. 
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set S are all “opened” t o  prove that they each consist of a proper no vote and a 
proper yes vote. (To open a capsule, a voter “opens” each component 20 of the 
capsule by revealing integers z and i, i E (0, l}, such that w -= z‘yi (mod n) - 
see Lemma 1.) Each capsule in T is shown t o  be “equivalent” to  C by showing 
that it has one component of the same class as the first component of C and 
one component of the same class as the second component of C. (Recall that by 
Lemma 3, two integers can be shown to be of the same residue class by showing 
that there quotient q is an  rth residue, and this in turn can be shown by exhibiting 
an rth root of q.) 

Once this process has been completed, it is known that every capsule in S is 
of the required form (one integer of class 0 and one integer of class l), and every 
capsule of T is of the same form as C. Thus, C is of the required form unless 
every capsule in T is improper. Since the partition of B into S and T was chosen 
randomly after the capsules of B were prepared, C could only be improper if the 
partition were somehow guessed in advance. But the probability of doing this 
successfully is only 1 in 2”’. Hence, there is extremely high confidence tha t  C is 
a proper capsule, and the voter can then vote by selecting one of the components 
of c. 

Formal proofs tha t  this procedure does not yield any extraneous information 
are included in [CoFi85]. 

4.2 Quadratic Residuosity 
The work on elections has been previously published (besides [CoFi85], see [Coh86], 
[Ben86], and [BeYu86] for some extensions), and the above sketch is included only 
to  motivate the use of capsules. In section 4.2,  we shall examine how the  use of 
capsules can greatly simplify protocols which have been published in [GMR85] and 
[GHY85]. 

4.2.1 Zero-Knowledge Non-residuosity 

In [GMR85], a protocol is given whereby Alice convinces Bob that  a given y 
is not a quadratic residue modulo a given n. (It is presumed that  Alice has 
the factorization of n and tha t  Bob does not.) Alice convinces Bob tha t  y is 
not a residue by demonstrating her ability to  distinguish members of a set X of 
randomly chosen residues from members of a set Y consisting of elements formed 
by multiplying other randomly chosen residues by y. If y were a residue, then all 
of the elements of X and Y would be random residues (class 0), and Alice would 
have no hope of distinguishing between them with better than a 50% chance. I€, 
however, y is not a residue, then the elements of Y would be random elements 
of class 1. With the factorization of n, Alice can distinguish between elements of 
class 0 and elements of class 1 flawlessly. 
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In order to avoid acting as a residuosity oracle for Bob, Alice wants to be 
certain that the numbers she distinguishes between are generated by the protocol, 
i.e. before telling Bob whether a w which he has produced is a residue or a non- 
residue, Alice wants t o  be certain that Bob already knows which is the case (under 
the assumption that y is not a residue). To accomplish this, the authors include 
a rather cumbersome protocol in which Bob prepares (say) 100 elements of both 
types, “opens” those designated by Alice, opens additional elements to balance 
the types remaining, and applies one of four functions to w and each remaining 
element u according to  the classes of w and u. 

The simple process of grouping the elements into capsules eliminates the need 
for the balancing and the four separate functions (as well as the accompanying 
analyses). The process is essentially the same as a one voter election (Bob is the 
voter and Alice is the government). 

Bob sends Alice a w generated either as a residue or as a product of a residue 
and y. Bob then prepares and sends to Alice (say) 100 capsules, each of which 
consists of a randomly chosen residue and the product of y and another random 
residue. Alice then randomly decides for each capsule whether or not it is to be 
opened. Those capsules designated by Alice are opened by Bob proving that they 
are of the stated form. From each remaining capsule, Bob chooses one element, 
which shall be denoted by z, and shows that z is of the same class as w by revealing 
a root of the quotient z / w  - this demonstrates that if Bob can determine the class 
of z, he can also determine the class of w since they are the same by Lemma 3. 
As before, unless Bob already has sufficient information to determine the class of 
w without Alice’s help, Bob has only 1 chance in 2loo of successfully answering 
Alice’s challenges. 

4.2.2 Result-indistinguishable Residuosity 

[GHY85] generalizes the result of [GMR85] in such a way that an observer, Carol, 
watching the protocol between Alice and Bob gains no information from the pro- 
tocol as to whether *4lice convinced Bob that a given z was or was not a quadratic 
residue. 

