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As part of a report on cycling experiments with DES, Rivest 
[ l ]  announced at Crypto'85 that a small cycle had been found when 
alternately encrypting with the all zeroes key and the all ones 
key. This cycle contained approxlmately 233 points. Later in the 
same meeting, Coppersmith 121 explained this phenomenon by noting 
that if a fixed point occurred ln the cycle, since with these keys 
encryption is the same as decryptlon, the successive encryptions 
would actually be decryptlons and would retrace the steps to the 
mtartlng point. We can plcture this as follows: 

where x is the starting point, y Is the fixed point and K and 
represent the keys used. He also argued that since there are 2 
such fixed points for each of these keys, the apparently small 
size of the cycle reported was not actually surprising. Intrigued 
by these observations, we began an in-depth study of the cycle 
structure of DES using weak and semi-weak keys. The results 
presented in this paper outllne the current status of that study. 
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Not at ion 

A complete description of the DES algorithm will not be given 
b r a .  but since we will uBe a nonstandard notation, introduced by 
Grossman and Tuckerman [3], we begin wfth the speciflca of that 
notation. Omitting the initial and final permutations, the DES 
transformatfon can be viewed as a sequence of 32-bit vectors 

defined recursively by 

where Ki is the ith round key and f is the nonlinear DES function 
described in the original FIPS Publication 46 [ 4 ] .  The concatena- 
tion , moml, represents the 64-bit input after the initial per- 
mutatlon, whlle ml7ml6 represents the output before the inverse of 
that permutation. This notation is much better suited to our 
purposes than the original description of the DES.  For all of the 
work reported i n  this paper, the initial and final permutations 
are Irrelevant, EO we will routinely omit them. 

discussion. The function take8 as input a 32-bit vector X and 
expands It to a 48-bit vector E ( X ) .  The 48-bit round key Ki Is 
then exclusive-ored with E(X). The resulting vector is used as 
input to the S-boxes, yielding a 32-bit vector. The output of f 
1s a permuted form of this 32-bit vector. This process is shown 
in the following figure. 

Some details of the nonlfnear function f are required for our 
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The descrlptlons of E,P and the S-boxes can be found In PIPS 
Publication 46 [ 4 ] .  T h e  complete DES encryption of a 64-bit 
vector Y w l t h  a key I[ will be denoted In this paper by E(!C,Y) .  

while decryption w l t h  with K will be denoted by D(K,Y). 

The Keys 

We begin wlth a revlew of what is known about the weak and 
seml-weak keys. Davics [5] and Juencman (61  have studied the 
mtructure of these keys and some of the results have also appeared 
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in PIPS Publication 1 4  [ ? I .  The approach In this paper baslcally 
follows that of Moore and Simmons [el. 

class. the weak keys, consists of four keys distinguimhed by the 
The keys used in this study fall into two classes. The flrst 

fact that all 16 round keys are the same. This means that 
decryption is identical to encryption slnce reverslng the calling 
sequence for the round keys has no effect. 

The second class consists of the semi-weak keys. A key I( Is 
a seml-weak key if there exists another key K 80 that the round 
keys for these keys satisfy Ki = K17-l for 0 < i < 17. 
property has the effect of providing "inverse keys" in the sense 
that decryption with K I s  the same as cncryptlon with K . 

This 

The following theorem verifies that the weak and ecmi-weak 
keys are the only ouch keys having this kind of inverse keys. 

Theorem 1 
a 

A DES key K has an inverse key K satisfylng 

if and only if K is one of the 16 key6 in which all 14 of the b i t e  
in each of the four subsets A ,  B. C, and D of K listed below are 
alike. 

A ( i 2 3 17 ie 19 33  34 35  36 4 9  50 si 5 2 )  

B ( 4 5 6 7 20 21 22 23 37 38 39 53 54 5 5 )  

C ( 9 10 11 25 26 27 41 4 2  43 44 57  5 8  59 6 0 )  

0 (12 13 1 4  15 28 29 30 31  45 4 6  4 7  61 62 6 3 )  

Proof: 

round keys. I 
The proof  is a tedlous but straightforward bit tracing of the 



13 

The sets A ,  B. C ,  and D In the previous theorem also give 
rise to a labeling technlque for t h e  keys  used in thls mtudy. 
Thlm label consists of a four-bit number, the most algnlflcant bit 
of which identifies the value for the bits in set A. The next 
bits Identify the values €or sets B. C and D. For example, K(3) 
is the key in which the bits in nets A and B are zero and the bits 
in sets C and D are one since the binary representation of 3 IS 
0011. That is. 

