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Abstract. We derive new limitations OIL the information rate and the 
average information rate of secret sharing schemes for access structure 
represented by graphs. We give the first proof of t he  existcnce u l  Access 
structures w i l h  optimal information rate and optimal average informa- 
tion rate less that 1/2 + c, where E is an arbitrary positive constant. We 
also provide several general lower Luunds on inlormation rate and aver- 
age information rate of graphs In particular, we show that any graph 
with vertices admits a secret sharing scheme with infvimation rate 
f i ( O O &  .)/.I. 

1 Introduction 

A secret sharing scheme is a technique to distribute a secret S among a set of 
participants P in such a way that  only qualified subsets of P can reconstruct 
the value of S whereas any other subset of P. non-qualified to know S, cannot 
determine anything about the value of the  secret. We briefly recall the results on 
secret sharing schemes that are more closely related to the topics of this paper. 

Shamir [19] and Blackley [2] were the first to consider the problem uf secret 
sharing and gave secret sharing schemes where each subset A of P of size \A1 2 k 
can reconstruct the secret, and any subset -4 of participants of size 1;1/ < k have 
absolutely no information on the secret. These schemes are known as (n ,k)  
threshold schemes; the value k is the threshold of the scheme and n is the siz,e 
of P.  

Ito, Saito and Nishizeki [IS] considered a more genera1 framework and showed 
how to realize a secret sharing scheme for any azcebs scructure. An access struc- 
ture is a family of all subsets of P which are qualified to recover the secret. 
Their technique requires that the size of set where the shares SLY laken be very 
large compared to the size of the set where the secret is chosen. Benaloh and Le- 
ichter [l] proposed a technique to realize a secret sharing scheme for any access 
structure more cfficierll than Ito, Saito arid Nishizeki's methodology. I t  should 
be pointed out that  threshold schemes are insufficient to realize a secret sharing 
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scheme for general access structures A [l]. Moreover, Benaloh and Leichter also 
showed that there exist access structures for which any secret sharing scheme 
must give to  some participant a share which is from a domain strictly larger 
than that of the secret. 

Erickell and Davenport [5] analyzed ideal secret sharing schemes in terms of 
matroids. An ideal secret sharing scheme is a scheme for which the the shares are 
taken has the same size of the set where the secret is chosen. In particular, they 
proved that an ideal secret sharing scheme exists for a graph G, if and only if G 
is a complete multipartite graph. Equivalently, if we define the information rate 
as the ratio between the size of the secret and that of the biggest share given 
t o  any participant, Brickell and Davenport’s result can be stated saying that  a 
graph has information rate 1 if and only if it is a complete multipartite graph. 
Bricliell and Stinson [6]  gave several upper and lower bounds on the information 
rate of access structures based on graphs. 

Capocelli, De Santis, Gargano, and Vaccaro [i] gave the first example of 
access structures with information rate bounded away from 1. 

Elundo. De Santis. Stinson, and Vaccaro [4] analyzed the information rate 
and the average information rate of secret sharing schemes based on graphs. The 
average information rate is the ratio between the secret size and the arithmetic 
mean of the size of the shares for such schemes. They proved the existence of 
a gap in the values of information rates of graphs, more precisely they proved 
that if a graph G with n vertices is not a complete multipartite graph then 
any secret sharing scheme for it has information rate not greater than 2/3 and 
average information rate not greater than n / ( n + l ) .  These upper bounds arise by 
applying entropy argument due to Capocelli, De Santis, Gargano, and Vaccaro 
[71. 

The recent survey by Stinson [21] contains an unified description of recent 
results in the area of secret sharing schemes. For different approaches to the 
study of secret sharing schemes, for schemes with “extended capabilities” as dis- 
enrollment, fault-tolerance, and pre-positioning and for a complete bibliography 
we recommend the survey artic!e by Simmons [20]. 

In this paper we derive new limitations on the information rate and the 
average information rate for access structures represented by graphs. In the 
first part we prove new upper bounds on the information rate and the average 
information rate. These bounds are obtained by using the entropy approach by 
[7] and are the best possible for the considered structures since we exhibit secret 
sharing schemes that meet the bounds. In particular, we give the first proof of 
the existence of access structures with information rate and average information 
rate strictly less that 2/3.  This solves a problem of [4]. In the second part we 
consider the problem of finding good lower bounds on the information rate and 
the average information rate and we give several general lower bounds that 
improve on previously known results. 
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2 Preliminaries 

In this section we review the basic concepts of Information Theory we shall use. 
For a complete treatment of the subject the reader is advised to consult [8] and 
[ll]. We shall also recall some basic terminology from graph theory. 