The key addition to  the protocol of [GMR85] is the inclusion of a third set of 
possibilities. Instead of choosing w from among just two sets X and Y ,  Bob may 
select from an additional set 2. Members of X are randomly generated residues 
(class 0); members of Y are randomly generated non-residues (class 1) - these can 
be produced by multiplying random residues by a known non-residue y; finally, 
members of 2 are generated by multiplying random residues by z (all elements of 
2 are of the same class as 2). 

To prove to Alice that she is not providing Bob with too much information, 
Bob must send Alice the (scrambled) members of 4 sets (essentially of the form 
of X ,  Y ,  2, and z - a complementary set to 2 needed to maintain symmetry). 
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The remainder of the protocol is similar to [GMR85], except that the unrevealed 
portions of four sets instead of just two have to be simultaneously balanced (neces- 
sitating an even more arduous analysis), and a four by three table of functions is 
needed corresponding to  which set w is a member of and which class each unopened 
element is a member of. 

By using three-component capsules, the protocol of [GHY85] can be simplified 
tremendously. Bob simply prepares a master capsule C, cosisting of one member 
of each of X ,  Y ,  and 2, and (say) 100 additional scratch capsules of the same form. 
Alice designates some subset of the scratch capsules, and Bob opens these. Bob 
then shows that each remaining scratch capsule is equivalent to C by matching 
components and showing that their quotients are residues. Alice (now convinced 
that C was generated as required) tells Bob which capsule component is of a class 
diflerent from the other two - thus transmitting to Bob the class of z .  

The chance of Alice being fooled into revealing excessive information to Bob is 
only 1 in 2loo. The chance of Alice fooling Bob in one iteration of this protocol is 
1/2, so by iterating the process, Bob can obtain extrememly (exponentially) high 
confidence that he has not been misled. Finally, it is not hard to show that Carol 
receives absolutely no information from watching this protocol that she could not 
have obtained on her own. 

The necessary proofs of both [GMR85] and [GHY85] remain unchanged except 
for some straightforward simplifications and the removal of some analyses which 
are no longer necessary when the revised protocols are used. 

4.3 Graph Non-isomorphism 

One example in which capsules are useful without the aid of residue classes is seen 
in a protocol for graph non-isomorphism described in [GMW86]. Their original 
protocol closely followed the non-residuosity protocol of [GMR85]. Here, a prover 
designates a graph H given by the verifier as either a permutation of graph GI 
or of graph G:! only after being convinced that the prover already holds such 
a permutation. Their protocol now incorporates capsules in a manner similar 
that described in Section 4.2.1 (residue classes are replaced by the equivalence 
classes induced by graph isomorphism, and class equivalence is demonstrated by 
exhibiting permutations). With this modificiation, their protocol and its analysis 
have been simplified. 

5 Boolean Circuit Satisfiability 
Very recently (also in [GMW86]), Goldreich, Micali, and Wigderson gave a simple 
and elegant zero-knowledge interactive protocol to prove for any k that  a graph 
is k-colorable without revealing any information about a specific coloring (note 
that it is assumed that the prover possesses a k-coloring of the graph). Because 
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k-colorability is NP-complete, this means that any positive instance of a problem 
in NP for which a prover holds a certificate (e.g. a satisfying assignment for 
a Boolean formula) can be reduced to  graph colorability and shown in a zero- 
knowledge fashion to  be a positive instance, The only assumption made is the 
existence of a probabilistic cryptosystem which is implied by the existence of a 
one-way permutation ([GoMi84] ,[Yao82]). 

In this section, we shall examine an alternate approach which gives the same re- 
sult by a very different method. The method uses capsules to give a zero-knowledge 
protocol to  interactively prove that a given Boolean formula (or arbitrary Boolean 
circuit with in-degree 2) has a satisfying assignment. Brassard and Crepeau in 
[BrCr86] independently of both this work and [GMW86] have achieved the same 
result, and a similar result is given in [Cha86]. 