The bits I n  parentheses are the parlty bits and are set by 
the rule that each byte must have odd parity. The 16 keys 
mentioned in the previous theorem are listed below using this 
notation with their correeponding inverse keys identified. 

K 0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
K ' O  4 8 1 2  1 5  9 1 3  2 6 1 0 1 4  3 7 1 1 1 5  

The following easy lemma is a consequence of the fact that 
the expansion operator E I s  a homomorphism. 

Lemma 2 

For any 32-bit vectors U and M,  and any 48-bit vector K, 

f ( K , M )  = f ( K  8 E(U), M 8 U). 

Proof: 
f(K 8 E(U), M 9 U )  = K 8 E(U) 8 E ( M  9 U) 

= K e E(UI e E(M) 0 L(U) 
= K 8 E ( M )  

= f(K,M) .I 
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The argument used to count the numbtr of fixed points of a 
weak key can be captured in a more general mtatement in t h e  next 
theorem. 

Theorem 3 
Suppose that for some key K, the round keys satisfy 

where E(U) 1s the 48-bit expansion of Borne 32-bit vector 0. Then 
the following are equivalent: 

3) mo @ m17 = U and ml B m16 = U . 

Proof: 
Flrst note that 2) => 3) and 2) => 1 )  are obvious. From the 

definition of mj and ml,- j+2 ,  w e  have 

For 3) -> 2) the above equation yields 
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Then it w e  assume that for all j < I, m, 0 mll-j - U, then ( * I  
above can be used to show that mi mll-i = U. 
2) 1s established. 

Thus by induction 

For 1) => 2) w e  have 

The induction argument used above applies again to complete the- 
proof. I 

For the all zeroes or the all ones key, the hypothesis of 
Theorem 3 is satisfied for U equal to the all zeroes vector. 
Hence, fixed points for these keys coincide with those messages in 

32 which mg = mg during the encryption procems. 
such possible equations, there are precisely z3’ fixed points f o r  
each key. 

Slnce there are 2 

This theorem appears to be quite powerful, so the next issue 
1s the identification of those  keys whlch satlsfy the hypothesis 
of the theoren. 

Theorem 4 
If for some key K, the round keys satlsfy 
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uhere D is the 48 bit expansion of momc 32 bit vector U, then U 
is either the all zeroes or the all ones vector. 

Proof: 

[ S ]  for I t s  details.! 
The proof is again rather tedious and we refer the reader to 

This theorem states that the only keys satisfying the hypoth- 
esis of Theorem 3 are those in which the round keys either form a 
palindromlc sequence: 

an antipallndrom?c sequence 

The followlng theorem connects these conditions with the weak and 
semi-weak keys. 

Theorem 5 
A DES key K has a palindromic round key sequence or an 

anZipalindromic round key mequence If and only if K is one of 
K(O), K(5), K(10) or K(15) in the first case or one of K(3). K(6). 
K(9) or K(12) In the second case. 

Proof: See [ a ] .  
To end this section, w e  give a theorem which will be useful 

in studying the cycles structure of weak and semi-weak keys. One 
deflnltlon I s  required flrst. A point x ie an antifixed point of 
a key K if E(K,x) = x . 1  
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Theorem 6 

there 8re precisely 232 fixed points and f o r  each of the keys with 
&n 8ntlpallndromic round key sequence there are preclmly 2 
antit lxed points. 

For each of the keys with a palindromic round key mequence 

32 

Proof: 
The flxed point argument was given earlier. For the antl- 

fixed point argument, the keys with an antipalindromic round key 
sequence satisfy Theorem 3 wlth U being the all ones vector. 
Hence the antifixed points fo r  these keys will coincide with those 
messages in which ma= mg during the encryption process. 
there are 232 such possible equations, there are 232 possible 
antifixed points for each such key.1 

- 
Since 

The DES Engines 

Two mpecial-purpose hardware devices were designed and built 
at Sandia as part of this study. These devices will be referred 
to In this paper as the DES Engine and the Micro DES Engine. 