Given a probability distribution {p(~))~,x on a set X, we define the entropy 
of x, H ( X ) ,  as 

The entropy H ( X )  is a measure of the average uncertainty one has about which 
element of the set X has been chosen when the choices of the elements from 
X are made according to the probability distribution { p ( ~ ) ) ~ , x .  The entropy 
enjoys the following property 

where H ( X )  = 0 if and only if there exists 2 0  E X such that p ( z o )  = 1; 
H ( X )  = log/XI if and only i fp(z)  = l /]Xl,  for all 1: E X .  

Given two sets X and Y and a joint probability distribution { p ( z ,  y ) } z c x , y c ~  
on their Cartesian product, the conditional entropy H ( X I Y j ,  also called the 
equivocation of X given Y, is defined as 

The  conditional entropy can be written as 

where H ( X [ Y  = y) = -CzeX~(21y) logp(z ly j .  From the definition of condi- 
tional entropy it is easy to see that 

If we have n + 1 sets XI , . .  . , X,, Y ,  the entropy of X I  . . . X,, given Y can be 
expressed as 

The mutual information between X and Y is defined by 

I ( X ; Y )  = H(X) - H ( X [ Y )  14) 

and enjoys the following properties: 

qx; Y )  = I (Y ;  X), (5) 

All logarithms in this paper are of base ? 
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and 

from which one gets 
qx; Y) 2 0, 

H ( X )  2 H ( X ] Y ) .  

Given n + 2 sets X ,  Y ,  21 . . . , 2, and a joint probability distribution on their 
Cartesian product, the conditional mutual information between X and Y given 
21,. . . , Z,, can be written as 

I ( X Y  121,. . . , Zn) = H ( X I Z 1 , .  . . ,Z,) - H ( X I Z 1 , .  . . ,Z,Y).  

H ( X I Z 1 , .  . . ,Zn)  >_ H(XIZ1,. . . ZnU). 

(7) 

(8) 

Since the conditional mutual information is always non negative we get 

We now present some basic terminology from graph theory. A graph, G = 
( V ( G ) , E ( G ) )  consists of a finite non empty set of vertices V ( G )  and a set of 
edges E(G)  C V(G) x V ( G ) .  Graphs do not have loops or multiple edges. We 
consider only undirected graphs. In an undirected graph the pair of vertices 
representing any edge is unordered. Thus, the pairs ( X ,  Y )  and (Y, X) represent 
the same edge. To avoid overburdening the notation we often describe a graph G 
by the list of all edges E ( G ) .  We will use reciprocally (X, Y) and XY to  denote 
the edge joining the vertices X and I-. G is connected if any two vertices are 
joined by a path. The compleie graph K ,  is the graph on n vertices in which any 
two vertices are joined by an edge. The complete multipartite graph K n , , n 2 ,  ..., n1 

is a graph on ni vertices, in which the vertex set is partitioned into subsets 
of size ni (1 5 i 5 t )  called parts, such that vw is an edge if and only if v and w 
are in different parts. 

Suppose G is a graph and G I , .  , . I Gt are subgraphs of G, such that each 
edge of G occurs in a t  least one of the Gi’s. We say that 17 = {GI , .  . . , Gt} is a 
covering of G and if each Gi, i = 1, . . . , t is a complete multipartite graph then 
we say that 17 is a complete multipartife covering (CMC) of G. 

1 

3 Secret Sharing Schemes 

A secret sharing scheme permits a secret to be shared among n participants 
in such a way that only qualified subsets of them can recover the secret, but 
any non-qualified subset has absolutely no information on the secret. An access 
structure A is the set of all subsets of P that can recover the secret. 

Definition 1. Let P be a set of participants, a monotone access structure A on 
P is a subset A E 2‘, such that 

A E A, A & A’ C P + A’ E A. 

Definition2. Let P a set of participants and A C 2‘. The closure of A ,  cl(A),  
is the set 

cl(A) = {CIB E .4 and B C C C P } .  
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For a monotone access structure A we have A = cf(A). 
A secret sharing scheme for secrets s E S and a probability distribution 

{ p ( ~ ) } ~ ~ s  naturally induce a probability distribution on the joint space defined 
by the  shares given to participants. This specifies the probability that partici- 
pants receive given shares. 

In terms of the probability distribution on the secret and on the shares given 
t o  participants, we say that a secret sharing scheme is a perfect secret sharing 
scheme, or simply a secret sharing scheme, for the monotone access structure 
,4 s 2' if 

1. Any subset A P of particzpants not  enabled to recover the secret have no 
znformatzon on the secret z ~ a l ~ e : ~  
If A $! A then for all s E S and for all a E A it holds p ( s l a )  = p ( s ) .  

2. Any subset A P of parlzczpanls enabled t o  recover the secret can compute 
the secret: 
If A E A then for all n E -4 a unique secret s E S exists such that  p ( s ) a )  = 1. 