The major advantage of this method over the original is efficiency. When a 
Boolean formula or circuit is reduced to  a colorability graph, the number of vertices 
and edges in the resulting graph is linear in the size of the Boolean formula. 
Each stage of the interactive proof protocol of Goldreich, Micali, and Wigderson, 
however, requires a new encryption of the entire graph; and for any fixed confidence 
level desired, their protocol requires a number of stages which is linear in the 
number of edges in the graph. Thus, the number of probabilistic encryptions 
required by this protocol grows quadratically with the size of the graph (or circuit). 
Because of the local nature of the method presented below, re-encryption is not 
necessary, and the number of probabilistic encryptions required grows only linearly 
with the size of the circuit (or graph). 

The major disadvantage of this method compared to the original method is 
that the new procedure requires a (seemingly) stronger cryptographic assumption. 
Although both methods require a probabilistic encryption function - the best 
known of which is based on residue classes ([GoMi84]), the method given here 
requires a probabilistic encryption function for which two encrypted values can 
be proven (in a zero-knowledge manner) to be encryptions of the same value. 
Although this property is easily achieved by the residue class based probabilistic 
encryption (Lemma 3), it is not at all obvious that every probabilistic encryption 
function has this property. However, by observing that the problem of inverting 
a probabilistic encryption function is itself in ,UP, the original Goldreich, Micali, 
and Wigderson result can be applied to show that the cryptographic assumption 
required here is, in fact, no stronger than the assumption of the existence of an 
arbitrary probabilistic cryptosystem. 

5.1 The Satisfiability Scheme 

The basic idea of the scheme is again deceptively simple. If Alice wants to  prove to 
Bob that a given formula is satisfiable (and Alice has a satisfying assignment), Alice 
begins by choosing a n  n which is the product of two large primes and providing 
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Bob with n and a y (with Jacobi symbol 1) which is not a quadratic residue 
modulo n. This is merely the establishment of a probabilistic encryption function. 
Alice can convince Bob that y is a non-residue by engaging in the non-residuosity 
protocol of section 4.2.1 or by choosing n of a special form so that (for instance) 
y = -1 is a non-residue. 

Alice then draws a circuit t o  compute the Boolean function (in the obvious way), 
selects a satisfying assignment and sends Bob an encryption of this assignment (for 
each variable, Alice sends Bob a residue if that  variable is False/O/Off and a non- 
residue if that  variable is True/l /On).  Alice then encrypts the output of each gate 
of the circuit in the same manner and sends Bob these encrypted values as well. 

For each gate in the  circuit, Alice then interactively proves t o  Bob tha t  the gate 
computes the required function. The  computation of an AND gate will be shown 
here, and other Boolean functions will become apparent. 

To prove that a given gate computes an AND on its inputs, a full t ruth table 
for AND is used. There are, of course, four possibilities: either both inputs and 
the output are 0; the first input is 0, the second is 1, and the output is 0; the first 
input is 1, the second is 0, and the output is 0; or both inputs and the output 
are 1. A four-component capsule can now be prepared such that each of the four 
components of the capsule is itself an ordered triple. To compute AND, the four 
(unordered) components of the  capsule consist of (ordered) triples whose elements 
are members of residue classes (O,O,O) ,  ( O , l , O ) ,  ( l , O , O ) ,  and (1,1,1). Once a 
capsule C is interactively proven t o  be of this form, Alice selects the component 
which corresponds to t h e  actual input and output values of the gate and proves 
that they match by releasing a square root of each quotient. 

To prove that a capsule C is of the above form, Alice prepares many (say 100) 
capsules of this form and Bob selects an arbitrary subset to be opened. Alice 
then proves that each unopened capsule matches C by matching corresponding 
components and releasing square roots of the quotients of all three elements of 
each triple t o  show tha t  they do, in fact, match. 

Finally, Alice interactively proves that the output of the circuit is 1 by proving 
that this value is a non-residue as in section 4.2.1.* 

Remark Some gates may be computed without the need for an interactive proof. 
For example, an encrypted value may be complemented simply by multiplying it 
by y ,  and the XOR of two or  more encrypted values is represented by their product 
(Lemma 2). 

