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As part of a report on cycling experiments with DES, Rivest
{1] announced at Crypto'85 that a small cycle had been found when
alternately encrypting with the all zeroes key and the all ones
key. This cycle contained approximately 233 points. Later in the
sanme meeting, Coppersmith {2] explained this phenomenon by noting
that if a fixed point occurred in the cycle, since with these keys
encryption is the same as decryption, the successive encryptions
would actually be decryptions and would retrace the steps to the
starting point. We can picture this as follows:

where x is the starting point, y is the fixed point and K and K
represent the keys used. He also argued that since there are 232
such fixed points for each of these keys, the apparently small
size of the cycle reported was not actually surprising. Intrigued
by these observations, we began an in-depth study of the cycle
structure of DES using weak and semi-weak keys. The results
presented in this paper outline the current status of that study.
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Notation

A complete description of the DES algorithm will not be given
here, but since we will use a nonstandard notation, introduced by
Grossman and Tuckerman [3], we begin with the specifics of that
notation. Omitting the initial and final permutations, the DES
transformation can be viewed as a sequence of 32-bit vectors

m ,ml,m

o) 20 Mg Pyg

defined recursively by

m = m

141 ® £(Kg.m;)

i-1
where Ki is the ith round key and f is the nonlinear DES function
described in the original FIPS Publication 46 [4]. The concatena-
tion , mom, . represents the 64-bit input after the initial per-
mutation, while B 4B g represents the output before the inverse of
that permutation. This notation is much better suited to our
purposes than the original description of the DES. For all of the
work reported in this paper, the initial and final permutations
are irrelevant, so we will routinely omit thenm.

Some details of the nonlinear function f are required for our
discussion. The function takes as input a 32-bit vector X and
expands it to a 48-bit vector E(X). The 48-bit round key K1 is
then exclusive-ored with E(X). The resulting vector is used as
input to the S-boxes, yielding a 32-bit vector. The output of ¢
is a permuted form of this 32-bit vector. This process is shown
in the following figure.
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Figure 1.

The descriptions of E,P and the S-boxes can be found in FIPS
Publication 46 [4]. The complete DES encryption of a 64-blt
vector ¥ with a key K will be dencted in this paper by E(X,Y},
while decryption with with K will be denoted by D(X,Y).

The Keys

We begin with a review of what 1s known about the weak and
gseni-weak keys. Davies [5] and Jueneman [6) have studied the

structure of these keys and some of the results have also appeared
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in FIPS Publication 74 [7]. The approach in this paper basically
follows that of Moore and Simmons (81].

The keys used in this study fall into two classes. The first
class, the weak keys, consists of four keys distinguished by the
fact that all 16 round keys are the sanme. This means that
decryption is identical to encryption since reversing the calling
sequence for the round keys has no effect.

The second class consists of the semi-weak keys. A key K ls
a seni-weak key if there exists another key x' so that the round
keys for these keys satisfy x; = K, 4 for 0 < i< 17. This
property has the effect of providing "inverse keys" in the sense
that decryption with K is the same as encryption with K..

The following theorem verifies that the weak and semi-weak
keys are the only such keys having this kind of inverse keys.

Theorem 1

E 3
A DES key K has an inverse key K satisfying

if and only if K is one of the 16 keys in which all 14 of the bits
in each of the four subsets A, B, C, and D of K listed below are
alike.

A ( 1 2 3 17 18 19 33 34 35 36 49 50 51 52)

B { 4 5 6 7 20 21 22 23 37 238 39 83 5854 55)

c (9 10 11 25 26 27 41 42 43 44 57 5B 59 60}

D (12 13 14 15 28 29 30 31 45 4€ 47 61 €2 63)
Proof:

The proof is a tedjous but straightforward bit tracing of the
round keys.'
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The sets A, B, C, and D in the previous theorem also give
rise to a labeling technigue for the keys used in this study.
This label consists of a four-bit number, the most significant bit
of which identifies the value for the bits in set A. The next
bits identify the values for sets B, C and-D. For example, K{(3)
is the Key in which the bits in sets A and B are zeroc and the bits
in sets C and D are one since the binary representation of 3 is
0011. That is,

K(3) = 0000000(1) 1111111(0C) 0000000(1) 1111111(0)
0000000{1} 1111111(0) CCO000Q({1) 1111111(0)

The bits 1n parentheses are the parity bits and are set by
the rule that each byte must have odd parity. The 16 keys
mentioned in the previous theorem are listed below using this

notation with their corresponding inverse keys identified.

