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“I weep for you,”  the I.i’alrus said, 
“I desply  9ympatl1i:c. )’ 
With sobs arid tears he sorted out 
Tliose of the lar3e.d size,  
Holding his pocl;cl-haridl;erclii~f 
Befort liis strearnitig eycs. 
from “Tliroiigh the  looking C: lass” by Lewis Carol1 

“0 Oyslers,” said the Carpenter. 
“You ’UF hud a pleasant run! 
Shall we be trotting home again?” 
But unswer came there none - 
i l r r d  this scarcely odd, because 
They‘d eaten every one. 

Abstract. Given a set of parties 11,. . , . n } .  an access structure is a 
ruonotone colleclioii of subsets of tlic parlies. For a certain domain of 
secrets. a secret sharing scLcuie lor an access st ructure  is a method for 
a dealer to distribute shares to the parties, such that oiily subsets in the 
a.ccess structure call reconstruct the secret. 
A secret sharing scheme is idcal if the domains of the shares are the 
same as the domain of the secrets. An access structure is universally 
ideal i f  thcrc is an idcal sccrct sharing scheme for it over every finite 
domain of secrets. An obvious necessary condition for an access struc- 
ture to be universally ideal is to be ideal over tlie binary and ternary 
doniains of secrets. 111 this work, we prove that tliis condition is also suf- 
ficieiit. In addition, we give a n  exact c1iaracterizat.ion for each of these 
t w o  coiiditioiis, and sliow that each contlilion by itself is not sufficient 
for universally ideal access structures. 

1 Introduction 

A secret sliaring scheme involves a dealer who has a secret, a finite set of n par- 
Lies, arid a collection A of subsets of tlie parties called tile access structure. A 
secret-sharing scheme for A is a method by which the dealer distributes shares 
to  the parties such that any subset in A can reconstruct the secret from its 
shares, and any subset not in A cannot reveal any partial information about 
the secret (in the information theoretic sense). X secret sharing scheme can 0111~ 

exist for monotone access structures, i.e. if a subset -4 can reconstruct the se- 
cret, then every superset of .4 can also reconstruct the secret. If the subsets that  
can reconstruct tlie secret are all the sets wliose cardinality is at least a certaln 
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tlireshold 1 ,  then tlie sclieine is called t out of 71 threshold secret sharing scheme. 
Tlirediold secret slixring scheiiics were first inlroduced by Blakley [Bla79] and 
by Siiaiiiir fSliai9]. Secret sliariiig sclieines [or general access structures were 
first defined by Ito, Saito and Sisliizcki in [IsSSi']. Given any moiiotone access 
structure, they show how to realize a secret sharing scheme for the access struc- 
ture. Bcnaloh and Lcicliter [BL8d] describe a inore efficient way to realize such 
secret sh itring sclienics. 

Even will1 the more efIicienL scheme of [BL88], most access structures require 
shares of exponential size: Eveii i f  the domain of the secret is binary, the shares 
are strings of length 2@"'), wliere n is the number of participants. The ques- 
tion of lower bounds OH the size of shares for some (explicit or random) access 
structures is still open. On the other hatid, certain access structures give rise to  
valry econoniicnl secrel sharing schemes. A secret sharing scheme is called i dea l  
if the shares are taken from ~ l i o  same doinaiu as t.he secrets. An access structure 
is called m-ideal if  thcre is an ideal secret sharing scheme which realizes the 
access structure over a domain of secrets of size m. 

Brickcrll [13ri89] \vas t,lic first to iiitroJuce t . 1 ~  notion of rn-ideal access struc- 
tures. Brickell and Davenport fDD'31] have shoivn that such structures are closely 
rclated to InatroiJs owr a set containing tltc Participants plus the dealer. Tliey 
give a necessary condition Cor ail access sLructure to  be m-ideal (being a ma- 
troitl) and a somewhat stronger sufficient condicioii ( the niatroid should be rep- 
resentable over a field or algebra of size m). Certain access structures, such as 
the tlireslioid ones, are nt-ideal for 772 that is at least n. However, for domains 
of secrets wliicli coritain 77t elziiieiits where m is smaller then n ,  the threshold 
access struct'ures are not In-ideal (for thresliold t such that  2 5 t 5 n - l) ,  
ils proved by Iiarniii, GFct:ne and Hellii~an [I<G1183]. This qualitative result was 
iiiiproved by Iiilian and Xisaii [IiS'JO], \vho sliowcd that the t out of n threshold 
secret sharing scheme over a binary domain of secrets requires shares from a 
doiiiain that  is at least of size T I  - t + 2 (for 2 5 t 5 n - 1). 