A mechanism which could obviate the need for any interactive proofs t o  verify 
gate validity is highly desirable. An encryption homomorphism which allows the 
direct computation of AND or OR together with NOT would of course suffice, 
and this would allow satisfiablitiy t o  be proven with a single interactive proof of 

*Chaum points ou t  in his work t h a t  with a slight modification of this  protocol, t h e  need for this  final 
interactive proof can be eliminated. 
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the value of the output. However, no such probabilistic encryption has yet been 
found. 

6 Conclusions 
The method of cryptographic capsules, especially (but not exclusively) when com- 
bined with residue classes, seems to be a powerful tool with many applications. 
This simple tool makes possible several protocols which would be impractical or 
completely impossible without them. In addition, several previously published 
protocols can be significantly simplified by the use of capsules. 

It is believed tha t  capsules may have many applications which go well beyond 
those described here, and they may become a standard tool in the design of inter- 
active protocols. 

Acknowledgements 
The author would like to express many thanks to  Oded Goldreich, Shafi Gold- 

wasser, Neil Immerman, Jerry Leichter, Ruben Michel, and David Wittenberg for 
their help in developing this work and to Mike Fischer who, in addition to  giving 
much guidance and many helpful criticisms, orgininally suggested the use of the 
term “capsules”. 

References 
[Ben861 

[BeYu86] 

[ B r Cr8G] 

[Cha8G] 

[CoFi85] 

Benaloh, J.  “Secret Sharing Homomorphisms: Keeping Shares of a 
Secret Secret.’’ C r y p t o  ’86, Santa Barbara, CA (Aug. 1986). 

Benaloh, J. and Yung, M. “Distributing the Power of a Govern- 
ment to  Enhance the Privacy of Voters.” Proc. 5th ACM S y m p .  on 
Pr inc ip l e s  of Distributed Comput ing ,  Calgary, AB (Aug. 1986), 52- 
62. 

Brassard, G. and Crepeau, C. “Zero-Knowledge Simulation of 
Boolean Circuits.” Cryp to  ’86, Santa Barbara, CA (Aug. 1986). 

Chaum, D. “Demonstrating that a Public Predicate can be Satisfied 
Without Revealing Any Information About HOW.” C r y p t o  ’86, Santa 
Barbara, CA (Aug. 1986). 

Cohen, J. and Fischer, M. “A Robust and Verifiable Cryptograph- 
ically Secure Election Scheme.” Proc. 2Gth IEEE Symp. on Founda-  
tions of C o m p u t e r  Science,  Portland, OR (Oct. 1985), 372-382. 



222 

[Coh86] Cohen, J. “Improving Privacy in Cryptographic Elections.” TR-454, 
Yale University, Departement of Computer Science, New Haven, CT 
(Feb. 1986). 

Fischer, M., Micali, S., and Rackoff, C. “A Secure Protocol 
for the Oblivious Transfer.” Presented at Eurocrypt84, Paris, France 
(Apr. 1984). (Not in proceedings.) 

Galil, Z., Haber, S. ,  and Yung, M. “A Private Interactive Test of a 
Boolean Predicate and Minimum-Knowledge Public-Key Cryptosys- 
terns.” Proc. 26th IEEE Symp. on Foundations of Computer Science, 
Portland, OR (Oct. 1985), 372-382. 

Comput. System Sci. 28, 2 (Apr. 1984), 270-299. 

Goldwasser, S., Micali, S., and Rackoff, C.  “The Knowledge of 
Complexity of Interactive Proof-Systems.” Proc. 17th ACM Symp. on 
Theory of Computing, Providence, RI (May 1985), 291-304. 

Goldreich, O. ,  Micali, S . ,  and Wigderson, A. ”Proofs that Yield 
Nothing But their Validity and a Methodology of Cryptographic Pro- 
tocol Design.” Proc. 27th IEEE Symp. on Foundations of Computer 
Science, Toronto, ON (Oct. 1986), 174-187. 

Yao, A. “Theory and Applications of Trapdoor Functions.” Proc. 
23’d IEEE Symp. on Foundations of Computer Science, Chicago, IL 

[FMR84] 

(GHY851 

[GoMi84] Goldwasser, S. and Micali, S. “Probabilistic Encryption.” J. 

(GMR851 

[GMW86] 

[Yao82] 

(Nov. 1982), 80-91. 


