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Abstract 

In 1979, Blackley and Shamir independently proposed schemes by which a secret 
can be divided into many shares which can be distributed to mutually suspicious agents. 
This paper describes a homomorphism property attained by these and several other 
secret sharing schemes which allows multiple secrets to be combined by direct compu- 
tation on shares. This property reduces the need for crust among agents and allows 
secret sharing to be applied to many new problems. One application described here 
gives a method of verifiable secret sharing which is much simpler and more efficient 
than previous schemes. A second application is described which gives a fault-tolerant 
method of holding verifiable secret-ballot elections. 

1 Introduction 
Suppose that Alice holds a secret A and distributes shares of her secret to n agents, 
using Shamir’s secret sharing (threshold) scheme ([Sha79]), such that any k agents 
can construct A. Suppose further that Bob holds a secret B and distributes shares 
of B to the same n agents in the same way as Alice. Finally suppose that k of 
the agents decide that they want to determine A + B while revealing as little 
information about A and B as possible. (Of course, revealing A + B yields some 
partial information about A and B.) How can this be done? 

It is not hard to see that if each of the k agents releases the sum of the two 
shares it holds, each of these sums is itself a share of the sum of the secrets A + B. 
In short, the sum of the shares of the secrets are shares of the sum of the secrets. 
It is also the case that release of these share sums gives no information about A 
and B other than that contained in the release of their sum A + B. 

In general, suppose each of m parties holds a ‘sub-secret”, and there exists 
a “super-secret” which is the composition of the sub-secrets under some known 
function (such as the sum or the product of the sub-secrets). The parties want 
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to determine the super-secret without revealing their sub-secrets and without de- 
pending upon cryptographic assumptions. 

Cryptographic techniques for computing with encrypted data have been studied 
in [RAD78], [DLM82], [Yao82], [BlMe85], and [Fei85], for example. This approach 
to the problem, however, depends heavily upon cryptographic assumptions such as 
the difficulty of factoring. In this paper, we shall consider an alternate approach 
to such problems in which no cryptography or cryptographic assumptions are 
required (although the data used may be encrypted for other reasons). 

With an appropriate secret sharing homomorphism, shares of the sub-secrets 
can be distributed to  n agents such that any k can determine each of the sub- 
secrets. Each agent can then compose its Ksub-shares” into a single “super-share” 
such that any k of the super-shares are sufficient to determine the super-secret. 

The advantage of such a homomorphism is that k of the n agents can, by reveal- 
ing their super-shares, determine the super-secret without sharing any information 
about the constituent sub-secrets. Information about the sub-secrets can only be 
obtained if k or more agents agree to  merge their subshares to reconstruct the 
sub-secrets. 

At this point, we aSsume that there are no attempts at subversion. The infor- 
mation is assumed to  be correct, and the only concern is that some of the agents 
may surreptitiously collaborate in order to obtain secret information. In section 4, 
we shall see examples of how interactive proofs and cryptographic methods can be 
used t o  verify both the validity of the shares given to the agents and the accuracy 
of the composite results returned by the agents. 

Two applications of this homomorphism will be seen. 
The first allows the validity of secret shares to be verified without their being 

revealed. Here, a shareholding agent can obtain very high confidence that i t  holds 
a valid share of the secret rather than a useless random number. A share is valid 
if it, when combined with any other k - 1 shares, yields the same secret as does 
any subset of k of the shares. 

The second application is in the domain of elections. Here a voter can distribute 
shares of his or her vote t o  n agents. Each agent can then compose its vote-shares 
to  form a share of the election tally. If k or more of the agents reveal their 
composite tally-shares, then the election tally is publically revealed. A conspiracy 
of at least k dishonest agents is required, however, in order to obtain information 
about an individual vote. 

2 The Homomorphism Property 
Shamir in [Sha79] defines a (Ic,n) threshold scheme to be a division of a secret D 
into n pieces DI, . . . , D, in such a way that: 

(1) knowledge of any k or more D; pieces makes D easily computable; 
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(2) knowledge of any k - 1 or fewer Di pieces leaves D completely undetermined 
(in the sense that  all its possible values are equally likely). 

Let S be the domain of possible secrets, and let T be the domain of legal 
shares. Every instance of a ( k , n )  threshold scheme determines a set of functions 
FI : Tk ---f S defined for each I G { 1 , 2 , .  . . n} with 111 = k. These functions define 
the value of the secret D given any set of k values D;, , . . . , D;,: 

D = Fr(Dil, * * * > Dik), 

where I = {il, . . . , ik}. 

