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Abstract. We use two combinatorid techniques to  apply a dccompo- 
sition construction in obtaining general lower bounds on information 
rate and average information rate of certain general classes of access 
structures. The first technique uses combinatonal designs (in particular, 
Steiner systems S(t ,  k, u ) ) .  The second technique uses equitable edge- 
colourings of bipartite graphs. For uniform access structures of rank t ,  
this second technique improves the best previous general bounds by a 
factor o f t  (asymptotically). 

1 Introduction and Terminology 

Informally, a secret sharing scheme is a method of sharing a secret key K among 
a finite set of participants in such a way that  certain specified subsets of par- 
ticipants can compute the secret key X .  T h e  value K is chosen by a special 
participant called the dealer. 

We will use the following notation. Let P = (Pi : 1 5 i 5 w }  be the set of 
participants. T h e  dealer is denoted by D and we assume D $ P. K is key set 
(i.e. the set of all possible keys) and S is the share set (i.e. the set of all possible 
shares). Let I' be a set of subsets of P ;  this is denoted mathematically by the 
notation r C 2'. The subsets in I' are those subsets of participants tha t  should 
be able to  compute the secret. 7 is called an access structure and the subsets in 
I' are called authorized subsets. 

When a dealer D wants to share a secret K E K ,  he will give each participant 
a share from S. T h e  shares should be distributed secretly, so no  participant knows 
t h e  share given to another participant. At a later time, a subset of participants 
will a t tempt  t o  determine K from the shares they collectively hold. We will say 
t h a t  a scheme is a perfect secret sharing scheme realizing the access structure f 
provided the  following two properties are satisfied: 

1. If an authorized subset of participants B P pool their shares, then they 

2. If an unauthorized subset of participants B C_ P pool their shares, then they 
c a n  determine the value of K .  

can determine nothing about the vaIue of K .  
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The security of such a scheme is unconditional, since we do not place any limit 
on the amount of computation that can be performed by a subset of participants. 

Suppose that B E I', B C C C P and the subset C wants to determine K. 
Since B is an authorized subset, it can already determine K. Hence, the subset 
C can determine K by ignoring the shares of the participants in C\B. Stated 
another way, a superset of an authorized set is again an authorized set. What  
this says is that the access structure should satisfy the monotone property: 

if B E r and B 2 C P, then C E r. 
If r is an access structure, then B E r is a minimal authorized subset if 

A # I' whenever A B ,  A # B.  The set of minimal authorized subsets of I' is 
denoted I'o and is called the bas i s  of r. Since r consists of all subsets of P that  
are supersets of a subset in the basis To, r is determined uniquely as a function 
of To. Expressed mathematically, we have 

r =  {C 5 P : B C C, B E To}. 

We say that r is the closure of To and write I' = c l ( r 0 ) .  
We define the rank of an access structure r to be the maximum cardinality 

of a minimal authorized subset. An access structure is uniform if every minimal 
authorized subset has the same cardinality. Observe that the rank of r is two if 
and only if I' = cl(E(G)) ,  where E(G) denotes the edge set of a graph G. 

We now briefly describe a general mathematical model for secret sharing 
and discuss the concept of security. In this model, we represent a secret sharing 
scheme by a set 3 of distribution rules. A distribution rule is a function 

f : P u { D } - + X : U S  

which satisfies the conditions f ( D )  E K ,  and f ( P , )  E S for 1 5 i <_ W .  A 
distribution rule f represents a possible distribution of shares to the participants, 
where f ( D )  is the secret key being shared, and f(P,) is the share given to Pi. 

If 3 is a set of distribution rules and K E K ,  denote 

If K E K is the value of the secret that  D wishes to share, then D will choose a 
random distribution rule f E 3 K ,  and use it to distribute shares. 