K Y 1 2 3 4 5 6 7 8 9 310 11 12 13 14 15
K e 4 g8 12 1 5 9 13 2 6 10 14 3 7 11 1§

The following easy lemma is a consequence of the fact that
the expansion operator E is a homomorphism.
Lemma 2

For any 32-bit vectors U and M, and any 48-bit vector X,

f(K,M) = £(K & E(U), M e U}.

Proof:

f(K @ E(U), M & U) K ® E(U) @ E(M o U)
K @ E(U) @ E(M) @ E(U)
K & E(M)

sk, LB



14

The argument used to count the number of fixed points of a
weak key can be captured in a more general statement in the next
thecren.

Theorex 3
Suppose that for some key K, the round keys satisfy
K

® K i = E(U) .

i 17~

where E(U) is the 48-bit expansion of some 32-bit vector U. Then
the following are equivalent:

1) mg [ ] By = u,

2) m, ® Byg g = U, for 0 < i < 17 ,
3) Ry ® Byq = U and =, (] Bie ™ U
Proof:
First note that 2) => 3) and 2) => 1) are obvious. From the
definition of mj and m17_j+2, we haye
By @ Dyg g =By p ® BIKy omy ) F Byg gup @ TK gy Pyggay)
o= [ ]
mj_2 L] m17_J+2 ] f(xj—l’mj-l) @ t(KJ__1 ] E(U).m17_j+1). (=)

For 3) => 2) the above egquation ylelds
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n2 [ m15 = no @ m17 [ ] f(xl"l) [} f(K1 [ ] E(U).n1 e U)

=m_ @ m1

0 7

=0 .

Then if we assume that for all j < i, mj ® m17-j = U, then (*)
7-34 = U. Thus by induction

above can be used toc show that mi ® m,
2) is established.
For 1) => 2) we have

n nm, =m & n_ @ f(Kg, mg) ° f(K9 @ E(U), m_, @U) = U

10 7 9 8 9

The induction argument used above applies again to complete the
proof.l

For the all zerces or the all ones key, the hypothesis of
Theorem 3 is satisfied for U egqual to the all zeroes vector.

Hence, fixed points for these keys coincide with those messages in

2

which mg = my during the encryption proceas. Since there are 23

such possible equaticns, there are precisely 232

each key.

fixed points for

This theorem appears to be quite powerful, so the next issue
is the ldentification of those keys which satisfy the hypothesis
of the theoremn.

Theorem 4

1f for some key K, the round keys satisfy

K, ® K, = EU) |,
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where U is the 48 bit expansion of some 32 bit vector U, then U
is either the all zerces or the all cnes vector.

Proof:
The proof i1s again rather tedious and we refer the reader to
[8] for its details.l

This theorem states that the only keys satisfying the hypoth-
esis of Theorem 3 are those in which the round keys either fora a
palindromic sequence:

xi = Kl?-i ., or

an antipalindromic sequence

The following theorem connects these conditions with the weak and
seni-weak keys.

Theorem §

A DES key K has a palindromic round key sequence or an
antipalindromic round key seguence 1f and onliy if K is one of
K(0), K(5), K(10) or K(15) in the first case or one of X(3), K(6),
K{9) or K(12) in the second case.

Proof: See [8].
To end this section, we give a theorem which will be useful
in studying the cycles structure of weak and semi-weak keys. One

definition 1s required first. A point X is an antifixed point of
a key X if E(X,x) = x.1
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Theorem 6
For each of the keys with a palindromic round key sequence

32

there are precisely 2 fixed points and for each of the keys with

an antipalindromic round key sequence there are precisely 232

antifixed points.