The DES Englne was designed to perform several types of cycle 
testing. It conslsts  of 16 identical PC boards, each running a 
DES chip, the AM 9568, at high speed without changing keys. An 
IBM PC is used to provfde communicatlon with the user and to count 
the number of encryptions performed. 

There are t w o  baslc modes of operation f o r  this machine. In 
the first mode, each board performs a cycle test experiment using 
i t e  preset key, Independently of all other boards. In the second 
mode, the boards are paired so that cycle testing using rlternat- 
ing keys m y  be performed. The output of one board in the pair 1s 
used as the input to the other board. By this meam, the pair can 
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perform an experlment with alternating keys. while each DES chip 
keeps its preset key unchanged. 

Wlthout describing the hardware In detail, the rudiments of 
Its opcratlon will be discussed. As part of the initialization of 
an experiment, several variables are set. These Include a key. 
two starting points, SA and SB, and two other values, HA and HB, 
called "hlt values". Durlng the flrst step of the counter. SA I s  

encrypted with the eet key and compared to XA. If there Is a 
match, the machine stops to report this result. It also stops If 
the encrypted value of SA is the same as SA, I.c., a fixed point 
has been found. or if a specified number of steps have been taken. 
The encrypted value of SA then Is stored in the place of SA.  

During the next atep of the counter, SB is encrypted with the 
preset key and compared to HE. The stop conditions described 
above are checked and, If not met, the encrypted value o t  SB 
replaces the origlnal SB. This process continues until a condl- 
tion €or a machine halt is met or the operator Intervenes. The 
machine will complete about 232 encryptions per cycle per day. 

The Micro DES Engine is a very speclalized plece of hardware 
which was designed t o  take advantage of the internal structure of 
DES to find specific examples. In order to explain Its operation, 
we need some notation. Suppose we are given two keys, K1 and K2, 
and two 32 bit vectors, mo and ml. Let M be the concatenation of 
mo and ml. To compute E(E(M,Kl),KP) w e  would calculate 

= m 8 f ( m l , ~ l l )  for o < i < 17 . 1+1 i-1 m 

Then letting no = m17 and n1 - m16, we would calculate 

The resulting concatenation of n17 and nI6 would be the result. 
The Mlcro DES E n ~ i n e  allows us to specify two keys, two intcgcre, 
I and j, and two 32 bit vectors U and V .  It then allows mi to 
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rssume all 232poS~ible values. 
to mi 9 U. Procccdlng through the rounds of DES umlng the one of 

m17 are calculated. NOW settlng no = m and the keys. mi+2,..., 
nl = mI6, the engine calculates the rounds of DES using the second 
key untll It has found If n 
reported before changing the value of mi. 
Micro DES Engine starts at some specifled round of encryption with 
the first key and some linear relatlonship between adjacent terms 
of the sequence (m,) and stops at another specified round of 
encryption wlth the mecond key to check for another linear rela- 
tionship between adjacent terms of the sequence {n,). 
technical restriction that the combined number of rounds of DES in 
one of these steps cannot exceed 16. The complete cxperlrnent, 
trying 811 p 3 *  choices for mi, requlres approxlmately 13 hours of 
operation. 

For each euch value, ml+l I s  set 

17 

- nj 0 V. the result is 
j+l 

In other words, the 

There is a 

The Weak Key Cycle Structure 

Before proceeding wlth the details of the cycle structures 
for any of the keys, we need to make the observatlon that the 
complement of any cycle is also a cycle since 

This complementary cycle will also  be called the dual cycle. 
We are now ready to consider the cycle structure f o r  weak 

keys. Several lmportant propertles of the weak keys, which have 
already been discussed, will now come to bear on the cycle 
mtructurc. T h e s e  are: 

1. There are 4 weak keys K ( 0 ) .  K(5). K(l0) and K(15). 
2. Each key is its own inverse, 
3. Each key has 232 fixed points. 
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Since each key Is Its own inverse, a cycle of repeated 
oncryptlons with a weak key will elther consist of one point, a 
fixed point for that key, or two points. These cycles, of course, 
are rather trivial. 