Suppose l' is an access structure and 3 is a set of distribution rules. Suppose 
the following two properties are satisfied: 

(*) Let B E r ,  and suppose f , g  E 7. If f ( P , )  = g(P;) for all Pi E B ,  then 

(**) Let B r and suppose f : B -+ S .  Then there exists a non-negative 
fP) = g P ) .  

integer X(f, B )  such that, for every K E K ,  

I{g E 3 K  : g(pa) = f(P;)VPi E B}I = x(flB). 
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Then 3 is a perfect secret sharing scheme that realizes the access structure I'. 
The property (*) is relatively straightforward: it says that the shares given to an 
authorized subset uniquely determine the value of the secret. The property (**) 
guarantees that the shares given to an unauthorized subset give no information 
as to the value of the secret. The list of shares ( f ( P ; )  : P; E B) given to an 
unauthorized subset B will restrict the possible distribution rules to some subset 
of F. However, the remaining possible rules will be equally divided among the 
possible keys. More precisely, for any assignment of shares f to B, there will 
remain A(f,B) possible rules corresponding to each value of the secret. The 
formal security proof uges probability distributions; it can be found in [9]. 

As an example, in Figure 1 we present a perfect secret sharing scheme from 
[9] for the access structure having basis 

(C, is the graph which is a cycle of length six.) 

Fig. 1. A Secret Sharing Scheme For CS 

The construction of secret sharing schemes for arbitrary access structures has  
been studied by several researchers. General construction methods are described 
in [14, 1, 21, 201. 

2 Information Rate 

We measure the efficiency of a secret sharing scheme by the information rate. 
Suppose 3 is a set of distribution rules for a secret sharing scheme. For 1 5 i 5 w ,  
define 

Si = {f(pi) : f E F}- 
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S; represents the set of possible shares that P; might receive; of course Si C_ S. 
Now, since the secret key K comes from a finite set K, we can think of K as 
being represented by a bit-string of length log, IKl, by using a binary encoding, 
for example. In a similar way, a share given to P; can be represented by a bit- 
string of length log, IS, (. Intuitively, P; receives log, IS, 1 bits of information (in 
his or her share), but the information content of the secret is log, 1x1 bits. The 
information rate for P; is the ratio 

log, 1x1 
log, 

pi = - 

The i n f o m a t i o n  rute [9] of the scheme is denoted by p and is defined as 

p = minip; : 1 5 i 5 w } .  

The average i n f o m a l i o n  rate [3, 171, denoted by p', is the harmonic mean of the 
pi 's: 

W - w log, 1x; p' - c:==, $ C L d o g z  IPtI. 
The scheme of Figure 1 has p = p' = logz 2/ logz 3 z .63. (This is not optimal: 

the optimal scheme has rate 2 /3  [4].) 
It is easy to prove that p 5 p 5 1 in any scheme, and that p = 1 if and only 

if p' = 1. Since p = p' = 1 is the optimal situation, we refer to such a scheme 
an ideal scheme. Ideal schemes have been studied extensively; see for example 
[7, 8, 17, 15, 181. In the cases where ideal schemes do not exist, the objective is 
to  construct a scheme with (average) information rate a?, close to one as possible. 
Research in this direction can be found in [9, 10, 4, 22, 161. 

3 A Decomposition Construction 

Our main recursive construction uses small schemes as building blocks in the 
construction of larger schemes. We call this the decomposition construction. 
Note that various versions of this construction have been described in several 
papers, such as [9, 4, 22, 17, IS]. 

We will use the notation P S ( r ,  p, q )  to denote a perfect secret sharing scheme 
with access structure c l (T)  and information rate a t  least p for a set of q keys. 
Analogously, a perfect secret sharing scheme with access structure d(r) and av- 
erage information rate at least pfor a set of q keys will be denoted by E(r, F, q) .  

Suppose r is an  access structure having basis ro. A decomposition of To 
consists of a set {TI,.. . rn} such that the following properties are satisfied: 

1. r k  E Fa for 1 5 k 5 n 
2. uT;,,rk = r, 

Often, {TI,.. . , T,,} will form a partition of ra, but this is not a requirement. 
For 1 5 k 5 fa, define Pk = U B E r k B ;  Pk denotes the set of participants in a 
scheme with access structure C I ( r k ) .  

