BREAKING THE CADE CIPHER
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Abstract: A cryptanalysis is given of a cryptosystem
introduced by J.J. Cade, which is based on solving
equations over finite fields.

In 1985 J.J. Cade [1] introduced a new public-key cryptosystem. The Cade crypto-
system is a public-key cipher in which each block is a string of n binary digits or

equivalently an element of the finite field F . Because of the design of the
2
system n must be a multiple of 3, say n = 3c. The blocks are enciphered by a

permutation of IF _ induced by a polynomial P € IF n[x] of the following form,
2 2

2 2 2

q +1 g +q 2q
+ p21x + p22x

2 +1 2
P(X) = pogx” + pygx T + pypx + pyox
_ »C . . .
where g = 2~ and Pogs e+ =+Po2 €IFq3[x]. The six coefficients Pog:---Ppp are the
public-key. The trapdoor information is a decomposition

3
P(x) =S oMo T(x) md (x¥ - x). (1)
S and T are both linearized polynomials,

2
q q
agx +agxt +axt

T(x)

S(x)

q q
b.x + blx + bzx

0

where ao,...,b2 €IF 5 are the private key.
q

S and T are linear mappings of IF 3 considered as a vector space overqu and are

both chosen to be invertible. A necessary and sufficient condition for a linearized
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r-1 i
polynomial L(x) = ¥ d1.xq €iF r[x] to be invertible is that det A = 0, where
s=0
r-1
q q q
dy 4l df, ...
2 ©or-l
= q q q
A=ld 4l g,
. . N R
q q q
dr—l dr-Z dr—3 . d0

In the Cade cipher we have q = 2 and r = 3. The set of linearized polynomials
over [F r forms a group under composition med (xqr-x), called the Betti-Mathieu
group, which is isomorphic to the general linear group of nonsingular r by r
matrices with entries ianq, see [3] for details on Tinearized polnomials.

We note that P(x) in (1) is obtained mod (xq -x).  Therefore polynomial
decomposition algorithms for finding the secret composition factors S, M and T are

qtl

not applicable. M 1is the special monomial M(x) = x which is invertible

because (g+1, q3-1) =1 for q = 2. T, Mand S are easy to invert and so

-1 -1 1

PP =T oM 0 S'l is easy to calculate if one knows the private key.

We now give a method for finding the private key ao,...,b2 in terms of the

public key Pog>-+-2Pap-

From (1) we have

-1 3
PoT “(x) =50 Mx) mod (x% -x)
2 2
= 4071 q 1 q g
= bgx' -+ byx + byx . (2)
Because T is a linearized polynomial T'1 will have the same form as T. In fact
2
-1 = q q
T 7 {x) = agX + X agX
where
2
+
ag = (ag 9+ a?ag VA,
2 2
= (9%, 9
ap = (a; "+ 5 2p)/A, (3)
= (401 q
@, = (a1 + aoaz)/A ,
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2 2 2
and A= ag tarl a? ol ag *qtl
2 2 2
9.9 9,8 97, .9
tagaja; +agay o, t ao.ala2

We may then calculate P o T'l(x). This has six terms and comparison of the

coefficients of these terms with those in (2) yields the following equations:

2 2
- g+l q q+1 q
by = Prolag ~ * aqep) * pyglag  + agay )

2 2
Q°+q . a.q
* pprlog T Hogay ),
2 2
_ g+l q g+l g
by = prglog ~ + ogay) + pyplag 7+ of o)
2 2 >
949, q°q
FPpr(of g o) s
‘ 2 2
- g+l , q 9%+l g
by = pglag ™ + agap) + ppgleg  + ag o))
2 2
949 , 9.9
tpprlog T+ ajay ),
0.2 + azq + a2q2 + Q 9 ]
Pao% * P11% * Poa% P10%%*
2 2

* Ppgog] * Ppyef @3 = 0,

pllagq * pzzagq * poo“% * p2190%

+ Pygegey * p200‘1“32 =0,
p220‘3q2 * pooo‘g * plluiq * pzoagzaz

* 921“82“§ + Pygofep = 0

Now if we raise the second and third equations of (5) to the powers q2 and q

2
respectively and put o = oy, B = ag, Y = u? then we obtain

2 2 2 " =
Poo® * P118 ¥ PppY + PygaB * Ppgav * PpyBy = 0,
2 2 2 2 2 2
q- 2 q-,2 q .2 q q q -
PI1% * PppB  * Py ¥ Py f * Pyguy + Pygby = 0, >
q 2 q 22 q.2 q q q -
Paa® * PggP  * PLiY ¥ Pag¥ ¥ Pyrer * Pppfy = 0.

(4)

(5)
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If one of o, B or vy is zero then the equations are easy to solve. This can
be detected a prfori, e.g. if vy = 0 then necessarily
Poo P11 P10

2 2 2
det|pd) p3, P3| = O

P32 Pgo P
Thus assume ofy = O. Because the equations in (6) are homogeneous we may assume
v=1. Using two of the equations in (6) to eliminate the a2 term we obtain
a{c B + ¢,) + c382 * et cg =0 (7N

for some cl,,..,c5 cF 3-
If €p=¢p = 0 then we have a quadratic equation for 8. Such an equation can be
solved by treating this case as an affine polynomial and use of the method described
in [4, p.103], or alternatively use the method of Exercise 4.44 in [4, p.161].

Otherwise we may substitute for o in one of the equations in (6) and so cbtain
a quartic equation for B. A quartic equation over F n may be solved by the method
described in Chen [2]. Equations (3) and (4) then g%ve the values of ay>3153, and

bO’bl’bZ respectively.

We understand from the originator of the Cade cipher that S. Berkovits has
developed an alternative method of breaking the cipher. An improved version of the

cipher has been presented at CRYPTQ 86.

REFERENCES

1. Cade, J.J.; A public key cipher which allows signatures. Paper presented at
2nd SIAM Conference on Applied Linear Algebra, Raleigh 1985.

z. Chen, Chin-Long; Formulas for the solutions of quadratic equations over
GF(Zm), IEEE Trans. Inform. Theory 28, 792-794 (1982).

3. Lidl, R. and Niederreiter, H.,; Finite Fields. Addison-Wesley, Reading, Mass.
1983. Now distributed by Cambridge University Press.

4, Lidl, R. and Niederreiter, H.; Introduction to Finite Fields and Their

Applications. Cambridge University Press, Cambridge, 1986.



