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Abstract

A possible public-key cipher is described and its security against

various cryptanalytic attacks 1s considered.

1. Introduction

In this paper, we describe a possible public-key cipher, It is a
modification of the public-key cipher that was proposed by the author
[2] in April 1985, was broken by Berkovits [1] in August 1985, and was
broken independently by James, Lidl, and Niederreiter |31 in October
1985,

Thigs modified cipher, like the original, is a block substitution
cipher that operates on binary messages. With this cipher, for a sult-
ably large value of n, n-blocks of binary digits are identified with
elements of the finite field GF(2"), and elements of GF(2") are enci-
phered by means of a permutation of GF(Zn) whose public description is
as a polynomial function on GF(2") which has a very high degree but
only a few terms,

We consider several possible cryptanalytic attacks against the
cipher, The most obvious attack consists of solving the polynomial
equations of high degree over GF{2") which reiate corresponding n-blocks
of plaintext and ciphertext, Another possible attack consists of solv-
ing the system of polynomiasl equations of high degree over GF(2B) that
expresses the public key for the enciphering permutation in terms of

secret trapdoor information about this permutation.
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For each cryptanalytic attack that we consider, we give an esti-
mate of the amount of computation required as a function of the ci-
pherts block-length n. The estimates for all but one of the attacks
are based on failrly complete and satisfying analyses of the attacks in
question, Unfortunatley, however, for the attack by solving the system
of equations that expresses the public key in terms of trapdoor infor-
mation, the estimate is based only on indirect evidence obtained by an
analysis of a simpler related system of equations. This attack will
require further study, perhaps with the ald of a computer algebra sys-
tem. On the basis of the estimates of the amounts of computation re-
quired by the various cryptanalytic attacks, it appears that the cipher
provides adequate security with a block-length of n > 150,

This paper 1s organized as follows., 1In section 2 below, we de-
scribe our modified cipher. 1In section 3, we prove that the encipher-
ing and deciphering permutations used in the cipher are indeed mutually
inverse permutations, In sections 4 - 6, we describe various methods
of cryptanalyzing the cipher and we estimate the amounts of computation
required by these methods. Finally, in section 7, we summarize these
estimates and use them to determine a sultable block-length for the

cipher,

2, Description of the cipher

Our cipher is designed to encipher binary messages, Each such
message is enciohered one n-block at a time, for a specified block-
length n, by substituting for each plaintext n-block x a corresponding
ciphertext n-block y which is given by y = P(x), where P 1s a certaln
kind of permutation of the set of all binary n-blocks.

Because of the particular form of the encliphering permutations
used in the cipher, the block-length n must be an integer for which
there exist integers §, Y, and B such that n = 28 and & = 27 = 38.

Note that an integer n satisfies this requirement if and only if n 1s
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a multiple of 12, In the following, n, 8, Y, and p are understood to
be as Just described,

For the operation of the cipher, the set of all binary n-blocks
must be identified in some specified way with the finite field GF(2%).
Then the public description of the enciphering permutation P consists
of a 16-term polynomlal formula for P having the form

Yh
P(x) = 216 pas Pgn®e A (2.1)
g=0 h=0

The coefficients Pgh in this formula are publicly revealed elements of
GF(2") which constitute the public key for P.

Although P 1s a polynomial function of very high degree, P(Xx) can
nevertheless be computed quite efficiently for each x € GF(2%). oOne

way to do this is to use formula (2.1) written in the form

Y
P(x) = é(é pshxmrs:«ﬁ) 2

and to compute the powers of x of the form x2k apearing in this formula
by doing k successive squarings. Computing P(x) this way requires a
total of Just (11/12)n squarings, 20 multiplications, and 15 additions
in GF(27),

P(x) can be computed even more efficiently by using matrix-vector
multiplication To compute various guantities which are the values of
linear functions on GF(2%), where GF(2P) is regarded as a vector space
over 1ts asmallest subfield GF(2). To compute P(x) this way, first

compute the quantities ug, ..., uq and vy, V3, V3 given by

Y+
u, = ;f; DgnX  forn- Oy wuey 34
OY

h
and vy, = x° s for h = 1, 2, 3. Each of these guantities is a GP(2)-
linear function of x, and so can be computed by doing a single matrix-
vector multiplication involving an n x n matrix over GF(2) and an n-

element vector over GF(2). Then compute P{Xx) by using the formula
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Mo

P(x) = uox + UpVp.

jo 4
L}

1

Computing P(x) this way requires a total of just 7 matrix-vector multi-
plications over GF(2), together with 4 multlp;icatlons and 3 additions
in GF(2").