Proof:

The fixed point argument was given earlier. For the anti-
fixed point argument, the keys with an antipalindromic round key
sequence satisfy Theorem 3 with U being the all ones vector.

Hence the antifixed points for these keys will coincide with those
messages in which m_= m_ during the encryption process. Since

8 9 32

there are 232 such possible equations, there are 2 possible

antifixed points for each such key.l

The DBS Engines

Two special-purpose hardware devices were designed and built
at Sandia as part of this study. These devices will be referred
to in this paper as the DES Engine and the Micro DES Engine.

The DES Engine was designed to perform several types of cycle
testing. It consists of 16 ldentical PC boards, each running a
DES chip, the AM 9568, at high speed without changing keys. An
IBM PC is used to provide communication with the user and to count
the number of encryptions performed.

There are two basic modes of operation for this machine. In
the first mode, each board performs a cycle test experiment using
its preset key, independently of all other boards. In the second
mode, the boards are paired so that cycle testing using alternat-
ing keys may be performed. The output of one board in the pair is
used as the input to the other board. By this means, the pair can
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perforn an experiment with alternating keys, while each DES chip
keeps 1ts preset key unchanged.

Without describing the hardware in detail, the rudiments of
its operation will be discussed. As part of the initialization of
an experiment, several variables are set. These include a key,
two starting points, SA and SB, and two other values, HA and HB,
called "hit values”. During the first step of the counter, SA is
encrypted with the set key and compared to HA. If there is a
match, the machine stops to report this result. It also stops if
the encrypted value of SA is the same as SA, l.e., a fixed point
has been found, or if a specified number of steps have been taken.
The encrypted value of SA then is stored in the place of SA.
During the next step of the counter, SB is encrypted with the
preset key and compared to HB. The stop conditions described
above are checked and, if not met, the encrypted value of SB
replaces the original SB. This process continues until a condi-
tion for a machine halt is met or the operator intervenes. The

32

machine will complete about 2 encryptions per cycle per day.

The Micro DES Engine 1s a very speclalized piece of hardware
which was designed to take advantage of the internal structure of
DES to find specific examples. In order to explain its operation,
we need some notation. Suppose we are given two keys, K1 and K2,
and two 32 bit vectors, m, and m,. Let M be the concatenation of

0 1

B, and m,. To cozmpute E(E(M,K1),K2) we would calculate

m = m

141 [} f(mi,Kli) for 0 < {1 < 17 .,

i-1

Then letting no =D, and nl Ld mls, we would calculate

n = n

i+1 ® f(ni,KZi) for 0 < i1 <17 ,

i-1

The resulting concatenation of n17 and N would be the result.

The Micro DES Engine allows us to specify two keys, two integers,

i and j, and two 32 bit vectors U and V. It then allows =, to



18

32possib1e values. For each such value,

assune all 2 ni*l is set
to By ® U. Proceeding through the rounds of DES using the cne of
the keys, n1+2..... n,, are calculated. Now setting ng = m17 and

n, =B, the engine calculates the rounds of DES using the second

key until it has found nj+1. 1t nj+1 - nj 9 V, the result is
reported before changing the value of m,.

Micro DES Engine starts at some specified round of encryption with

In other words, the

the first key and some linear relationship between adjacent terms
of the sequence {ml} and stops at another specified round of
encryption with the second key to check for another linear rela-
tionship between adjacent terms of the seguence (nl). There is a
technical restriction that the combined number of rounds of DES in
one of theseszteps cannot exceed 16. The complete experiment,

trying all 2 choices for L requires approximately 13 hours of

operation.

The Weak Key Cycle Structure

Before proceeding with the details of the cycle structures
for any of the keys, we need to make the observation that the

complement of any cycle is also a cycle since

B(K,x) = E(K,x)

This complementary cycle will also be called the dual cycle.