We present the following two results, both of which use the same construction. 
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Theoreml. Let I' be an access structure o n  w participants having b a s i s  To and 
suppose that {rl,. . ., I',,} is a decomposition of To. Let q be an integer and for 
1 5 k 5 n, suppose there ezuts 4 PS(I'k,  Pal q) .  For 1 5 a 5 w ,  let 

T h e n  there ezists a PS(I', pl q ) ,  where 

Theorem2. Let  r be a n  access structure o n  w participants having b a s u  I'o and 
suppose that {I'l,. . ., rn) U a decomposition of  I'o. Let q be a n  integer and for 
1 5 k 5 n, suppose there ezists a E ( r k ,  &, q ) .  Then there eziskr a Z ( r ,  z, q ) ,  
where 

W 

Remark. I f  we define 

for 1 5 i 5 w ,  then 
- W 

P =  1 '  EL 
Proof. Let K be a fixed set of q keys. For 1 5 k 5 n, let T k  denote the distribu- 
tion rules in a PS(I'k, p k ,  q )  with key set K. For any K E K ,  and for 1 5 k 5 n, 
we have 

K € K  

where 3; consists of the distribution rules in Fk for which the key value is K. For 
1 5 k _< n, suppose fi E 3;. Define 3 distribution function fi x fi x . . . x & 
which gives to  each participant P, the list of shares 

We construct a PS(I' ,  p 1  q )  in which 7 = U K E K F K ~  where 

The verifications and the computation of the information rate are straightfor- 
ward. 0 
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Let US look at an example to  illustrate these constructions. Consider the 
access structure having basis 

ro = ( { A ,  B)t { A ,  C), (3 ,  C}, {C, D}, {C, E},  {Dl E l ,  (El F } ,  { E ,  A ) ,  (F1A))- 

Consider the decomposition 

r1 = { { A ,  B ) ,  P I  CIl {C, Dl1 {Dl El, { E ,  F ) ,  {Fl 4 1  
r2 = { { A ,  C}, {C, El, (3, A)}. 

We have already seen in Fig. 1 that there is a P S ( r l ,  2, log 2/  log 3). For all q 2 3, 
a P S ( I ' ~ , q ,  1) exists from [9]. However, in order to apply the decomposition 
construction, we need schemes with the same number of keys. This creates no 
problem, as it follows from [9] that a PS(rl, 2,log2/ log 3) implies the existence 
of a P S ( T ~ , 2 3 ' , l ~ g 2 / l o g 3 )  for all j 2 1. So we can take q = 2jl  j 2 2. From 
Theorem 1 we get a PS(l',  2, p )  where p = log 2/log 6 zz .38, and Theorem 2 
yields a Ejl', 2, p3 where F =  log4/log 18 zz .47. 

However, if we use a different decomposition, we can do better. Define 

r3 = { { A ,  B ) ,  { B ,  C } ,  { A ,  C)) 
r4 = {{C, Dl7 {Dl El,  tc, El l  
r5 = {{XI Fl, { F ,  4 ,  {El A H .  

For any q _> 3,  there exists a P S ( I ; ,  q ,  1) for i = 3 , 4 , 5 ,  and we obtain a 

This scheme could be implemented as follows: Suppose q 2 3 is prime and 
PS(T,  4, 1/2) and a 

let K = G F ( q ) .  Then FK = { f r L , r , , r 3 , ~  : 71, r2, r3 E G F ( q ) } ,  where 

4, 2/3) .  

f r , , r l , r , , K ( A )  = ( ~ 3 1 2 1 ~  + 75) 
f r l , r 2 , r 3 , K ( B )  = K + ~3 

fr l ,T , ,r , , , (C)  = (r412K + ~ 3 )  

f r l , r a , r l , K ( D )  = K + ~4 

f r l , r l , r , , K ( E )  = (~512K + 74) 
f r l , r 2 , r 3 , ~ ( F )  = K + PS- 

In the remaining sections of this paper, we use two combinatorial techniques 
to  apply the decomposition construction in obtaining general lower bounds on 
information rate and average information rate of certain general classes of access 
structures. The first technique uses combinatorial designs (in particular, Steiner 
systems S(t, k, u)) .  (Due to a lack of knowledge of infinite classes of Steiner 
systems for t > 3, this technique is applicable primarily to  access structures of 
ranks two and three.) The  second technique uses equitable edge-colourings of 
bipartite graphs. We first give a new proof of a result proved by Brickell and 
Stinson [9] which applies to access structures of rank two. Then we describe 
some generalizations to  access structures of higher rank which improve the best 
previous general bounds by a factor o f t  (asymptotically). 
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4 Applications Using Steiner Systems 

4.1 Two Corollaries of the Decomposition Construction 

In this section we discuss applications of the decomposition construction using 
combinatorial designs. A Steiner system S( t ,  k, w) is a pair (XI A), where X is a 
set of w elements (called points) and A is a set of k-subsets of X (called blocks), 
such that  every t-subset of points occurs in exactly one block. An S(t ,  k, w )  is 
said to be non-trivial if t < k < w .  We note that no non-trivial Steiner systems 
are known to exist for t > 5, and very few are known to exist for 1 > 3.  For 
general information on the existence of Steiner systems, we refer t o  [2]. 