For the construction of enclphering permutations, GF(2B®) and its
subfield GF(Zs) are regarded as vector spaces, of dimensions 4 and 2
respectively, over their common subfield GF(ZW). To construct an enci-
phering permutation, one first chooses at random two secret bases a,,
<o, 8y 8nd by, ..., by of GF(2®) over GF(2Y). One also chooses a
basis eyy €5 of GF(25) over GF(éY). This last basis need not be kept
secret and can be chosen to be whatever 1s most convenient. The se-
qQUeNce A5, s.ey ALy D1y e.., by, €1, €5 formed by these three bases
constitutes secret trapdoor information about an enciphering permuta-
tion P that is specified by this sequence, We will call this sequence
a trapdoor sequence for the permutation P.

This permutation is constructed as follows. Filrst, let 38; and 8,
be the GF(2')-linear functions from GF(2%) into GP(2R) such that s,(e;)
= ay and Sy(ey) = ay,,, for J =1, 2. Next, let T, and T, be the GP(2")-
linear functions from GF(2%) into GF(2%) such that

Tl(bj) = ey, for § =1, 2

EO, for J 3, 4

1

TZ(bJ) 0, for § =1, 2
S_ej_z, for J = 3, 4.
Finally, let M be the permutation of GF(ZS) given by

M(x) = 2201, (2.2)
Then the enciphering permutation P specified by the trapdoor sequence
849 ceey By bl’ eees by, e, e, 1s the function from GF(2P) into
GF(2") given by

P(xX) = S4MT,(x) + S,MT,(x). (2.3)
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Here and in the following, we denote the composition of two or more
functions by the Juxtaposition of their asymbols. Thus, for 1 = 1, 2,

SyMT; (X) = SyoMoT, (x) = 8, (M(T{(xX))).

We note that the enciphering permutation P just described does
not determine a unique trapdoor sequence which specifies it, Indeed,
1t can be shown that for each enciphering permutation, there are a very
large number of trapdoor sequences which specify it,

For the public description of the enciphering permutation P de-
scribed above, P must be expressed as a polynomial function., To do
this, first the functions 8y and T, are expressed as polynomisl func-
tions. The functions 8, are given by the polynomial formulas

Y
2

84(X) = a; x + a,,x°, (2.4)
where the coefficients a,, are the elements of GF(2") uniquely deter- _
mined by the system of linear equations

g
2 _ =

8308y + 8498y = 31(93)’ for J =1, 2.

The functions ‘1‘1 are given by the polynomial formulas
3 Yk
= S 2

Ti(x) k%o blkx [ (2-5)

where the coefficients b,, are the elements of GF(2R) uniquely deter-

mined by the system of linear equations
% b b2 " b,), i
s 1kP3 = Ti( J)' or J =1, ..., &4,

Once the elements a4y and by, have been determined, the enciphering
permutation P 18 given by the polynomial formula (2.1), where the co-
efficients Pgn are given by
é& 1 Yk+8 Yk
= 2 2

Pgn 121&%%1:“’1,3-1;) (P4 n-x)” (2.6)
where bi,-l = b1,3, for s =1, 2,

We note that this polynomial formula for P can be derived by sub-
atituting the polynomial formulas (2.4), (2.5), and (2.2) for the func-

tions 51’ Ti, and M into formula (2,3) and expanding the resulting
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expresslon for P(Xx) as a polynomiasl in x, taking into account that re-
peated squarings are automorphisms of GF(2R), and using the ildentity
xzn = X to reduce the degree of this polynomial to less than 2. We
also note that the coefficients a4y and by in the polynomial formulas
(2.4) and (2.5) for the functions 3, and T, must be kept secret because
a trapdoor sequence for P can be computed from them quite easily.