Notice that  the property 1. means that the probability that the secret is equal 
to s given that  t,he shares held by A @ A are u ,  is the same of the a prZOTZ 

probability that the secret is s. Therefore, no amount of knowledge of shares of 
participants not enabled to reconstruct the secret enables a Bayesian opponent 
to modify an  a przori guess regarding which the secret is. Property 2. means that 
the value of the shares held by -4 E A univocally determines the secret s E S .  

Let P be a set of participants. and A be a monotone access structure on 
P. Following the approach of [13], [14,  and [7] we can restate above conditions 
1. and 2. using the information measures introduced in the previous section. 
Therefore, we say that a secret sharing scheme is a sharing of the secret S 
among participants in P such that, 

1'. Any qualzfied subset can reconstrucf the serret. 

2'. Any non-pualzfied subset has absolutely no anformahon on the secret. 
Formally, for all A E A ,  it holds H(S1-4) = 0. 

Formally. for all A $! A.  it holds H(S1.I) = H ( S ) .  

Notice that  H(SIA)  = 0 means that each set of values of the shares in A cor- 
responds to  a unique value of the secret. In fact, by definition, H(SIA) = 0 is 
equivalent to  the fact that  for all a f A with p ( a )  # 0 exists s E S such that 
p(sla)  = 1. Moreover, H(SI.4) = H ( S )  is equivalent to  state that  S and A are 
statistically independent, i.e.l for all a E A for all s E S, p(slu) = p ( s )  and 
therefore the knowledge of a gives no information about the secret. Notice that 
the condition H(SIA) = N ( S )  is equivalent to say that for all a E A i t  holds 
H ( S J A  = u )  = H(S) .  

To maintain notation simpler, we denote with the same symbol (sets of) partici- 
pant(s) and the set(s) from which their shares Are taken. 
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3.1 The Size of the Shares 

One of the basic problems in the field of secret sharing schemes is to derive 
bounds on the amount of information that must be kept secret. This is important 
from the practical point of view since the security of any system degrades as the 
amount of secret information increases. 

2 p  be an access structure on P .  We 
denote by X E P either the participant X or the random variable defined by the 
value of his share. Different measures of the amount of secret information that 
must be distributed in a secret sharing scheme are possible. If we are interested 
in limiting the maximum size of shares for each participant (i.e., the maximum 
quantity of secret information that must be given to any participant), then a 
worst-case measure of the maximum of H ( X )  over all ,Y E P naturally arises. 
To analyze such cases we use the information rate of A defined as 

Let P be a set of n participants and A 

for a given secret sharing scheme and non-trivial probability distribution Ps on 
the secret. This measure was  introduced by Brickell and Stinson [6] when the 
probability distributions over the secret and the shares are uniform. In such a 
case the definition becomes p(A)  = log ISl/maxx6p log /XI. The optimal infor- 
mation rate is then defined as: 

where 7 is the space of all secret sharing schemes for the access structure A and 
Q is the space of all non-trivial probability distributions P s .  

In many cases it is preferable to limit the sum of the size of shares given to 
all participants. In such a case the arithmetic mean of the H(X), X E P, is a 
more appropriate measure. We define t,he average information rate as follows 

for a given secret sharing scheme and non-trivial probability distribution Ps on 
the secret. This measure was introduced in [3], [IS], and [17] when an uniform 
probability distribution on the set of secrets is assumed. Blundo, De Santis, Stin- 
son, and Vaccaro [4] analyzed secret sharing schemes by means of this measure, 
when the probability distributions over the secret and the shares are uniform. 
If the secret and the shares are chosen under a uniform probability distribu- 
tion, considering previous measure is equivalent to consider the “average size” 
of the shares assigned to each participant to realize a secret sharing scheme. The 
optimal average information rate is then defined as: 
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It is clear that, for the same secret sharing scheme and non-trivial probability 
distribution Ps on the secret, the information rate is no greater than the average 
information rate, that is j?> p and z= p if and only if all H ( X ) ,  X E P ,  have 
the same value. As done in [4] we denote, for a graph G, the optimal information 
rate with p*(G)  and the average information rate with ,P(G). 

3.2 Auxiliary Results 

In this section we recall some auxiliary results. We will improve some of them 
in the next sections and we will use others in our constructions. 

Brickell and Stinson [S] proved the following lower bound on the information 
rate for any graph of maximum degree d. 

Theorem3. Let G be a graph with m a x i m u m  degree d ,  then  

In Section 4 we will show how to improve on it for odd d. Blundo, De Santis, 
Stinson, and Vaccaro [4] proved the following results for acyclic graphs 

Lemma4. Let G be a tree: then a secret sharzng scheme for G ezisis with in- 
format ion  rate equal t o  1/2. Thus  p*(G) > 1/2.  

In Section 4 we will show how to improve this bound for any tree. 
The following result, proved in [4] will be used to obtain good secret sharing 

schemes for graphs with maximum degree 3. 