We are now ready to consider the cycle structure for weak
keys. Several important properties of the weak keys, which have
already been discussed, will now come to bhear on the cycle
structure. These are:

1. There are 4 weak keys K{0), X(5), X{(10) and KX(15},

2. EBach key is its own inverse,

3. ERach key has 232 fixed points.
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Since each key is its own inverse, a cycle of repeated
encryptions with a weak key will either consist of one point, a
fixed point for that key, or two points. These cycles, of course,
are rather trivial. ‘

However, alternately encrypting with a weak key and its com-
plexzent has already produced some interesting results. We will
call cycles of this type Coppersmith cycles. To be specific, a
Coppersmith cycle is a cycle obtained by alternately encrypting
with a weak key and its complement in which a fixed point is
eventually encountered.

Since the complement of a cycle is a cycle, Coppersmith
cycles could conceivably be self-dual or cccur in isomorphic
pairs. However, in [8], it was shown that only the latter case is
possible. Hence, Coppersmith cycles can never contain both a
point and its complement.

The Coppersmith cycles traced thus far range in size from 1
point to 12,605,533 points. Those cycles with one point are the
"degenerate" Coppersmith cycles and were found with the use of the
Micro DES Engine.

To find a one point Coppersmith cycle, we must find a point
which is fixed by both a weak key X and its complementary key K..
Pictorially this cycle will be

Hence, we initialize the Micro DES Engine with these keys, X and
[ ]

K , set 1 and J equal to B, and let U and V be the all zero vec-

tors. The engine will then produce a list of all possible values
for mg, 8 9 9

so that m_, = m_ in the encryption with X and ng = n in
the encryption with K-. From this we can produce a 1list of all

=
fixed points of X which are alsc fixed points of X . There is
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exactly one degenerate pair of complementary cycles for the key
pair K(0), K{15) and one for the key pair K(5), X(10). These are

X = 74080FA36E793E74(Hex)
and X fixed by K(0) and K(15) and
v = 1BDAFF22E4BDDAS2(Hex)

and y fixed by K(5) and K{10).

Excluding these degenerate cases, the remaining Coppersmith
cycles traced thus far range in size from 12,605,533 points
(= 22%°%) to 26,717,619,870 points (= 2°%'%). We have traced 174
such cycles and find that these appear to end in fixed point
cycles on the same key or on different keys with equal probabil-

ity. We give one example in each case:
X = AlE1751167FED858B(Hex) fixed by K(15)

and

¥ = OTCDA64B52C4BD2F(Hex) fixed by K(0)

23

with a cycle length of 12,605,633 points (= 22°°°) and

X = OAG60B8BCFB7F4116(Hex) £fixed by K(18§)
and

v = C4DYAQASEDCO9BBC (Hex) fixed by K(15)
27.2
with a cycle length of 158,461,212 points (= 2 ).
The process of alternately encrypting with a weak and a semi-

weak key may never encounter a fixed point. Cycles of this type
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type will be called non-Coppersmith. These seem to naturally
divide into two classes depending upon whether or not a point and
its complement occur in the same cycle. The cycle containing a
point X and the cycle containing X, which may be disjoint, have
the local structure

and

cycles leads toc the discovery that non-Coppersmith cycles occur
either as self-dual, centrally symmetric, cycles of the form

u

<

o
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or as isomorphic pairs of the form.

The central symmetry of both keys and points on the self-dual non-
Coppersmith cycles means that the size of such a cycle must be
congruent toc 2 mod 4. The details of these thecoretical results
are in [8].

However, in an extensive computer search, no instance of
either of these types of non-Coppersmith cycles has been found.