To decipher a mesgsage which hags been enciphered using the enci-
phering permutation P, each ciphertext n-block y is replaced by the
corresponding plaintext n-block x which is given by x = P‘l(y), where
P-l 1s the inverse of the permutation P. To obtain a formula for the
deciphering permutation P"l, one must know a trapdoor sequence By ey
ay, by, <oy by, ey, €5 for P. The permutation P14 specified by
this trapdoor sequence as follows. Let U1 and Uz be the GF(ZY)—linear
functions from GP(25) into GF(2") such that Ui(ej) = bJ and Uz(eJ) =

for =1, 2. Let V., and v, be the GF(Z’Y)-llnear functions from

bJ+2’ 1
GP(2") into GF(2%) such that
Vl(ﬂd) = (ey, for J =1, 2
io, for §J = 3, 4
and
V2(aJ) = 0, for J =1, 2
gej_z, for J = 3, 4.
FPinally, let M'l be the inverse of the permutation M of GF(ZS). which
means that M-l ig given by
iy = 5§ (2.7)
where € = 2‘3'1(22‘3 + 2P - 1). Then the deciphering permutation Pl s
given by
Py = Uiy () + upntlvy(e). (2.8)
Like the functions 3 and Ty, the functions Uy and Vy can be ex-
pregsed as polynomial functions. The functions Uy are given by the
polynomial formulas

2’ (2.9)
Uyl¥) = e + o445 :
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where the coefficlents Cy) are the elements of GF({2") uniquely deter-
mined by the system of linear equations
lY
cloeJ + 011832 = Ui(eJ), for J = 1, 2.

The functions Vy are given by the polynomial formulas

Yk
Vi(y) = i dikyz s (2.10)
k=0

where the coefficients dik are the elements of GF(2%) uniquely deter-

mined by the system of linear equations

% a,8.2 = W (ay), for § =1 5
a8 = a ar = y sy .
2 ity 1(8y)s

The coefficients ¢y and d,, in the polynomial formulas (2.9) and
(2.10) for the functions U1 and V, can be regarded as a secret private
key for the decivhering permutation p-1,

P~1(y) can be computed for each y € GF(2") by using formula (2.8)
together with the polynomial formulas (2.9), {(2.10), and (2.7) for the
functions Ui' Vl, and M'l. An efficient way of doing this is based on

the following formula:

)23@'1 2f-1

26-1
wlv (v = vy )2

vy ly
-1 - - -1 Tkeot-
. (g (di,k_l)zjﬁ 1y2Yk+'Y 1)(]‘—%0 (di’k‘l)z.?ﬁ 1y2 K+ 1)

,B-1 SVkef-1
Eg% (dik) y

where di,-l = d1,3 and ® = n/12. To compute P‘l(y) efficiently using

/9y (9)

’

this formula, first compute the quantities zy and z; given by zy =
M‘lvl(y) by using the above formula and computing the powers of y of

the form yzk appearing in this formula by dolng k successive squarings.
Then compute the gquantities Ui(zi) by using the polynomial formulas
(2.9) for the functions U; and again computing powers of the z,; by re-
peated squaring, Finally, compute P~l(y) vy adding U,(z,) and Us(2z5)
Computing P-1(y) this way requires a total of just (3/2)n - 1 squarings,
30 multiplicatinns, 2 divisions, and 21 additions in GF(2%").

P~1{y) can be computed even more efficlently by making use of
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matrix-vector multiplication. To compute P~l(y) this way, first com-
pute the quantities ti’ Uy and v, for 1 = 1, 2, where these quantities
are given by t, = vi(y)ZBp-l. u = Vi(y)zzp-l. and v, = vi(y)ze-l-
Each of these quantities is a GF(2)-linear function of y, and so can
be computed by doing a single matrix-vector multiplication over GF(2).
Next, compute the quantities w; and w, given by w, = M'lvl(y) =
tiul/vi. Then compute Ul(wl) and Uz(wz). For each 1, the quantity
Ui(wi) is a GF(2)-linear function of Wys and so can be computed by
doing a single matrix-vector multiplication over GF(2). PFinally, com-
pute P‘l(Y) by adding U,(w,) and U,(W,). Computing p-l(y) this way
Tequires a total of Jjust 8 matrix-vector multipllications over GF(2),
together with 2 multiplications, 2 divisions, and 1 addition in GF(Zn).
For the security of the cipher, the trapdoor sequences used should
be such that all the coefficients Pghs 81)» by s Cyo and dy in the
polynomial formulas (2.1), (2.4}, (2.5), (2.9), and (2.10) for the
functions P, Sl, Tl’ Ul’ and V1 are nonzero., 1t can be shown that,
given any basis eys €, of GF(ZS) over GF(273, if elements 81y seey By
Bys ...y by are chosen at random from GF(2"), then it is virtually
certain that a,, ..., a, and by, ..., by Will both form bases of GF(21)
over GF(2") and that the sequence 8;, ... 8y biy vouy bys €45 € will
form a trapdoor sequence that satisfies the security requirements Jjust

stated,

3. Invertibility of the enciphering and deciphering permutations

We now show that the enciphering and deciphering permutations
given by formulas (2,3) and (2.8), respectively, are indeed mutually
inverse permutations of GF(291).