Suppose I' is an access structure of rank t on w participants, having basis 
I'o. Suppose also that (XI A) is an S ( t ,  k ,  w ) .  We can use ( X ,  A) to construct a 
decomposition of TO, as follows: For every block A E A, define 

Then {I'A : A E A} is a decomposition of To (observe that it is a partition if 
and onIy if I' is uniform). 

NOW suppose that  we compute values r k , f  and q k , t  such that there exists 
a PS(F',nk, t ,qk, t )  for any access structure r' of rank 5 t on k participants. 
Now, in the Steiner system, elementary counting shows that each point occurs 
in exactly ( ~ ~ ~ ) / ( ~ ~ ~ )  blocks. Hence, when we apply Theorem 1, we get 

for every point i. The resulting scheme is a PS(T,  p,  q k , r )  for p = X k , t  (:I:) /(:::). 
Summarizing, we have the following result. 

Theorern3. Suppose r is an access structure of rank t on w participants, 
and suppose that un S(t, k, w )  ezists. Suppose there e z u t s  a P S ( r ' ,  r k , t ,  q k , : )  

for any access structure I" of rank 5 t on k participants. Then  there ezists a 
p s ( r ~ P ,  Q k , : )  for P = ~ k , t ( ~ ~ ~ ) / [ ~ ~ ~ ) .  

For average information rate, we get the following similar result by applying 
Theorem 2. 

Theorem4. Suppose r U an access structure of rank t on w participants, 
and suppose that an S ( t ,  k, w )  ezb t s .  Suppose there e & t  a P S ( r ' ,  %k, t ,  q k , t )  

for any access structure r' of rank 5 t on k participant.  T h e n  there e z u b  a 
ps(r~z~qk,t) fo r  F =  h , t ( ~ ~ ~ ) / ( ~ ~ ~ ) .  
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4.2 Graph Access Structures 

The situation that has been studied the most is when the basis consists of the 
edges of a graph (i.e. the access structure has rank two); see [9, 4, lo], for 
example. If G is a graph, then we will denote the vertex set of G by V(G), the  
edge set by E(G), and a PS(ci(E(G)), P, q )  by J'S(G, P, 4). 

Considerable attention has been paid to the graphs on a t  most five vertices. 
Lower bounds on the (average) information rate have been obtained in [4] by 
applying various versions of the decomposition construction. The following result 
updates the bounds of [4]: 

Theorem5. 1. I f G  U u graph with IV(G)( _< 3,  then Mere U u PS(G,  1 , q )  

2. If G b a graph wzfh IV(G)l = 4, then there U a P S ( G , 2 / 3 , q 2 )  snd a 

3. If G U a graph with IV(G)( = 5 ,  then there is a P S ( G , 2 / 3 , q 2 )  and a 

for any prime power q 2 3 .  

PS(G,  4/5, q )  fo r  any prime power q 2 4.  

PS(G,  5/7, q)  f o r  any prime power q 2 5 .  

- 
- 

Proof. The only cases left unresolved in [4] concern the following four graphs on 
five vertices: 

E D  
E 

B C  A B C  D 

D E  D E  

G14 A a G1.5 I)r4 
B C  A B  
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Remark. With the schemes presented above, the optimal value of the informa- 
tion rate and average information rate is now determined for all graph access 
structures on a t  most five vertices. In each case, the upper bound presented in [4] 
turns out to be the correct value. Also, the constructions for G ~ z ,  GI4 and Gl5 

are based on a new generalization of the decomposition that we will present in 
a forthcoming paper. Finally, we remark that minor modifications of the above 
constructions will produce schemes where the number of keys is a prime power. 

Using the notation of Section 4.1, we can take ~ 3 , z  = 1, 7r4,a = 2 1 3 ,  and 
*s , i  = 2/3; ?ia,i = 1, iF4,n = 415, and X ~ , Z  = 5/7. 