\.Ye say that an access s t ruc t  urc is u n i u i r s a i l y  ideal if for every positive integer 
m, it is fir-ideal. Universally ideal access structures are particularly convenient 
to work with bccause tliey are w r y  eficient no matter what the domain of 
secrets is. A simple esainplc of a u~iiversally ideal access structure is the n out 
of I L  tlireshold access structure. In this work we give a complete characterization 
of universally ideal access structures. Our work builds upon results of Brickell 
arid Davenport which relate ideal access structures to  matroids, as iycll as some 
known results from niatroicl theory. An obvious necessary condition for an access 
structure to be uiiisersally ideal is to be both 2-ideal and 3-ideal. Interestingly, 
our main result states that tliis condition is also sufficient. We give examples 
which deliionstrate that just, one of these two requirements is not a sufficient 
condition to be uiiiversally ideal. 

The rcmaiuingof this paper is orgaiiizccl as following. In section 2 we give for- 
mal definitions and quote the results of Brickell and Davenport. Section 3 states 
our main tlieorcm , aiitl details it,s proof. Section 4 illustrates some clarifying 
exam plcs. 
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2 Definitioiis and Related Results 

This section coritains foriiial defiiiitioiis aiicl kiioivii related results, that  will be 
used in the rest of this paper. 

2.1 Secret Sharing Sclieiiies 

The definitioii of secret sharing sclieiiics is based on [CIi89]. 

Definition 1. Let s = {o, . . . in - I >  13e a fiuitc set ofsccrets. Let A 2{', ...n} 

be a nionotonc set (such that 0 t$ ,4 ) c.allccl t,he access slruclure. We say that a 
secre f - shar ing  scheiue  Ij' realizes an access structure A with  domain of secrets 
S if l7 is a mapping IT : S x R -c 57, x 5, x . . . x S,, from the cross product 
of secrets and a set of random inputs  t,o a set of n-tuples ( the shares) such that 
the following t.wo requirements hold: 

1. The secret s can be reconstructed by  any suliset in A . That  is, for any subset, 
A E A (A = { i t ,  . . . i l r t l } ) ,  tlicrc csists a fuiict,ioii h.4 : s;, x . . . x ~ i , , ,  - S 
such that Tor every ra1ido111 inputs 1' it Iiolds that i T  n(s, r) = {sl, s2, . . . , 5 , E }  

then h , l ( { ~ i ] ~ ~ ~ )  = s. 
2. Every subset iiot in A can not re\.cal any  partial information about the 

secret (in the iiiforinalion tlieoretir sense). Forinally3 for any subset .4 9 A , 
for every two secrets a , 6  E S', aiid for every possililc shares { s ; } , ~ ~ ,  : 

We denote  he shares of party i by U , ( s ,  7 , ) .  

Give11 a collection r 2i1i " 1  the closure of r ,  denoted by cl(T), is the 
mininiuni collection that  contains f aild is monotone (if B E cl(I') and B C 
then  G E c l ( r ) ) .  Given an access structure A , we denote .A to be the collection 
of minimal sets of tt that  is B E A f r l  if L3 E A aiid for every C $ B it holds 
that  C @ A . I f  A = { A  . la4\ 2 f} ,  tlicti a secret sharing for A is called a t ou t  
of 71 threshold secret sliariiig scheuie, and the access structure A is called the t 
out of if threshold access structure. 