Definition Let @ and C3 be binary functions on elements of the secret domain 
S and of the share domain T, respectively. We say that a (k, n) threshold scheme 
has the (@,@)-homomorphism property (or is ($,@)-homornorphic) if for all I ,  
whenever 

D = FI(Dj,, . . . , D;,) 
and 

D’ = FI(D: l , .  . . , D:,), 
then 

D B D’ = FI(Di, 8 D;,,. . . , Di, 8 D:,). 
This property implies that  the composition of the shares are shares of the 

composition. 
It is easy to  see that Shamir’s polynomial based secret sharing scheme is (+, +)- 

homomorphic, but it is not quite so apparent that Shamir’s scheme satisfies another 
property which is also necessary to capture the intuition described earlier. We want 
it to also be the case that up to k - 1 sets of sub-shares together with all of the 
super-shares (and therefore the super-secret) give no more information about the 
sub-secrets than does the super-secret alone. 

Shamir’s definition of a ( k , n )  threshold scheme does not allow for such partial 
information, but Kothari in (Kot841 generalizes Shamir’s definition slightly to allow 
for the possibility of a priori information about a secret. Kothari’s definition can 
be summerized by replacing condition (2) above with 

(2’) Prob(D = z) = Prob(D = z I D;, = zi,, Di, = xi,,. . . Dik-, = x i k - , )  for an 
arbitrary set of k - 1 indices { i l , i z , ,  . . , i k - l }  for all z E S and all z; E T. 

This says that even with partial a priori information about the secret D, pos- 
session of up to  k - 1 shares of D gives no additional information about the value 
of D. 

It is now possible to  give a formal definition to capture the intuition that no 
extraneous information is released by a secret sharing homomorphism. 
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Definition We define a (@, @)-composite ( k , n )  threshold scheme to be a division 
of a set of m sub-secrets d l ,  . . . , d ,  into sub-shares di,j, 1 5 i 5 n, 1 5 j 5 m (di,j 
is the ith share of the jth sub-secret d j )  such that 

(1) The super-sec.ret D = dl  @ dz @ + ‘ . @ d, is easily computable given k or more 
distinct super-shares Di = d,,l 8 di,2 8 . . 8 di,,; 

(2) For all possible values X E S of the super-secret D and for every possible 
value x, of each sub-secret d ,  (1 5 3 5 M ) ,  

Prob(d, = x, I D = X) = 
Prob(d, = X, I D = X ;  V i  E I ,  D; = Xi;  V i  E I’, V j  E J ,  di,j = zi,j) 

where I = {1 ,2 , .  . . , n}, J = { 1 , 2 , .  . . , m},  and I’ is an arbitrary subset of 
size up to  k - 1 of { 1 , 2 , .  . . , n} and for all possible values Xi E T of the 
super-shares and for every possible value xi,, E T of the sub-shares. 

Intuitively, the first property says that any k of the n agents can together 
determine the super-secret D. The second property asserts that no conspiracy of 
fewer than k agents can gain any information at all about any of the sub-secrets 
d ,  (other than that already given by the super-secret 0) even when given all of 
the super-shares Di. 

The following theorem is somewhat surprising, 

Theorem 1 If the  secret d o m a i n  S and the share domain  T are f in i te  and of 
the same cardinality, t h e n  every (a, 8)-homomorphic  (k, n)  threshold scheme i s  a 
(@, @)-composite (k, n) threshold scheme. 

Proof: (sketch) 
The definition of (@, @)-homomorphism implies condition (1) immediately. 
To prove condition (2), it is simpler to consider only the case when rn = 2 (two 

Consider a table of the form 
sub-secrets). The case for arbitrary m follows straightforwardly. 

where S = A @ B and for all i, si = a, 8 bl .  S is the secret defined by the 
shares s1,. . . , s,, A is the secret defined by the shares a l , .  . .,a,, and B is the 
secret defined by the shares 61,. . . , b,, 

Assume that a set of up to  k - 1 conspirators are willing to  share some of their 
information in order to  try to  gain information about A and B. Without loss of 
generality, assume that  these conspirators are among the first k - 1 shareholders. 

By the definition of a ( k , n )  threshold scheme, A and B remain completely 
undetermined even if k - 1 shares are known. Therefore, we may assume that 



255 

all of ul, u2,. . . , U k - 1  and b l ,  bz, . . . , bk-1 are known to the conspirators. With this 
information, the conspirators are able to compute s1,s2,. . . , s k - 1  without assis- 
tance. It is already assumed that the “super-secret” S is known. Therefore, since 
IS1 = /TI < 00, the “super-shares” S k ,  s k + 1 , .  . . , s, are completely determined and 
can be computed by the conspirators. Thus, their release to the conspirators gives 
them no additional information. I 

Remark The condition that the secret domain S and the share domain T are 
of the same finite cardinality was not strictly required, and the following weaker 
property will suffice. For a given super-share Dk and sub-secrets dl,da,d\,dh, such 
that d l e d 2  = D = d i e d ’ , ,  let p be the conditional probability that Dk = dl,k@d2,k 
for some dl,k and d2,k which imply sub-secrets dl and d2, respectively, and let p’ 
be the conditional probability that Dk = di,k 63 di,k for some di,k and di,k which 
imply sub-secrets d‘, and d i ,  respectively. If p = p’ for all such d l ,  d2, d; ,  d i ,  and 
Dk, then the conclusion of the theorem is true. 