Theorem5. Let P, be a path oflengfh n ,  n 2 3. A secret sharing scheme for 
P, exists with oplirnal information rate 2/3. 

The following lemmas have been proved by Capocelli, De Santis, Gargano, 
and Vaccaro [7]; we will use them to find new upper bounds on the inforrna- 
tion rate of access structures. Since their proofs are simple, we report them for 
reader's convenience, 

Lemma 6. Let A be an access strzlciures on a set P of participants and X ,  Y C 
P.  Lei Y 4 A and X U Y E A. Then  H ( X I Y )  = N ( S )  + H ( X ( Y S ) .  

Proof. The conditional mutual information I ( X ;  S l y )  can be written either as 
H ( X 1 Y )  - H(X1YS) or as H(SIY)  - H ( S l X Y ) .  Hence, H ( X I Y )  = H ( X 1 Y S )  + 
H ( S ( Y )  - H ( S ( X Y ) .  Because of H ( S l X Y )  = 0 for X U Y E A and H ( S J Y )  = 

0 H ( S )  for Y $! A, we have H ( X I Y )  = H ( S )  + H(X1YS). 

Lemma 7. Let A an access structures on a set P of participants and X ,  Y C P .  
If X U Y # A then H ( Y  ( X )  = H ( Y  IXS) .  

Proof. The conditional mutual information I(Y, S I X )  X can be written either as 
H ( Y ( X ) -  H ( Y 1 X S )  or as H(SIX) -H(Sl,UY). Hence, H(Y1.X) = H ( Y I X S ) +  
H ( S I X )  - H(S1XY).  Because of H(SjlUY) = H ( S l X )  = H ( S ) ,  for X U Y $2 A, 

O we have H ( Y I X )  = H ( Y  [-US). 
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Finally, we briefly recall a technique introduced in [4] to obtain lower bounds 
on the information rate of a graph C. 

Suppose G is a graph and G I , .  . . , G n  are subgraphs of G, such that each 
edge of G occurs in at least one of the Gi’s. Suppose also that each G; is a 
complete multipartite graph. Then we say that 17 = {GI,. . . , Gt} is a complete 
maltipadite covering (or CMC) of G. Let IIj = {Gj l , .  . . ,Gjn,), j = 1,. . . L ,  
comprise a complete enumeration of the minimal CMCs of G. For every vertex 
TJ and for j = 1,. . . L define Rju = I{; : v E Gji } (  and consider the following 
optimization problem U ( G ) :  

In citeBlDeStVa it is proved that if T* is the optimal solution to U ( G )  then 
p*(C) >_ lp-. 

4 
Informat ion Rate 

Upper Bounds on the Information Rate and Average 

In this section we will exhibit an access structure having information rate less 
than 2/3.  This solves an open problem in [4]. The result is obtained using the 
entropy approach of [7]. 

Consider the graph ASk = ( V ( d S k ) ,  E(ASk)) ,  k 2 1, where 
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YO YO Yo 

x1 A XZ x3 

x 1  x2 x 3  

I 

Figure 1 

Theorem& T h e  opt imal  i n f o m a t i o n  rate of f h e  graph Ask, k 2 1, is 
1 1 
2 4 k $ 2 '  P*(ASk) = - + - 

and the opt imal  average in format ion  rate is 

Proof: Consider the conditional entropy H(X1 . . . X,IYo). We have 

H(Xi ...XtIYo)= H ( X ~ ] Y O ) + H ( X ~ I X ~ Y O ) +  . . . + H ( x ~ I x ~  ...X~...~YO) (from (3)) 

H(&IXIX?Y~XL.+~) + . - - +  H ( ~ t l X 1 . .  . x ~ - - ~ Y O X ? ~ )  (from (8)) 
2 H(&IYO&+l) + H(X2jXlY,Xk+2) + 

2 k N ( S )  (from Lemma 6 and (2)). 

On the other hand, we have also 

H(Xi . . . XtIYo) = H(X1 . . . X k  JYOS) (from Lemma 'i) 
- < H(XoX1 . . .XkIYoS) 
5 ff(XolYoS) + H(X1IXoS) + . - . +  H(,Yk(XoS)  
= H(XoIYo) - H ( S )  + .. .+ H(XL.IX~) - H ( S )  
5 H ( X o )  + . . . + H ( X t )  - ( k  + l)H(S) 

(from (3) and (2)) 
(from (3) and (8)) 

(from Lemma 6) 
(from (6)). 