However, alternately encrypting wlth a w e a k  key and l t s  com- 
plement has already produced some Interesting results. We will 
call cycles of this type Coppersmith cycles. To be specific, a 
Coppersmith cycle Is a cycle obtained by alternately cncryptlng 
with a weak key and Its complement In which a fixed point I s  

eventually encountered. 
Since the complement of a cycle I s  a cycle, Coppersmlth 

cycles could conceivably be self-dual or occur in isomorphic 
pairs. However, in [ a ] ,  it was shown that only the latter case is 
possible. Hence, Coppersmith cycles can never contain both a 
point and I t s  complement. 

The Coppersmlth cycles traced thus far range In size fron 1 
point to 12,605.533 points. Those cycles with one point are the 
"degenerate" Coppersmith cycles and were found wlth the use of the 
Micro DES Engine. 

To find a one point Coppersmlth cycle, w e  must flnd a point 
whlch Is fixed by both 
Plctorlally this cycle 

a weak key K and Its complementary key K . 
will be 

Hence, w e  Initialize the Mlcro DES Engine with these keys, K and 
K , set i and j equal to 8 .  and let  U and V be the all zero vec- 
t o r s .  The engine will then produce a list of all possible values 
for ma, so that m g  = m In the encryption wlth K and n8 * n9 In 
the encryption wlth K . From this we can produce a list of all 
fixed points of K which are also fixed points of K . There is 

* 9  

* 
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exactly one degenerate pair of complementary cycles for the key 
pair K(O), K(15) and one for the key pair K ( 5 ) .  K(10). These are 

x = 74080FA36E793E74 

and H fixed by K(0) and K(15) and 

y = lBDAFF22E4BDDA52 

and y fixed by K(5) and K(10). 

Hex ) 

Hex) 

Excluding these degenerate cases, the remaining Coppersm?th 
cycles traced thus tar range in size from 12,605.533 points 
(= 223’6) to 26,717,619,870 points (e 2 3 4 m 6 ) .  

such cycles and find that these appear to tnd in fixed point 
cycles on the s a m e  key or on different keys with equal probabil- 
lty. We give one example in each case: 

We have traced 174 

x = AlE1751167FED858(Hex) fixed by K(15) 

and 

y = 07CDA64B52C48D2F(Hex) fixed by K(0) 

with a cycle length of 12.605.633 points (= 223.6 ) and 

x = OA60B8BCPBfF4216(Hex) fixed by K ( 1 5 )  

and 

Y = C4D9ASASEDC0988C(Hex) fixed by K(15) 

227. 2 with a cycle l ength  of 158,461,212 points ( =  1 -  
The process of alternately encrypting w l t h  a weak and a seml- 

weak key may never encounter a fixed point. Cycles of thie type 
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type rill be called non-Coppersmith. These seem to naturally 
divide into t w o  classes depending upon whether or not a polnt and 
its complement occur in the same cycle. The cycle containing a 
polnt x and the cycle containing 2,  which may be dlejoint, have 

the local structure 

and 

------ - 
since E(E,C) * E ( K . x )  = v.  etc. Analysis of the structure of such 
cycles leads to the discovery that non-Coppcrsmlth cycles occur 
either as self-dual. centrally symmetric, cycles of the form 
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or 8s Isomorphic pairs of the farm. 

The central symmetry of both keys and points on the self-dual non- 
Coppersmith cycles means that the size of 8uch a cycle must be 
congruent to 2 mod 4 .  The detalls of these theoretical resulta 
are in 1 6 1 .  

either of these types of non-Copperamith cycles has been found. 
Since there are exactly 232 Copper8mith cycles and 264 points in 
all, a reliable estimate of the nize of Coppersmith cycles could 
be used to infer the likelihood of the existence of non- 
Coppersmith cycles. T h e  best that can be said based on the 174 
known cycles i s  that with a confidence of 99.9%, the fractlon Of 
the points in Coppersmith cycles is at least 96%. In other words, 
if 96% or fewer of the points are actually In Coppersmith cycles, 
174 random selections would a31 be In Coppersmlth cycles only one 
time in a thousand. This type of statfstical argument crn never 
prove the non-existence of non-Coppersmith cycles, but it can (as 
the number of unsuccessful t r i e s  increases) quantify the Sutility 
of continuing to aearch for them by a brute force random *election 
of atarting points. If these exist, degenerate forms are also 
possible and would have the following etructuree: 

However, in an cxtermive computer search, no instance of 
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Degenerate self-dual non-Coppersmith 

X 

- 
X 

Complementary pair of degenerate non-Coppersmith 

Y 
- 
Y 

Unfortunately, we have no easy nay to find these degenerate cases, 

if they exist. so producing one appears to be a 264 8earch 
problem. 