Since the invertibility of these functions depends on the invert-
ibility of the function M given by formula (2.2), we first indicate
why this funetion is a permutation of GF(ZS) and why ! ois given by
formula (2,7). Using the Euclidean algorithm and the relation & = 3f,
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1t can be calculated that ged(25 - 1, 20 + 1) = 1. Hence there exist

1 mod(2® - 1). IfE€ is

numbers € satisfying the congruence (2‘3 + 1)€
any positive solution »f this congruence, then it follows from the
identity xzt;"1 = 1, which is satisfied by all nonzero x € GF(2%), that
w(n€ = 202 10€ _ ¢ ror a1l x € 6F(25). Thus ¥ 1s a permutation of
6P(2%), and M°! 1s given by M~l(y) = ¥ where € is any positive solu-
tion of the above congruence. It follows that M-l is given by formula
(2.7) provided that the number € appearing in this formula satisfies
the condition Just given., The Euclidean algorithm calculations men-
tioned above can be used to find all the solutions of the congruence
above, Of these solutions, the least positive one is exactly the num-
ber € = 5'1(22.5 + 28 - 1) appearing in formula (2,7). Thus T )

indeed given by formula (2.7).

Proposition., The encivhering function P given by formula (2.3)
is a permutation of GF(Zn) and the inverse of this permutation is the

deciphering function given by formula (2.8).

Proof, Let Q denote the function on GF(2") defined by formula
(2.8). To prove the proposition, it suffices to show that QP(xX) = x
for all x € GP(2"). Let ay, ..., &y, by, «..y by, €, €, be a trap-
door sequence for P that specifies the GF(Z'Y)-linear functions 84, Ty
Ul’ and V1 appearing in formulas (2.3) and (2.8). Let xl and X, be
the GP(2")-subspaces of GF(2R) spanned by by, b, and by by, by, respect-
ively, and let Y, and Y, be the GF(2")-subspaces of GF(2") spanned by
8y, 8, and by 83, &,, respectively. Then GF(2D) = X DX =¥ @ Yae
Now suppose that x € GF(2") is given, and let 1, and X, be the unique
elements of x1 and x2, regpectively, such that x = Xy + Xp. Then, for
1 =1, 2,

T,(x) = Ty(x; + X,) = Ty(x) + Ty(x,) = Ty(x),
where the last equality holds because '1‘1()02) = Tz(xl) = 0 by the def-
inition of the functions ’1‘1. Also Ti maps X1 one-to-one onto GF(ZS),
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¥ is a permutation of GF(ZS), and §; maps GF(ZS) one-to-one onto Y,
S0 SyMTy maps X, one-to-one onto Y;. Thus, letting ¥y = S4MT4(xy), we
have P(Xx) = ¥y + ¥, with y, € Y,. Next, to compute QP(x), we note
that, for + = 1, 2, ‘

Vip(x) = Vi(yl + Yz) = vi(yl) + vl(y2) = vi(yi)’
where the last equality holds because V,(Y,) = V,(Y;) = 0 by the def-
inition of the functions Vy. Hence

QP(x) = Uln-lvl(yl) + UzM-lvz(yz)

-1 -1

Also both V4S; and M~lM are the identity map on GF(2%), and U,T, is
the identity map on X,, so U,M"1Vv,S,MT,(x,) = x,. Hence, for all
x €GF(2M), Qr(x) = X, + X, =X Thus P is a permutation of GF(2"),

and P71 = q. Q.E.D.

4. Cryptanalysis by solving the equation P(X) =y

In this section and the next two sections, we describe some pos-
sible methods of cryptanalyzing our cipher by using public information
about the enciphering permutation., For each method that we consider,
¥e glve an estimate of the amount of computation needed.

The first cryntanalytic attack that we consider consists of solv-
ing a given ciphertext message, enciphered using a known enciphering
permutation P, by solving the equation P(x) = y for each ciphertext
n-block y to find the corresponding plaintext n-block x. We consider
two methods of solving the equation P(x) = y. The first method 1s an
exhaustive search procedure, while the second method is algebraic in
nature.