Therefore, we get 



From (9) it follows that there exists i E {0,1,. . ., k} such that 

Therefore, the optimal information rate of ASk p* (Ask) is upper bounded by 

From (9) and from Lemma 6 it follows that 
2 k  

H ( Y 0 )  + c H ( X )  2 (3k + 2 ) H ( S ) .  
i = O  

Therefore, the optimal average information rate of Ask is upper bounded by 
2 k + 2  2 2 -- - - + -  
3 k + 2  3 9k-1-6 '  

Actually, 1/2 + 1 / ( 4 k + 2 )  is the true value of the optimal information rate. This 
value can be attained by using the C I ~ ~ C  technique presented in [4] as solution 
of the following linear programming problem. 
Consider the following two minimal complete multipartite coverings of Ask 

171 = {{Y"~\'11.So.YI,-",.\'a.Y~},{SiXi+i.--.,XLX2k}} 

} IT12 = { {YO S O  } , { ,yOayl! s 1  .yk + 1 } ~ ' . ' ~ { d'io iyk, xk X 2 k  } . 

An example of these two covering of ASk are depicted in Figure l ( b )  and l(e) 
for k = 3. The matrix of entries R,, is 

k k 
A& 1 1  2 . . . 2 1 . . . 1  

1&11 . . . . . . . . . .  1 i -1. 
Hence the linear programming problem to be solved is the following: 

Minimize T subject to 

aj 20, j = 1 , 2  
a1 + a2 = 1 

1' 2 a1 + ( k  + 1) a2 

T 2 2a1 + a2 

The optimal solution is 

( U l , U & T )  = (" - - 
k t l ' k t l '  2k+1). k + l  

Hence, &(Ask) = ( 2 k  + l ) / ( k  + l), and this rate can be attained by tak- 
ing k copies of LTl, and one copy of I72. Thus, the optimal information rate 
of dsk is 1/2 + 1/(4k + 2) .  The optimal average information rate equal to  

0 2/3 + 2 / ( 9 k  + 6) can be attained by either I T 1  or 1 7 2 .  
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Suppose that p ( s )  = l / l S \ ,  for any s E S.  Above result and inequality (1) 
imply that any perfect secret sharing scheme for A s k  must give to at least a 
participant a share of size greater than 2 - l / ( k +  1) times the size of the secret. 

Theorem 8 is a generalization of Theorem 4.1 of [7]. In fact if we choose k = 1 
the access structure d S k  is the closure of the edge-set of P3, the path on four 
vertices. 

In Appendix A are depicted all graphs on six vertices that have AS2 as 
induced subgraph and, therefore, have optimal information rate less than 3/5. It 
turns out that the optimal information rate for all those graphs is equal to 3/5, 
and all but one have also an optimal average information rate equal to 3/4. 

Using the previous theorem we can show the existence of access structures 
having average informalion rate less than 2/3, which represented the best upper 
bound known so far [?I. Consider the graph M k ,  where 
V ( M k )  = {JYl, x2,. . * ,  X2kt3, &+'I} and 

E ( M k )  = {XIX,} U{X:X,, SzXk+a 3 Xk+iXzk+313  5 i 5 kS-2 )  U { l ' 2 k + 3 X 2 k + 4 } .  

The graph M3 is depicted in Figure 2.  The following theorem holds. 

Theorem9. The optzmal average informatzon rate for juk, k 2 1! as 

Proof: From Lemma 6 we get W(X1) 2 H ( S )  and H(-Y2kt4) 2 N ( S ) ,  whereas 
from Theorem 8 we have 

k + 2  

and 

Thus, 

Hence, 

i = 2  

2 k t 3  

H ( S i )  2 2 k  + 1. 
i = k + 3  

2 k + 4  

i= 1 

It is easy to see that the following complete multipartite covering Il of the graph 
Mk meets this bound. 

f l =  {{XI 1 Y&., 7 XZ&, . . . , &X,+,}, 

{ X3~yk $3, X k + 3 X Z k + 3 }  
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Figure 2 

iii 
x6 x7 xs 

4.1 A NP-completeness result 

A close look to  the proof of the upper bound in Theorem 8 shows that  it can be 
applied also to  any access structure A on 2 k + 2  participants, Yo, XO, XI , .  . . , X z k ,  

such that  the set d-allowed defined as 

d-allowed= { ~ ~ X o } u { , ~ ~ ~ ~ , , X ~ , Y ~ + ~ ~ l  5 i 5 Ic} 

is in the access structure, i.e. d-allowed C A, but the set d-forbidden defined as 

d-forbidden = { X l X z  . . .  X ~ Y O } ~ { Y O X ~ + ~ ) U { X ~  . . .  XiYoXk+i+lll I i I k-1)  

has no intersection with the access structure, i.e. d-forbidden nd = 0. Let Bk 
be the set of all access structures which satisfy the above requirements. The  
sequence (XI, Xz, . . . , X k )  is called the children list of access structure d (the 
name is inspired by the fact that  the set A-allowed has the form of a tree). 
To maintain simpler notation we denote a set {al, a,, . . . , a,} by the sequence 
( 3 1 ~ 2 . .  ,a,,. In case the access structure is the closure of a graph, the set d- 
forbidden can be written as 

d-forbidden-edges = (Y0X;Il 5 i 5 2 k )  u{X;Xj11 I i < j 5 Ic} 
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U{dy,xk+j)1 _< i < j 5 I C ) .  