2 Coppersnmith cycles and 254 points in

Since there are exactly 2°
all, a reliable estimate of the size of Coppersmith cycles could
be used to infer the likelihood of the existence of non-
Coppersmith cycles. The best that can be said based on the 174
known cycles is that with a confidence of 99.9%, the fraction of
the points in Coppersmith cycles is at least 96%. In other words,
if 96% or fewer of the points are actually in Coppersmith cycles,
174 randor selections would all be in Coppersmith cycles only one
time in a thousand. This type of statistical argument can never
prove the non-existence of non-Coppersmith cycles, but it can (as
the number of unsuccessful tries increases) quantify the futility
of continuing to search for them by a brute force random selection
of starting points. 1If these exist, degenerate forms are also
possible and would have the following structures:
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Degenerate self-dual non-Coppersmith

X

X
Complementary pair of degenerate non-Coppersmith

X b 4

Unfortunately, we have no easy way to find these degenerate cases,
if they exist, so producing one appears to be a 264 search
problem.

The final variety of cycle for the weak keys which we will
consider consists of those obtained by alternate encryptions with
any two weak keys. Obviously the cycles already discussed are
special cases of these, in which the two keys are actually the
" same or one is the complement of the other. However, the
remaining pairings give rise to some new cycle structures.

In this new setting, a cycle very much like the Coppersmith
cycle is encountered in that it has a fixed point at either end of
a chain of beads as in the Coppersmith cycles. However, there is
no reason to believe that such a cycle would not contain both a
point and its complement, Therefore, these new cycles have an
extra possible class to consider. Of course, just as for the
alternation of a weak key and it complement, a cycle alternating
between any two weak keys might never encounter a fixed point.
Thus structures corresponding to the non-Coppersmith ecycles above
appear to be possible. At this time, no results are available
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except for those degenerate cases which could be found with the
Micro DES Engine. No points were found which were fixed
simultaneously by X(O) and K(10}, however two points were found
for K(0O) and K(S). Hence, we obtain two degenerate pairs of
complementary cycles, for this key pair, of the form:

X
If we consider the cycles in which fixed points are

encountered and in which both a point and its complement are
found, the degenerate case would be of the form:

This is not possible since we would have to find a point x for
which E(K,x) = x and B(K,X) = x. The last equation requires that
E(K.x)= x so that x would have to be a point fixed by K and its
complement X. The complete list of such points is available and
for each such point x and each choice of a weak key X', we have
verified that E(K',x) # X.

The cycles in which a fixed point does not occur seem to once
agaln require the solution of a 26‘ search problem to locate
degenerate cases, sc that no such cycles have been produced.
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The Semi-weak Kevys

The seml-weak keys will be considered in two stages. There
are four keys which have an antipalindromic sequence of round
keys, as was discussed earlier. The remaining eight semi-weak
keys have a different structure for their round keys. The
discussion of these keys will be delayed until later in this
section.

We begin by summarizing the properties, which were developed
in the previous sections, of the keys with an antipalindromic

sequence of round keys.

1) There are 4 of these keys K(3), K(6), K(9) and K(12).
2) The complement of one of these keys is its inverse key.
32

3) Each key has 2 antifixed points.

Once again two cases seem to occur. A c¢ycle which contains a
Point x may either contain 1ts complementary point X or not. We
will consider the first case now.

Suppose that x is an antifixed point of a key X. Thus x and

X a:e i. the cycle for K, but because E(K,x) = E(K,X), these
points are also in the cycle for K. Schematically., we have
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Now consider the points a = E(K,X) and b = E(K,x). Notice that

b= E(K,x) = BE{K,X) = a. Alsc, since K is the inverse key for K,
we have that c = D(K,x) = E(K,X) = b = a. Hence the structure
shown In the last diagram can be replaced by

By repeating this argument, we see that the points in the cycle
all occur as ccmplémentary points with cne of the antifixed point
pairs at each of the antipodal points as shown in the following
diagram.

0f course, this means that these cycles are self-dual and have
diametrical symmetry, i.e., every point, u, in the cycle is
reflected in the dlameter drawn through the centers of the
antipodal antifixed point pairs into its complement, u. Since

each of these cycles must have precisely two antifixed point palrs
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in it and there are precisely 2329uch points for each key, there
are exactly 231 such cycles for each of the pairings of these
semi-weak keys.