The final variety of cycle for the weak keys which we will 
consider consists of those obtained by alternate encryptions with 
.ny two weak keys. Obviously the cycles already discussed are 
special cases of these, in which the two keys are actually the 
same or one is the cgmplement of the other. However, the 
rcmainlng pairings give rise to some new cycle structures. 

In this new setting, a cycle very much like the Coppersmith 
cycle is encountered in that it has a fixed point at either end of 
8 chain of beads as in the Coppersmith cycles. However, there is 
no reason to believe that auch a cycle would not contain both a 
point and Its complement. Therefore. these new cycles have an 
extra possible class to consider. O f  course, just as for the 
alternation of a weak key and it complement, a cycle alternating 
between any two weak keys might never encounter a fixed point. 
Thus structures corremponding to the non-Coppersmith cycles above 
appear to be possible. ht this time, no results arc available 



25 

except tor those degenerate cases which could be Sound with the 
Micro DES Englnc. No points were found whlch were fixed 
SimultaneouBly by K(0) and K(101, however two polnts were found 
for K(0) and K(5). Hence, we obtain two degenerate pairs of 
complementary cycles, for this key pair. oi the form: 

If we consider the cycles in which fixed points are 
encountered and in whlch both a point and its complement are 
found, the degenerate case would be of the form: 

This is not possible since we would have to find a point x for 
which E(K,x) = x m d  E(X,x) = x .  

E ( , i i , x ) =  x 80 that x would have to be a polnt fixed by K and its 
complement t .  
for each such polnt x and each choice of a weak key K', we have 
verified that E(K1,x) # x. 

again require the solution of a 2°4 search problem to locate 
degenerate cases, 60 that no such cycles have been produced. 

- 
The last equation requires that 

The complete list of much points is available and 

The cycles In which a fixed point does not occur aetm to once 
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The Seml-weak Keys 

The semi-weak keys will be considered in two mtages. 
ire tour keys which have an antlpallndromlc sequence of round 
kmys. as was dlscussed earlier. The relnalnlng eight semi-weak 
keys have a different structure for their round keys. The 
discussion of these keys will be delayed until later in this 
8ect ion. 

in the previous sections, of the keys with an antipallndromic 
sequence of round keys. 

There 

We begin by summarizing the properties, whlch were developed 

1) There are 4 of these keys K(3), 1 ( 6 ) ,  K ( 9 )  m d  K(12). 
2) The complement of one of these keys is its lnversc key. 

3) Each key has 232 antlflxcd points. 

Once again two cases seem to occur. A cycle which contains a 
point x may either contain its complementary point ii or not. 
will consider the first case now. 

We 

Suppose that x Is an antifixed point of a key K. Thus x and _----- - 
x art ir. the cycle for K, but because E(K,xf = E(E,G], these 
polnts are also in the cycle for g.  Schematically, we have 

C d 

b 
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Now consider the points a = E(K,Z) and b = E(k,x). Notice that 

6 * E(%,x )  = E(K,G) = a. Also, since 2 is the Inverse key for K, 
we have that c = D ( X , x )  = E(k,x) - b = a. Hence the utructure 
8 h O m  in the last diagram can be replaced by 

-_____ 

By repeating thls argument, we see that the points in the cycle 
all Occur as complementary polnts with m e  of the antifixed point 
pairs at each of the antipodal points as shown In the following 
d l  .agram. 

K 

K 

Of course, thls means that these cycles are gel_-dual an1 have 
diametrical symmetry, I.s., every point, u, In the cycle I s  

reflected in the diameter drawn through the centers of the 
antipodal antifixed point pairs into its complement, u. Since 
each of these cycles must have precisely two antlfixed point pairs 

- 
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in I t  and there are precisely 2329uch points for each key,  there 
are rxactly 231 such cycles for each of the pairings of these 
semi-weak keys. 

An example of a cycle of this type using K = K(3), has as the 
antipodal antlflxed points: 

x = 9EDB66CF776212BB(Hex) 
y = 4B659E4C304032BF(Hex) . 