For simplicity of exposition (and to keep the notation under control), this gen- 
eralization has not been incorporated into the theorem. Its inclusion is straight- 
foward, but cumbersome, and appears to offer no additional insights. 

3 Some Examples 
It is easy to see tha t  the properties of polynomials give Shamir’s (k ,n )  thresh- 
old scheme the (+, +)-homomorphism property, and since the secret domain and 
the share domain consist of the same finite set (namely the integers modulo p ) ,  
Shamir’s scheme is a (+, +)-composite (k, n) threshold scheme and enjoys all of 
the properties thereof. 

Some other techniques can also be easily seen to produce (+, +)-composite (k, n) 
threshold schemes. See [Bla79], [AsB180], and [Kot84] for some further examples. 

What if the super-secret is not the sum of the sub-secrets? Shamir’s scheme is 
not  (x ,  x)-composite. This is because the product of two non-constant polynomi- 
als is of higher degree than the factors. 

By using a homomorphism between addition and discrete logarithms, for ex- 
ample, it is possible to transform Shamir’s scheme into a ( x  , +)-composite (k, n) 
threshold scheme. Thus, if the desired super-secret is the product of the sub- 
secrets, Shamir’s scheme can still be used. This method can be summarized by 
the following adage. T h e  sum of the shares of the discrete logs of the  secrets are 
shares of the discrete log of the  product of the secrets. 

In general, discrete logarithms may be difficult to  compute. However, if p is 
small or of one of a variety of special forms, the problem is tractable (see [PoHe78], 
[Ad179], [COS86]). It should be emphasized that such special cases for p do not in 
any way weaken the security of our schemes. The security is not  cryptographic, 
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but rather is information theoretic. Therefore, there need be no assumptions about 
the difficulty of solving any special problems. 

4 Applications 
The applications described here rely on the encryption of shares both to fascil- 
itate their distribution and allow for a mechanism which ensures that certrain 
properties of the shares are attained. Since the encryptions of shares are made 
public, the security is no longer information theoretic, but rather depends upon a 
cryptographic assumption. 

The encryption function used here was introduced in [CoFi85] and draws upon 
the ideas of probabilistic encryption found in [GoMi84]. The function is also 
described in [BeYu86]. 

Before beginning, a prime number r is fixed such that r 2 IS[ - the size of 
the secret domain. To develop an encryption function E ,  one selects primes p 
and q such that r l (p  - 1) and rJ(q - 1). Let N be the product N = p q .  The 
developer releases the pair ( N ,  y) where y is relatively prime to N and y is not an 
rth residue modulo N.' It is necessary in most applications for the developer of 
such an encryption function to convince others that y is, in fact, not an rth residue 
modulo N .  This may be accomplished by interactive proof techniques described 
in [CoFigS] and [BeYu86]. 

yszr mod N .  The holder of the trapdoor factors of N can easily determine s from 
E ( s ,  2, y, N). However, there is no known efficient method for determining s from 
its encryption when the factors of N are not known. 

To use E to encrypt a value s ,  one randomly selects an z and forms E ( s ,  2, y, N )  = 

4.1 Verifiable Secret Sharing 
The first application gives a simple and efficient method for verifiable secret shar- 
ing. This problem was first described in [CGMA85] and the application of secret 
sharing homomorphisms to this problem was developed as a result of an observa- 
tion made by Oded Goldreich. 

Definition 
subset of k of the n shares defines the same secret. 

We say that a set of n shares sI ,  sp, . . . , s,, is k-consistent if every 

The problem of verifiable secret sharing is to convince shareholders that  their 
shares (collectively) are k-consistent. 

It is easy to see that  in Shamir's scheme, the shares sI, s2,. . . , s,, are k-consistent 
if and only if the interpolation of the points (1, sl), (2, s?), . . . , (n, s,,) yields a poly- 

' y  is an rth residue modulo .Y if and only if there exists a n  5 such  t h a t  y E 2' (mod A'). 
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nomial of degree at most d = k - 1. It is also useful to observe that if the sum of 
two polynomials is of degree at most d,  then either both are of degree at most d 
or both are of degree greater than d. 

This suggests the following outline of an interactive proof that a polynomial 
P,  given by its (encrypted) values at n distinct points, is of degree at most d (see 
[FMR84] and [GMR85] for a description of interactive proofs and applications). 