In order to apply Theorems 3 and 4, we need information about Steiner 
systems S(2, k, W )  for k = 3 , 4 , 5 .  This information is summarized in the following 
theorem: 



Theorem 6. [I31 Suppose 3 5 k 5 5 .  Then there ezists an S(2, k, w )  if and only 
i f  UJ E 1, k (mod k(k - 1)). 

We obtain lower bounds on the (average) information rate of any graph on 
w vertices that  are presented in Table 1. For example, we see that there is a 
PS(G, 1/3 ,q)  for any graph G having seven vertices, where q 2 3 is a prime 
power. 

k 

3 

Table 1. Bounds on the Information Rate for Access Structures of Rank Two 

W lower bound on p or number of keys 

w ZE 1,3 (mod 6) P l &  q, where q 2 3 is a prime power 

4 w 1,4 (mod 12) P L &  q 2 ,  where q 1 3 is a prime power 

5 w 3 1 , 5  (mod 20) p 2 q', where q 2 5 is a prime power 

1 q ,  where q 2 5 is a prime power 20 - 
5 w z 1 , 5  (mod 20) p 2 1 - 

! q ,  where q 2 4 is a prime power 11 - 
4 w 1,4 (mod 12) p 2  qz=ij I /  

It is interesting to observe how the bounds improve as we use designs with 
larger block size. Also, note that if there does not exist an S ( 2 ,  k, w ) ,  then we can 
take the smallest integer wo > w such that there does exist an  5 ( 2 , k , w o ) ,  and 
delete wo - w points from the Steiner system, thereby constructing a pairwise 
balanced design [2]. Then apply Theorem 1 or 2 to  obtain a scheme where the 
information rate is computed by replacing w by wo in Table 1. 

4.3 Rank Three Access Structures 

We can apply the same techniques to access structures of rank three, using the 
following results concerning access structures on four participants, proved in 
[22, 171. 

Theorem 7. 1 .  I f r  is a rank three_ccess structure on four participants, then 
there is u P S ( r ,  2/3, q') and a P S ( r ,  4/5, q )  f o r  any prime power q 2 4. 

2. I f r  is a uniform rank three access structure on four par t i c ipan t ,  then there 
u a PS(I', I, q )  for  any prime power q 1 4. 

Using the notation of Section 4.1, we c a n  let ir4,3 = 2/3 and F4,3 = 4/5. The 
relevant Steiner systems S(3,4, w )  exist as follows: 
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W 

w 2,4 (mod 6) 

Theorem 8 .  [I21 There ezists an S(3,4, w)  if and only if w z 2 , 4  (mod 6). 

Application of Theorems 3 and 4 yield the bounds for access structures of 
rank three presented in Table 2. 

lower bound on p or 

p 2 (w-L;(w-ll 

Table 2. Bounds on the Information Rate for Access Structures of Rank Three 

1 4  
w 2,4 (mod 6) l -  L(w-l)(w--1J 

number of keys 

g', where p 2 4 is a prime powei 

q,  where q 2 4 is a prime power 

q, where q 2 4 is a prime power 

5 
Graphs 

Applications Using Edge-colourings of Bipartite 

The following result was proved in [9]. 

Theorem9. Suppose G is a graph in which the mazimwn ver tez  degree  is d .  
Then there ezists a PS(G,  1/( 

Remark. For the case of odd d, an  improved bound is given in [5]. 

+ l), q )  f o r  any prime power q 2 2 ,  

Theorem 9 is proved by decomposing G into complete bipartite graphs Kl,m 
(called stari) in such a way that  any vertex of G is in at most ($1 + 1 of the 
stars. It has been shown in [8] that  there is a PS(K1,,, 1, q )  for any prime power 
q 2 2. Hence, the result follows from Theorem 1. 

The star decomposition was obtained in [9] by first constructing an eulerian 
tour in a multigraph related to  G. We will present an alternative proof of The- 
orem 9 which appears to  be more easily generalizable. This proof makes use of 
a result concerning edge-colourings of bipartite graphs. 