Let A be an access structure on a set P of participants. Given a subset of 
participants P' C P, we define the access structure induced by P' as the family 
of sets d[P']  = {z E Air C_ P]. Extending Theorem 3.3 of [6] to general access 
structures and using Theorem 8 we can prove the following theorem. 

Theoremlo. L e t  A be a n  access s t rac ture  o n  a set  P of par t i c ipan t s  and P' C 
P .  If A[P'] E Bk, where k 2 1, then  t h e  o p t i m a l  i n f o r m a t i o n  rates for A a n d  
A[P'] sa t i s f y  

1 1 

a n d  o p t i m a l  average i n f o r m a t i o n  rate for A[P'] satisf ies 

Above theorem gives an upper bound on the information rate of access structures 
given that the access structure induced by a subset of participants is in Bk. 
Unfortunately, testing for this property is an hard computational problem, as 
we show that  this is NP-complete. Let A be an access structure, a set C E A is a 
minimalset o f d  if it does not contain any set in ,4\{C}. Define the BOUNDED- 
INFORMATION-RATE problem as follows: Given a set of participants P and 
an access structure A defined by the family of minimal sets which can recover 
the secret and a positive integer k, determine if there is a subset PI C P such 
that the induced access structure A[P'] is in B k .  

Theorem 11. BO U;VD ED-ILVFORMA TIOlV-R.4 T E  1s WP-coniplete .  

Proof. The proof will be given in the final version of the paper. 

4.2 

A general technique to upper bound t,he average information rate F*(G),  of 
graphs C who have one or more induced subgraphs of a given form is given 
below. 

If G is a graph and Vl C_ V ( G ) ,  then we define the induced graph G[Vl] to 
have vertex set VI and edge set {XY E E ( G )  : X, Y E Vl}. 

Let G be a graph. We define a subgraph FG of G, that we will call the 
f o u n d a t i o n  of G, in the following manner. This is an extension of the notion 
of foundation presented in [4]. Let X E V ( G ) .  Let k be the maximum integer 
such tha t  there is a set V' of 2 k  + 1 vertices Yo, X I , .  . . , X ~ E  E V ( G )  such that  
the induced subgraph G[V' U {X)] is in Bk; that  is, E(G[V' U {X}]) contains 
the set A-allowed but does not contain any edge in the set A-forbidden-edges. 
Clearly k < deg(X), where d e g ( X )  is the degree of vertex X.  A set V' satisfying 
above properties is called a X - s e t  of vertex X, with size k. Denote by fxixL,,,,xk 
the set of edges XX,, i = 1,. . . ~ k. We call f,;,,,, ,~~ the local l o u n d a t i o n  of 

Upper bounds for more general access structures 
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vertex X and X-set V' and we call the vertices X I , .  . . , xk descendants  of X in 
fx,xl, X I '  Let {Vl, . .  . , Vmx } be the family of all X-sets of vertex X E V ( G ) ,  
and { f: , . . . , f X  } be the family of the corresponding local foundations. Observe 
that this approach might not be feasible for large values of m, since rn might be 
exponentially large in the worst case. Now we can define the foundatzon  FG of a 
graph G as follows 

FG = {fi , . . . , fAmx (X E V(G)} .  

If fi0 is in F G ,  the foundation of a graph G, and XI,. . . , xk are descendants 

of X o  in fro, then by Theorem 8, we have z::: H ( X , )  2 (2k + l ) H ( S )  for any 
secret sharing scheme with access structure cl( E(G)) .  Consider the following 
linear programming problem d(G): 

Minimize c = C X E V t G )  ax  
subject to: 

ax >_ 0 ,  x E V ( G )  

axo + +ax, 2 k XO E V ( G ) .  f;, E FG,  and 

X I .  , Xk descendants of Xu in fi, 

The following upper bound on  the average information rate holds. 

Theorem12. Led G be a graph  with joundation GI .  Let  C' be the optimal 
s o h i i o n  t o  the problem d ( G ) .  Then 

Proof. The proof will be given in the final version of the paFer. 0 

5 
Information Rate 

Lower Bounds on Information Rate and Average 

In this section we will give several general lower bounds on the information rate 
and on the average information rate of access structures represented by graphs. 

We first improve on the bound of Theorem 3 for graphs with R vertices and 
odd maximum degree d. 