1. Encryptions of the values of the points that describe P are released by the 
prover. 

2. Encryptions of many (say 100) additional random polynomials again of degree 
at most d are also released by the prover. 

3. A random subset of the random polynomials is designated by the verifier(s). 

4. The polynomials in the chosen subset are decrypted by the prover. They 
must all be of degree at most d. 

5. Each remaining random polynomial is added to P. (Note that pointwise 
addition gives the same polynomial as the coefficientwise addition.) Each of 
these sum polynomials is decrypted by the prover. They must also all be of 
degree at most d. 

The encryption of the values of each point must be probabilistic ( to prevent 
guessing of values) and satisfy a homomorphism property (so that an encryption 
of the sum of two values can be developed directly from the encryptions of the 
two values). These properties are satisfied by the encryption function E described 
above. 

In more detail, a secret s is divided into n shares sl, $ 2 , .  . . , s, such that the 
polynomial P interpolated through the points (i,s,) has degree at most k - 1 
and passes through the point (0,s). (So far, this is precisely Shamir's scheme). 
Each (future) shareholder selects and makes public an (N, ,y , )  pair t o  develop 
an encryption function E, as above, The ith share, s,, is transmitted to  the ith 
shareholder by selecting a random 2, and releasing E, (s,, z,, y,, N 2 )  = y:' z: mod N .  

To prove interactively that the (encrypted) points released describe a polyno- 
mial with degree no more than d ,  prepare (say) 100 more random polynomials, 
each of degree at most d, in exactly the same way. The values of these random 
polynomials at 0 (the secrets they describe) are also selected randomly. 

The verifiers randomly select a subset A of these random polynomials. Each 
polynomial in A is opened by revealing the corresponding s, and z,. For each 
polynomial P' not in A ,  the (pointwise) sum P + P' is opened by releasing S, + 
S: mod r and z, -z: .pL('*-ts:)/r~ where the ith point of P' is give'n by E,(s:, z:, Y,, N t ) .  
All points released should describe polynomials of degree at most d .  

It is not hard to  see that a set of random polynomials of degree at most d 
together with a set of sums of P and other random polynomials of degree at most 



d gives no useful information about P (other than that its degree is bounded by 
4 - 

4.2 Secret-Ballot Elections 
The motivating application for this work is in the domain of cryptographic elec- 
tions. In [CoFi85], an election scheme is presented which allows a government to 
hold an election in which the legitimacy of the votes and the tally is verified by 
means of interactive proofs. 

Although, there is high confidence in the correctness of the tally in such an 
election, the government is a “trusted authority” with the ability t o  see every vote 
and thereby compromise every voter’s privacy. 

In [BeYu86], the government is replaced by a set of ‘%ellers” such that it is 
necessary for all tellers to  conspire in order to compromise a voter’s privacy. In 
that scheme, however, if even one of the tellers fails to complete its protocol 
properly, the entire election fails and no tally is produced. 

The basic election scheme described in these papers can, however, be embed- 
ded within a (+, +)-composite (k, n) threshold scheme (in particular, in Shamir’s 
scheme) as suggested by the outline below. This extension is also described in 
[Coh86]. 

Instead of a single government, n sub-governments (or tellers) each hold a sub- 
election. Each voter chooses either 0 or 1 as a secret value (0 indicating a no vote, 
1 indicating a yes vote) and distributes one share of the secret vote to each of the 
n tellers. The tally of the election will be the sum of the voters’ secrets. 

After votes are cast, each teller simply adds the vote-shares it has received 
using the (single government) verifiable election scheme of [CoFi85]. Since the 
(k, n) threshold scheme has the (+, +)-homomorphism property, this sum of vote- 
shares is itself a share of the sum (tally) of the votes. Thus, once k or more tellers 
release their sub-tallies, the overall election tally can be determined. Furthermore, 
since the secret domain and the share domain consist of the same finite set, the 
conditions of Theorem 1 are satisfied, and k or more conspiring tellers are required 
to  determine any individual voter’s secret vote. 

The interactive proof techniques used in section 4.1 can be generalized slightly 
to allow verification of the vote-shares. Here, each voter participates in an inter- 
active proof to demonstrate to all participants that the vote-shares it distributes 
are legitimate in the sense that every set of k vote-shares derives the same secret 
vote and that this vote is either a 0 or a 1. 

Thus, as long as at least k of the n designated tellers participate through to 
conclusion, an election can be conducted such that each participant has very high 
confidence in the accuracy of the resulting tally and no set of fewer than k tellers 
(together with any number of conspiring voters) can (without breaking the un- 
derlying cryptosystem and thereby solving an open number theoretic problem) 
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gain more than a polynomially small advantage at distinguishing between possible 
votes of honest voters. 
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