An example of a cycle of this type using XK = K(3), has as the
antipodal antifixed points: '

x = S9EDB66CF776212BB(Hex)
Y = 4B659E4C304032BF(Hex)
The cycle has a length of 6,236,877,706 = 232'5.
We have not traced sufficiently many cycles of this type to
permit a reliable estimate of the expected cycle size. It would

appear to be in the vicinity of 232, which, since there are only

231 such cycles in all, would suggest that only half of the total
number of points are in these self-dual (under complementation)
cycles.

The other cycles for these keys must occur in complementary

palrs. The form of these pairs of cycles is pictured below.

u v

An example of a complementary pair of such cycles using

K = X(3) are those on X and X where

X = 51F25587495909A5(Hex)
which has a cycle length of 6,671,292,514 = 232'6.
Given that both types of cycles occur for the gemi-weak keys,

i.e., self-dual and isomorphic pairs of cycles, an intriguing
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question is whether degenerate cycles exist or not. A degenerate
self-dual cycle would be of the form

X

x

while a degenerate isomorphic pair would be of the form

The Micro DES Englne allows us to answer the first half cof the
question. By letting the two keys be a complementary pair of the
keys with antipalindromic round key seguences, choosing 1 = 3 = &,
and letting U and V be the all ones vectors, the set of all points
which are antifixed by both of the chosen keys can be found.

After trying all possible key pairs, we found that there is
exactly one degenerate cycle for the key pair K{(3), K(12) and one
for the pair K(6), K{9). These are ‘

X = 2046CAC677DCA4OF (Hex}
for K(6) and X{(9) and

X = SA7IFFE6SEC17921S(Hex)
for X(3) and X(12). Unfortunately, Theorem 3 does not (so far as
we can see) provide a means to reduce the 264 search for degener-

ate isomorphic pairs. We therefore do not know how many, if any,

degenerate cycles of this type exist for the semi-weak keys.
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We will now turn our attention to the remaining semi-weak
keys. Listed below are the facts known about these keys:

1) There are 8 such keys,
2) The inverse of any key in the set is also in the set,
3) The complement of any key in the set is also in the set.

The round keys for a key X in this collection satisfy

K, 8K, , =V
where V is elther the vector consisting of 24 ones followed by 24
zeroes or the vector consisting of 24 zerces followed by 24 ones.
Qf course, the round keys do not satisfy the hypothesis of Theorem
3, since V ¥ E(U) for any 32 bit vector U.

At this time, we do not know about the cycle structure for
these keys, but some intriguing experiments have been completed on
the Micro DES Engine. We offer a few of them here simply as tan-
talizing bits of information. For the description of these
experiments, let U1 be the vector of 16 zerces followed by 16
ones; 02 be the vector of 32 zerces; and U3 be the vector of 32
ones.

The flrst experiment used the key K(4) in both key positions
of the Micro DES Engine and the values of i and j were both set to
8. There were three stages to this experiment and in each stage U
and V were set to be equal. When the value of U was set to 01 the
engine found 2 values for m_ and when U = U3, the engine found 1

8

value for ng - However, none were found when U was egual to U

Pictorially we have

2°

K(4) K(4)

Y X z
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where the arrows from y to x and from x to z show encryption with
key K(4). The points marked along the arrow show the middle step
in the rounds, that is, the position of Rg, By
resultes of the experiment show that there exists a value for y in
this diagram for which L ® m

and Bgy Rg- The

g =V =ng O'ng when U is equal to.
U1 or Ua but not when U = Uz'

A similar experiment was performed with K(4) and K(11) as the
keys in the Micro DES Engine. We found that a value for y existed

for which ng em =U=n_ 6n

9 8 9 when U is equal to U, or U, but

1 2
not when U = Ua.
Perhaps these strange results will point to new directlons in

this study of cycles of cycles for these semi-weak keys.

New Directions

The results reported here are part of a study which is not
yet complete. We will continue to collect statistics on the
cycles obtained by alternate encryptions using two weak keys and
also on the cycles using semi-weak keys which have antipalindromic
sequences of round keys. The remaining semi-weak keys seem to be
an open area of discussion with many possible avenues to pursue.
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