The exhaustive search procedure that we consider for solving the
equation P(X) = y depends on the easily proved identity P(wz) =
M(W)P(z), which holds for all w € GP(2') and z € GF(2"). 1In view of
this identity, 1f a nonzero z € GF(2%) can be found such that
y/P(z) € GF(2’Y), then the desired n-block x such that P(x) = y 1s given
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by x = ¥~1(3/P(2))z. A nonrero z € GF(2") has the property just de-
scribed 1if and only if (y/P(z))éY = y/P(z). Such an element z can be
found by an exhaustive search in which elements of GF(2) are tested
one-bty-one until one 1s found that satisfies this last condition, A
minimal subset of GF(2%) that 1s certain to contaln an element z of
the desired kind contains exactly one element of each different subset
of GF(2") of the form Swt: w € GF(2Y), w # 0}, where t is a nonzero
element of GF(Zn). There are approximately 2(3/u)n such subsets of
GF({2™), so the desired element z can be found after at most 2(3/4)n
trials, We will regsrd each trial needed to find this element z as a
single operation., Then it follows that st most approximately 2(3/4)n
operations are required to solve the equation P(X) = y by the exhaust-
ive search procedure just described.

The second method that we consider for solving the equation P(Xx)
= y is to regard this equation as a polynomiasl equation in x and to
solve this equation algebralcally. It appears that the most efficient
way of doing this 1s to use the Euclideen algorithm to compute the
rolynomial in x which is the greatest common divisor of the polynomials
P(x)~ ¥y and xzn - X, To see what this accomplishs, note that, since
P is a permutation of GF(2P), the polynomial P(X) - y has a unigque root
x = r in GP(2"), and hence has a unique linear factor x - T over
GP(21). oOn the other hand, the polynomial 2% - x 18 the product of
all the linear factors x - a, with a € GF(2P). Hence the greatest
common divisor of P(x) - y and xzn - x 1s exactly the linear factor
X - r such that x = r 13 the desired solution of the equation P(x) = y.
Thus to solve the egquation P(x) = y, it 1s only necessary to compute
this greatest common divisor. Using the Euclidean algorithm to do
this, the reguired number of multiplications and divisions in GF(Zn)
is at most avvroximately (des(P))z/z. Thus we conclude that the equa-
tion P(x) = y csn be solved algebraically using the method Jjugt de-

seribed by doing at most approximately 2(1]'/6)“'1 operations,
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5. Cryptanalysis by determining a polynomial or rational formula for P~}

Next, we consider a method of cryptanalyzing the cipher that con-
sists of determining a formula for the deciphering permutatiosn p-1 by
using publie information about the enciphering permutation P. We de-
scribe two formulas for P-l that can be determined this way. The first
forrula expresses P'1 as a polynomial function, while the second for-
mula expresses P! as a rational function, that is, as a quotient of
two polynomial functions, We describe how each of these formulas can be
obtained and we give estimates of the amounts of computation needed to
do this,

First, we describe how a polynomial formula for P~! can be ob-
tained, It can be shown that P~1 can be expressed as a polynomial

function of the form
Py = > wak,
kek

where the coefficients w, are elements of GF(2%), the index set K is a
subset of the set {0, ..., 2" - 1} which can be completely specified,
and the number of elements in the set K satisfies 27/3 ¢ |x| < 2°/3+2,
This formula for P‘1 can be regarded as a system of 2T linear equations
which uniquely determines the coefficients Wy in the formula. By mak-
ing the substitution y = P(x) in this formula, an equivalent system of

2% linear equations can be obtained which have the form

:Z: u'kP(x)k = X,
kek

Note that this second system of equations can be formulated using only
public information about the enciphering permutation P. Since the
rank of this second system 1s the same as the rank of the original
system, which ts {Kl, and since ‘Kl £ 28, 1t follows that this second
system can be reduced to a smaller system formed from it by choosing
any subsget of \K\ independent equations. We will assume that such a
smaller system can be obtained without any significant computational

effort, which may well be the case, Then the determination of the
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-1 reduces to solving

ccefficients wy, 1in the polynomial formula for P
this smaller system of equations, This system consists of ‘K\ equa-
tions in }K] unknowns, so to solve it requires at most approximately
IK]3/3 operations consisting of multiplicstions and divisions 1in
GP(2R). Hence, since ]Kﬂ > 2n/3, we conclude that it takes at most
approximately (2R)/3 operations to solve for the coefficlents Wiy and
thus to determine a polynomial formula for p-l,