Lemma13. Let  G be a graph o f n  vertices and maximum degree d,  d odd. Then 



162 

Proof. Let A d j ( X ) ,  I n c ( X ) ,  deyree-one(X) be the following sets : 

- A d j ( X )  = {Y : (XI Y )  E E }  
- I n c ( X )  = {(X, Y) : ( X ,  Y) E E }  
- degree-one(X) = {Y E A d j ( X )  : Ilnc(Y)l = 1) 

Let X E V ( G )  and G, be a subgraph of G such that V(G,) = {X} u A d j ( X )  
and E(G,) = I n c ( X ) .  It is well known a secret sharing scheme for G, exists 
with information rate equal to 1 (G, is a complete multipartite graph). Consider 
the graph G' where V ( G ' )  = V ( G ) - { X }  Udegree-one(X) and E(G') = E(G)-  
I n c ( X ) .  We realize a secret sharing scheme for G', for a secret of one bit, using 
the technique showed in Theorem 3.8 of [BrSt]. Each vertex in A d j ( X )  n V(G') 
gets a t  most [(d - 1)/21 + 1 bits while other vertices get a t  most rd/21 + 1 bits. 
A secret sharing scheme for G can be realized joining the scheme for G, and the 
scheme for G'. In this scheme the vertex ,Y will receive one bit, the vertices in 
A d j ( X ) n  V(G') will receive at most [ ( d  - 1)/21 + 2 bits, while other vertices 
will get a t  most rd/21 + 1 bits. Since [ ( d -  1)/21 + 2 = rd/21 + 1, if d is odd, 
there is a secret sharing schemes for G, for a secret consisting of a single bit, that 
gives to each vertex in G at  most [d/2] + 1 bits while a predeterrninated vertex 
gets only one bit. If we consider TL of these secret sharing schemes, one for each 
vertex in V ,  and then we compose them, we can realize a secret sharing scheme, 
for a secret of n bits, giving to each vertex at most 1 + ( n  - l ) ( [ d / 2 1  + 1) bits, 
so we can realize a secret sharing scheme with an information rate equal to 

and the lemma follows. 0 

For a graph G of maximum degree 3 ,  the bound of [S] gives p*(G) >_ 1/3 
while the bound of lemma 13 gives p*(G) 2 1/(3 - 2/n) .  The following lemma 
gives an improved bound. 

Lemma14. Let G be a graph of maximum degree 3 .  Then, p*(G) 2 2/5. 

Proof. Consider a covering C of G consisting of maximal length paths PI , . . . , P,. 
It is well know a secret sharing scheme for a path exists with an optimal infor- 
mation rate equal to 2/3 (see Theorem 5). this scheme, for a secret of two bits, 
gives two bits to terminal vertices in the path while other vertices gets three 
bits. We can realize a secret sharing scheme €or G, for a secret of two bits, using 
secret sharing schemes, with optimal information rate, for the paths belonging 
to  C. A vertex of G of degree one can only be a terminal vertex of a path so it 
receive two bits. If a vertex has degree two then it belongs to  only one path and 
it receives three bits, it cannot be a terminal vertex of two different paths since 
we consider a covering of maximal length paths. If a vertex has degree three then 
it can't belong to  three different paths since we consider a covering of maximal 
length paths so it belongs to two paths, it is a terminal vertex of a path and 
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it is a central vertex of another path and it gets totally five bits. Thus we can 
construct a secret sharing scheme for G, giving to  each vertex at  most five bits 
for a secret of two bits obtaining a secret sharing scheme with information rate 
equal to 2 / 5 .  0 

If we know the number of vertices in the graph G then we can improve 
previous bound as stated by next lemma. 

Lemma15. Let G a graph of maximum degree 3 with n v e d i c e s .  Then, 

Proof. Let G,, with X E V ( G ) ,  be the graph defined in Lemma 13. Consider 
the graph G' where V(G')  = V ( G ) -  { X } U d e g r e e - o n e ( X )  and E(C') = E(G)-  
I n c ( X ) .  We realize a secret sharing scheme for G', for a secret of two bit, using 
the technique showed in Lemma 14. Each vertex I' E A d j ( X )  V(G') gets at  
most 3 bits, since J lnc(Y)J  5 2, while the other vertices get a t  most 5 bits. 
A secret sharing scheme for C; can be realized joining the scheme for Gx and 
the scheme for C'. Thus we can realize a secret sharing scheme for G, for a 
secret consisting of two bits, giving two bits to a predeterminated vertex while 
other vertices get at  most five bits. If we consider n of these schemes, one for 
each vertex, and then we compose them we obtain a secret sharing scheme for a 
secret of 2n bits giving to  each vertex at  most 2 + 5(n  - 1) = 5n - 3 bits so the 

0 information rate for this scheme is 2/(5 - 3/n) .  