For a graph G, denote the degree of a vertex 2 by d c ( z ) .  Suppose 1 is a n  
integer. An 1- edge colouring of G is a function f : E(G) - {I,. . . , f). f induces 
a partition E ( G )  = Uf==,Ei(G), where Ei(G) = f - ' ( i ) ,  1 5 i < L (that is, Ei(G) 
consists of the edges of G receiving coiour i ) .  An .!-edge colouring is said to be 
equitable if, for every vertex z E V(G) and for every colour i (1 5 i 5 f), the 
number of edges in E,(G) incident with vertex z is either \d(z)/!J or p ( z ) / q  

The followhg theorem of de Werra [11] (see also [6, pp. 62-63]) is of use to 
us: 
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Theorem 10. If G U a bipartite graph, t h e n  t h e r e  ezists an equitable .!-edge 
colouring of G for any positive integer 1. 

Here now is an  alternate proof of Theorem 9: 

Proof of Theorem 9. Construct a bipartite graph H with bipartition (V(G), E(G)) 
having edge set 

E ( H )  = { z e  : z E V ( G ) ,  e E E(G) ,  z E e}. 

By Theorem 10, there is an equitable 2-edge colouring of H. Each vertex 2 E 
V(G) has degree &(z) in H and each vertex e E E(G) has degree 2 in IT. 
Hence, every vertex e E E(G) is incident with one edge of El(lT) and every 
vertex t E V(G) is incident with Ld(t)/2] or rd(z)/21 edges of E l ( H ) .  

For every vertex z: E V ( G ) ,  define a subgraph G, = {e E E(G) : ze  E 
&(I?)}. It is not difficult to  see that {G, : z E V ( G ) }  forms the desired star 
decomposition. Cl 

Let's consider how to generalize this result to uniform access structures of 
higher rank. As our "building blocks" we use a class of access structures that  
we caII generalized stars. Let t 2 2 and m 2 t - 1. Define a basis on rn + t - 1 
participants as follows: 

I';(t, m) = ({PI,. . ., Pt-l, P j )  : t 5 j <_ m +  t - I}. 

(In the case t = 2 ,  T:(t, m) consists of the edges of a star graph KI,,.,.) Define 
the centre of a generalized star to be the intersection of the basis subsets (i.e. 
{ P I , .  . . , Pt-13 in  the above example). Any access structure P ( t ,  rn) is easily 
seen to be ideal. In fact, there exists a P S ( l " ( t ,  m), 1, q )  for any prime power 
q >_ t by a simple modification of a Shamir (t, t)-threshold scheme [19]. 

is the basis of a uniform access structure of rank t. Construct 
a bipartite graph H as follows: The bipartition is (XI Y), where Y = To and 

Now, suppose 

and the edges in H are 

E ( H )  = ( A 3  : A E X, B E Y , A  2 B } .  

(In the case t = 2, the graph H is the same as the one canstructed earlier.) 

obtain a n  equitable t-edge colouring of H. For every vertex A E X, define 
Note that every vertex A E X has degree t in IT. Now, apply Theorem 10 to 

r.4 = (3 E Y : A 3  E E l ( a ) } .  

Then each r A  is a r<(t, m) where m = [ d ~ ( A ) / t l  or rn = [d~(A)/t] .  { r A  : A E 
X} is a decomposition of ro, and for every A E X, there is a PS(I'A, 1, q )  for 
any prime power q 2 t .  
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It remains to  compute bounds on the a’s. Define 4 (the degree of Pi) to be 
the number of t-subsets in which contain Pi. Then 

Now, Pi is in the centre of I(A E X : Pi E A}I of the r A ’ s .  Since we used an 
equitabIe colouring to  construct the ~ A ’ s ,  this accounts for a t  least 

of the d, t-subsets in ro that contain Pi. Hence, the number of 
Pi is a t  most 

that contain 

It is easy to  see that 

hence, 

for 1 5 i 5 w .  
Now p is just the minimum of the &‘s. To compute a bound on p, we use 

the remark following Theorem 2. We calculate: 

Summarizing, we have the following generalization of Theorem 9: 
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Theorem 11. Let r be a uniform access structure o f  rank t on w participants, 
and denote  b y  d the mazimum degree of any participant. Then there e 2 u L  a 

, q )  for any prime power w t  
p s ( r s  i-1 

Q 1 t. 

Asymptotically, the bound on p represents an improvement by a factor o f t  
to the rate that would be obtained from the Benaloh-Leichter construction [l] 
using a disjunctive normal form boolean circuit. 

Finally, note that if I' is a non-uniform access structure of rank t ,  we c a n  
first partition the basis as r ,  = uf=lI'i, where each r; is uniform of rank i ,  and 
then apply the techniques of this section to each Ti. 
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