Next, we describe how a rational formula for P’1 can be obtained.
The rational formula that we consider has the same form as the rational
formula for P! that is obtained by expanding formula (2.8) for P'l(y)
as a rational function of y, making use of the polynomial formulas
(2.9) and (2,10) for the functions U; and V; described in section 2,
and expressing the function M-l by the rational formula M'l(y) =3 /Y ,
where Z = 2P~1(22f 4 28) and m = 2P~1. The rational formula for p~1
Just described has the form P~l(y) = Q(y)/R(y), where Q and R are both
nonconstant polynomisl functions, Q(0) = 0, and R(y) # O for all non-
zero y € GF(2D'), Purthermore, it can be shown that Q and R are given

by polynomial formulas having the forms

UAY) = 2 wo(k) 5"
kEKQ

and

R(¥)

2. wpl)ys,

kiEKR
where the coefficlents wQ(k) and wo(k) are elements of GF(2"), the
and K

index sets K are subsgets of the set {0, crey 2R . fk which can

Q R
be comvletely specified, and the numbers of elements in the sets KQ
and Ky satisfy 273 < \kgl £ 2V/33 4 64 and 4 < |Kp| £ 16, Now 1if
the formula P~1(y) = Q(y)/R(y) 1is rewritten as P~1(y)R(¥) - @(y) = O,
1f the substitution y = P(x) i3 made, and 1if the above polynomial for-

mulas for the functions Q and R are used, then the result 1s the equa-

tion

S wa(k)P(x)k - > wQ(k)P(x)k =0
K€Ky K€Ky
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which holds for all x € GF(2%). This equation can be regarded as a
system of 2" homogeneous linear eguations that are satisfied by the
elements wQ(k) and wn(k) and that can be formulated using only public
information about the enciphering permutation P. Converssly, if a set
of elements wQ(k) and wa(k) of GF(2"™) forms a nonzero solution of this
system of equations and if the functions Q and R on GF(22) are defined
by the polynomial formulas given above, then the function R is not
identically zero and P~! 1a given by the rationsl formula pl(y) =
Ay)/R(y) for all y € GF(2") such that R(y) # 0, Thus a rational for-
mula for P~! can be obtalned by finding a nonzero solution of the sys-
tem of linear equations given above, and furthermore such solutions
exist.

8ince the rank of this system of 27 equations ls at most
\KQ\ + \KR\ - 1, which is less than 2P, this system can be reduced to
a smaller system which has the same rank and consists of equations
chosen from the original system. We will assume that such a smaller
system consisting of lKQ\ + |kgl - 1 equations can be ob-
tained from the original system without any significant computational
effort. Then the determination of the coefficients wQ(k) and wR(k) in
a rational formula for P~! reduces to solving this smaller system of
[KQ‘ + |Kg|l - 1 linear equations in \KQ\ + |kg| unkmowns, which takes
at most approximately (\KQ\ + \KR\)3/3 operations., Hence, since
\KQ] + lKRl:> 2%/3, we eonclude that 1t takes at most approximately
(27)/3 operations to determine a rational formula for P! of the kind

described above.

6, Cryptanalysis by finding a trapdogr seguence

The last method of cryvtanalysis that we consider consists of
using the public key for a given enciphering permutation P to deter-
mine a trapdoor sequence for 1it. We consider two ways of finding such

a sequence: first by exhsustive search, and second by solving the
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system of equations (2,6) algebraically. We describe how each of these
approachs might be carried out and we give estimates of the amounts of
computation required.

The most efficient exhaustive search procedure for finding a trap-
door sequence for P appears to be as follows. First, choose the ele-
ments e,, e, of the sequence to be any convenient basgis of GF(ZS) over
GF(ZY). Next, test one-by-one bases b, ..., b, of GF(2R) over GF(éY)

until a basls 1s found which 1s the b ey bb part of a trapdoor

y 0
sequence for P whose ey e, elements are the oneg just chosen. To

test a given basis bl’ casy bh for this property, let the GF(éY)-llnear
functions T1 and T2 be defined in terms of bl' eoey bu, e,y €, as de-~
scribed in section 2, and solve for the coefficients bik in the poly-
nomial formulas for these functions given by equation (2.5). Next,
find sl1 the snlutions for the elements 4y in the system of equations
(2.6). Note that these solutions can be found by linear algebra, since
this system 1s linear in the 84y e The soiutions, if any, of this sys~-
tem are then tested one-by-one to determine whether any of them is

such that GF(2R) can be expressed as GF(2B) = Sl(GF(Zs)) + SZ(GF(ZS)),
where S, and S, are the GF(éwa-linear functions from GF(2") inte