Applying the same reasoning of Lemma 14 to graphs of odd degree d leads 
to the bound p*(G) 2 1/( [ d / 2 ]  1.5 + 1) which is worse than previous bounds. 

recall that  an internal node is a vertex of degree greater than one. 
Regardless of the degree, it is possible to obtain better bounds for trees. We 

Lemma16. Lei G be a tree with n internal vertices. Then 

Proof. In [4] was showed how to obtain a secret sharing scheme for any tree with 
information rate equal to 1/2. This scheme, for a secret consisting of a single 
bit ,  gives one bit to a predeterminated vertex X E V ( G )  and to all non-internal 
vertices, whereas each other vertex gets two bits. We will use this construction 
as basic construction. If we consider n of these schemes, one for each internal 
vertex, and we compose them then it is possible to realize a secret haring scheme 
for G, for a secret of n bits, giving to  each vertex a t  most 2(n - 1) + 1 = 2n - 1 
bits. Thus 

n 
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If only the number of vertices are known, what can we say on the information 
rate of a graph G? The maximum degree of G can be as bad a s  7s - 1. Thus, the 
bound of [6] gives p*(G) 2 l/([(n - 1)/21 + 11, while the bound of Lemma 13 
gives p*(G) >_ l/([(n - l ) /21  + 1 - [(n - 1 ) / 2 ) / n ) ,  if n is even. 

In this last part of the paper we present general lower bounds on the infor- 
mation rate and average information rate for any graph G with R vertices. The 
lower bounds are obtained by using known results on the covering of the edges 
of a graphs by means of complete bipartite graphs. We first recall that Brickell 
and Davenport [5] proved that a graph G has information rate 1 if and only if 
G is complete multipartite graph. 

Tuza [22] proved that the edge-set of an arbitrary graph C can be covered by 
complete bipartite suhgraphs such that the sum of the number of the vertices of 
such subgraphs is less than 3n2/2 log72 + u(n'/ logn). Using the above quoted 
result by Brickell and Davenport we get that  the optimal average information 
rate for any graph G with n vertices is greater than n times the inverse of 
3n2/210gn + f(n), where If(.)/ < cn2/ logn,  for all E > 0 and sufficiently large 
n. Therefore, the average information rate is greater than 2 log n/3n + g(n ) ,  
where Ig(n)l 5 ( 2 ~ / 3 ( c  + 3/2)) log n /n ,  if If(n)l < En2/ log n. 

Feder and Motwani [lo] proved that the problem of partitioning the edges of 
a graph G into complete bipartite graphs such that the sum of the cardinalities 
of their vertex sets is minimized is YP-complete. However, they proved that the 
edge set of a graph G = ( V , E ) ,  with llil = n and ]El  = rn can be partitioned 
into complete bipartite graphs with sum of the cardinalities of their vertex sets 

O( ,ogna), and presented an efficient algorithm to compute such a partition. 
Using their result, it follows that there is a secret sharing scheme with average 

Finally, we recall a result of Erdos and Pyber [3] (see also [18]) which states 
that  edges of a graph G with n vertices can be partitioned into complete bipartite 
graphs such that each vertex of C is contained by at  most O(n/  log R )  complete 
bipartite graphs. This result directly implies that  the optimal information rate 

m log 

information rate a t  least J?( n'ogn .1 ).  
m log 

O ~ G  is p * ( ~ )  = L? (+) . 

These results can be summarized in the following theorem 

Theorem17. Let G be a graph .with n ve r t i ce s  and m edges .  Then, the optimal 
average information r a f e  f o r  G satisfies 

2 log n 
3n 

F ( G )  > - 

and 

The optimal information rate for  C sa t i s f i e s  

p*(G) = R (%) 
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It is worth pointing out that if G is a sparse graph, i.e., rn = an, where CY 

is a constant, then above theorem implies that P ( G )  is limited from below by a 
constant. This result describes a wide class of graphs having average information 
rate that does not go to zero as the number of participants increases. 
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Appendix A 

In this appendix we analyze all graphs who have optimal information rate less 
than  2/3 accordingly t o  Theorem 10. The schemes for these graphs are obtained 
by using the Multiple Construction Technique [4] based on complete multipartite 
coverings of the graph. T h e  optimal information rate is not greater t han  3/5 and 
the optimal average information rate is less than or equal to  3/4 for all graphs 
from Theorem 10. All these results are summarized in Table 1, and the  first 
CMC of each graph gives the scheme w i t h  average information rate showed 
in Table 1. Below are depicted some of the minimal CMCs for 5 graphs on 6 
vertices. 

A 

t 

E F  

A 

I" 
E F 

A 

t 

E F 

C E  

G2 n -  A B B  a", D D  F A U B  xLL F A B D  1- A B D F  
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Graph 

G I , G ~ , G , G ~  
G.5 

E A F 

Information Rate Average information Rate 

p8 = 315 
p* = 315 

p' = 314 
213 5 F 8  5 3/4 

C 6 D 

E A F 

C B B B  D 

n1 

D F n F '  

A B C E  A B B B  C E 

A E E  F F  

IWI 
c c  n D D  

n2 

D F  
c--. 

A B C C  E 

I J Z  

Table 1. Information Rate and Average Information Rate 
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