3 2 . 5  The cycle has a length of 6,236,677,106 = 2 
We have not traced sufficiently many cycles of this type to 

permit a reliable estimate of the expected cycle size. It would 
appear to be In the vicinity of 232, which. since there are only 
Z31 ouch cycles ln all, would suggest that only half of the total 
number of points are in these self-dual (under complementation) 
cycles. 

The other cycles for these keys must occxr in complementary 
pairs. The form of these pairs of cycles is pictured below. 

- 
U U 

An example of a complementary pair of such cycles using 
A = X ( 3 )  are those on x and 8 where 

x - 51F2558?495909A5(Hex) 
32.6 whlch has a cycle length of 6,671,292,514 = 2 

i.e., self-dual and lsomorphlc pairs of cycles, an intriguing 
Glvcn that b o t h  types of cycles occur for the semi-weak keys. 
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questlon l e  whether degenerate cycles ex ls t  or not. A degenerate 
6elf-dual cycle would be of the form 

X 

while a degenerate Isomorphlc 

00. 
pair would be of the form 

.oo. X 

The Micro DES Engine allows us to answer the Flrst half of the 
question. By letting the two keys be a complementary palr of the 
keys with antipalindromlc round key sequences, chooslng I - f = 8 ,  

and letting U and  V be the all ones vectors, the set of all points 
which are antifixed by both of the chosen keys can be found. 
After trying a l l  poaslble key pairs, w e  found that there Is 
exactly one degenerate cycle for the key pair K(3), K(12) and one 
for the pair K ( 6 ) .  K(9). These are 

x = 2046CAC677DCA40F(Eex) 

for K(6) and K(9) and 

x = SA77FF65EC179215(Eex) 

For K(3) and K(12). Unfortunately, Theorem 3 does not (so far as 
w e  can see) provlde a means to reduce the 264 search for dcgener- 
a t e  isomorphic pairs. W e  therefore do not know how many, If any, 
degenerate cycles of this type exist for the seml-weak keys. 
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We will now turn our attention to the remaining semi-weak 
keys. Listed below are the facts known about these keys: 

1) There are 8 such keys, 
2) The inverse of any key in the set is almo in the set, 
3) The complement of any key in the set Is also in the set. 

The round keys for a key K in this collection satisfy 

+ v  '1 ' K17-l 
where V Is either the vector consisting of 24 ones followed by 24 
zeroes or the vector consisting of 24 zeroes followed by 24 ones. 
QZ course, the round keys do not satisfy the hypothesis of Theorem 
3, since V + E ( U )  for any 32 bit vector U. 

At this time, we do not know about the cycle structure for 
these keys, but some intriguing experiments have been completed on 
the Micro DES Englne. We offer a few of them here simply as tan- 
talizing bits of information. For the description of these 
experiments, let U1 be the vector of 16 zeroes followed by 16 

ones; U p  be the vector of 32 zeroes; and Uj be the vector of 32 
ones - 

The first experiment used the key K(4) in both key positions 
of the Micro DES Engine and the values of I and j were both set to 
8 .  There were three stages to this experiment and In each stage U 
and W were set to be equal. When the value of U was set to U1 the 
engine found 2 values for rn and when U = Us, the engine found 1 
value for n8. 
Pictorially we have 

8 
However, none were found when U was equal to Up. 

m9 "8 "9 

Y X 2 
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where the arrows from y to x 8nd from x to z show encryptlon wlth 
key K(4). The points marked along the arrow show the riddle step 
In the rounds, that Is, the posltlon of m e ,  mg and ng, n9. The 
result6 of the experiment show that there exists a value for y In 
thls dlagram for which me 0 rng = U when U is equal to 
U1 or Ug but not when U = U2. 

A slmllar experiment was performed wlth K(4) and K(11) as the 
keys in the Micro DES Engine. We found that a value for y cxlsted 
for whlch mg Q mg = U - n8 0 n9 when U Is equal to U1 or U2 but 
not when U = U3. 

this mtudy of cycles of cycles for these sernl-weak keys. 

- n8 O'ng 

Perhaps these strange results wlll point to new directions i n  

New Directions 

The results reported here are part of a study whleh Is not 
yet  complete. We wlll continue to collect statlstlcs on the 
cycles obtained by alternate cncryptfons using two weak keys and 
also on the Cycles uslng semi-weak keys which have antlpalindromic 
sequences of round keys. The remalnlng sernl-weak keys seem to be 
an open area of discusslon wlth many possible avenues to pursue. 
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