GF(2") defined in terms of the elements a,, by formula (2.3). Now the
basis by, ..., by, which is being tested for the property of being the
bl’ «sey by part of 2 travdoor sequence for P whose ey e elements

are the ones chosen, has this property if and only if there exists a
set of elements 4k that satisfies the system of equations (2.5)
and that satisfies the condltion stated above. As soon as such a basis
bl’ se.y by and a set of elements a4 has been found, a complete
trapdoor sequence for P can be produced. The Bys «»sy by, €4, e part
has already been »btained, and the Byy eeey 8y part of the sequence 1s
glven by ay = Sl(ej), for 3 =1, 2, and by 8y = 52(33-2)’ for 3 = 3, &,
where the functinns Sy are as described above.

A minimal set »f bases bl' ceey bb that 1s certain to contain a
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bagis of the desired kind includes, for each different enciphering
permutation, exactly one basls that 1s the by, ...y by part of a trap-
door sequence for the permutation whose €y, 8 elements are the ones
chosen, It can be shown that such a set of bases contains approximate-
1y 27%-3 bases, so at most apvroximately 27-3 trials are required to
find a trapdoor segquence for P by the exhaustive search procedure de-
scribed above., It appears likely that, for each basis bl’ sesy by
tested, either there 1s no solution at all for the elements 8y OF
else the basls is the by, ..., b, part of a trapdoor sequence for P of
the desired kind and there is only one solution for the elements a4y
In view of this, we will consider the testing of a single basis as be-
ing a single operatinn, Thus we conclude that at most approximately
23n-3 operations are required to find a trapdoor sequence for P by the
exhaustive search procedure described above.

Finally, we consider finding a trapdoor segquence for a given encl-
phering permutation P by salving algebraically for a set of elements
a;), and b, of GF(2") satisfying the system of equations (2.6). First,
we note the connection between solutions of this system of equations
and trapdoor sequences for P. If a set of elements a;y and bik of
GP(2") satisfies this system of equations and if GF(2')-linear func-
tions S, and T, from GF(2") into GF(2") are defined in terms of these
elements by equatinns (2.4) and (2.5), respectively, then P can be ex-
pressed in terms of these functions by equation (2.3). Purthermore,
there exists a trapdonr sequence for P which specifies these functions
1f and only 1if these functions satisfy the conditions

GF(2%) = 8,(GP(25)) @ 3,(GF(2%)) = xer(T,) @ ker(T,)
and GF(2%) = range(T,) = range(T,). If the functions S, and T sat-
1s any basis of GF(2%) over er(2"),

1g8fy these conditions and if e e

1* "2
then a trapdoor sequence for P which specifies these functions is given
by Byy sevy By b1| ceny bu, €15 €3y where, for § =1, 2, EJ = Sl(ed),

and, for J = 3, 4, 8y = sz(eJ_z), and where, for } =1, 2, bJ is the
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uniqus element of ker(T,) satisfying Tl(bj) = ey, and, for § = 3, 4,
bJ is the unique element of ker(Tl) satisfying TZ(bJ) =4 5. It fol-
lows that the system of equations (2,6) has many solutions for the
elements a,, and b,,, since there is a different solution arising from
each different travdoor sequence for P having fixed el, e, elements,
and there are perhaps other solutions as well that do not arise from
any travdoor sequence for P. We will assume that all solutions for
the elements 2y and blk do in fact arise from trapdoor sequences for
P. Then, to find a trapdoor sequence for P, it suffices to find a
single solution of the system of equations (2,6) for the elements a4
and byy.

In order to estimate the amount of computation required to solve
this system of equations algebraically, it is first necessary to deter-
mine the most efficient methond of algebraic solution., AsS already
noted, this system of equations is linear in the elements ay e Hence
1t appears that the most efficlent way to snlve this system is to first
simplify it as much as possible by eliminating these unknowns, This
i3 exactly the method that was used by Berkovits and by James, Lidl,
and Nlederreiter to solve the corresponding system of equations assoc-
iated with the original version of our cipher. It was in this way that
they broke that civpher.

For the system of equations (2.6), there are many possible ways
in which the unknowns 8,y can be eliminated, and each of these ways
must be tried in order to find the best way of simplifying the systenm.
Unfortunately, to try all these ways would require a forbldding amount
of computation, although it could probably be done fairly easily using
a suitable computer algebra system. To get around these difficulties
in analyzing this system of equations, we consider instead a different
system of equations that presumadly requires less computation to solve,
This system of equations 1s associated with a class of permutations of

GF(2R) that are somewhat simpler than the enciphering permutations used
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in our cipher but which have the same general structure, These simpler
permutations are obtained by modifying the enciphering permutation con-
struction descrided in section 2 by changing the relationship between
Sand Y from & = 2Y to & =Y. The effect of this change ls to convert
the polynomial formulas (2.4) and (2.5) for the functions 54 and T4
from 2 terms to 1 term and from 4 terms to 2 terms, respectively.

The resulting permutation P is then given by a polynomial formula hav-
ing Just 4 terms, rether than 16 terms as in our cipher, The system

of equatinns that enrresponds to the system of equations (2.6) and that
relates the polynomial coefficients Pgh of P to the polynomial coeffi-
cients ayy and by, of the functions Sy and Ty has the form

Pgh = aloblg2 blh + 320b252§b2h’ for g, h = 0, 1,

Now we consider how this system of equations can be solved. Note
that, like the more complicated system of equations (2.6). the above
system of equations is linear in the unknowns asg and a,5. Hence it
appears that the most efficient way to solve this system 1s to first
simplify it as much as possible by eliminating these unknowns. Of the
various ways to do this, the best way appears to be one that leads
fairly directly to a single polynomiasl equation R(Bl) = 0 of degree
22% 4+ 1 in the single unknown By = byo/byy. It appears that the amount
of comoutation required to solve this equation 1s at least the amount
required to compute the greatest common divisor of the polynomials
H(Bl) and 312n - By. This requires approximately deg(R(Bl))z/ 2 oper-
ations, which 1s approximately 2(2/3)8-1 operations., We will take this
amount as our estimate of the amount of computation required to find s
trapdoor sequence by solving the system of equations (2.6) algebral-
cally.

An obvious question now arises. 3Since the estimate Just given is
based solely on the properties of the corresponding system of equations
for the simpler permutations described above, why not use these simpler

permutations as enciphering permutations? Unfortunately, this cannst
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be done. The reason for this is that, for such enciphering psrmuta-
tions, the decivhering permutations can be expreased by a rational
formula corresponding to the rational formula described in section 5
for the deciphering permutations used in our cipher, and there are at
most 12 terms in this formula. Thus, as indicated in section 5, the
coefficients in this formuls can be determined by doing at most approx-
imately 123/3 operations. This number of operations is far too amall
to provide any security, and hence the simpler permutations desoribed

above cannot be used as enciphering permutations.

7. Summary of the cryptanalytlc attacks and concluslons

The following table summarizes the estimates of the amounts of
computation required by the various cryptanalytic attacks discussed
in sections 4 - 6,

maximum number of
method of attack operations required

1. solving the equation P(x): ¥
a, by exhaustive search >(3/4)n
b. algebraically »(11/6)n-1

2, finding a formula for p-1,

a, polynomial (2™ /3

b. rational (2%)/3

3. finding a trapdoor seguence:

a. by exhaustive search 2n-3

b, slgebraically 2(2/3)n-1

According to» the above table, the most effective attack
against our cipher 1s to solve algebraically for a trapdoor sequence
for the encirhering permutation, This attack is estimated to require
at most 2(2/3I0-1 Gperations, s» the block-length n of the cipher must

be chnsen so that this amount of computation 1s unfeasible, We will
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assume, somewhat arbitrarily, that the maximum feasible amount of
computation is the number of operations performed by a computer that
dnes 109 operations per second for a period of 10 years, Thisg amounts
to a total of 3 x 1017 operations. We multiplf this by a safety factor
of 1012 to arrive at the figure of 3 x 1029 operations as an unfeasible

amount of comvutation. Hence the block-length n must be such that
2(2/3)!1—1 >3 x 1029

n

298. Thus we conclude that a suitable block-

length for our eclpher 1s n > 150,
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