Definitiou2. A secret sharing scheiiie 17 : S x R - S1 x . . . x S,, is rn-idcal 
if IS11 = IS21 = . , . = IS,,] = IS1 = in, that is the domain of the shares of each 
party has the same size as the domain of the secrets! and this domain contains 
rn elements. 1411 uccess structure A is tn - idd  i f  there esists a rn-ideal secret 
sharing sclieiiie that  realizes A . An access structure A is universally ideal  if for 
every positive iilleger m the access structure A is nz-ideal. 
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2.2 Matroids 

Before we continue, we recall the defiiiitioil of matroids . Matroids are well 
studied coiiibiiiatorial objects (see for esample \Velsh [We1761 ). A matroid is an  
axiomatic abstraction of linear independence. il’e give here one of the equivalent 
axiom systems that define matroids. A nlatroid 7 = (V ,2 )  is a finite set V and 
a collection Z of subsets of V such that (11) through (13) are satisfied. 

(11) 0 E z. 
(12) If S E Z aud I’ 5 ,Y t,hcn I’ E 1. 
(13) If S,Y  are niernbers of 1 with IS1 = IYI + 1 there exists 1: E .Y\Y such 

that  Y u {x} E 1. 

For example every finite vector space is a matroid, in  which V is the set of 
vectors and Z is the collect.ioii of the independent sets of vectors. The elements 
of V are called the po in t s  of h e  niatroid and t.he sets in Z are called i n d e p e n d e n t  
sets .  A d e p e n d t n l  se l  of a matroid is any subset of V that is not independent. The 
mininial dependent sets are called circuits. 1 1  matroid is said to  be connected if for 
any two elenicnts in V ,  t,liere is a circuit conhining both of them. The maximal 
independent sets are called bases. In every matroid, all bases have the same 
cardinality, which is defined as the rank of a nistroicl. A matroid is representable 
over a field F if there esist,s rl dependence preserving mapping from the points 
of the matroicl into the set of vectors of a vector space over the field. In other 
words, tliere exist k and a m:kppiug Q : I.’ --, 3’‘ that. satisfies: 

A 2 I.’ is a dependent, set of the matroid iff @ ( A )  is linearly dependent. 

2.3 

T h e  next definition relatcs access structures and matroids. 

Defiiiitioii3. Let A be an access structure with n parties (1 , .  . . , n}  and let 
7 = (V,Z) be a connected rnrrtroicl \Ve say that the matroid 7 is approprza ie  
for the access structure tl if V = (0,. . . , n} and 

Relatioil between Sccrc t  Sharing Schemes and Matroids 

A = cl({C \ (0)  : 0 E C and C is a minimal dependent set of I}) 

Tha t  is, the niiiiimal sets of the access structure A correspond to  the minimal 
dependent sets i n  tlie matroicl which contain 0. Intuitively, 0 is added to  the set 
{ 1, . . . , n }  to ‘‘play tlie role” of the dealer. 

There are various properties which tlie collection of minimal dependent sets 
in a matroid must satisfy, and tliese properties do not necessarily hold for an  
arbitrary access structure. Not every access structure has an appropriate ma- 
troid. But if a connected matroid is appropriate for an access structure, then 
i t  is tlie only rnatroid with this property (see [FVel7S]. Theorem 5.4.1). Brickell 
and Davenport [BD91] have found relations between the two notions when A is 
an ideal access structure. The next two tlieorcms almost characterize rn-ideal 
access structures. 



Theorem 4 (necessary condition) [BD01]. If a non-degenerate  access struc- 
t u r e  A 2s m-ideal f o r  some posrt ice  i n t ege r  711, !hen t here  exists a connected 
ma t rord  T t h a t  zs appropr ia t e  for A . 
Theorem5 (sufficient condition) [BD91]. L e i  q be a p r i m e  p o w e r ,  a n d  A 
be a non-degenera te  access S h U C t l I T e .  Suppose  that t here  1s a connected matroad 
T t h u t  is appropr ia t e  j o r  ,-l . I f 7  is  representable  ouer  the  f ield GF(q), then A 
as q-ideal.  

3 The Characterization Theorem 

The  two tlieorenis of Brickell and Davcnport almost characterize q-ideal access 
structures for q a priiiie power. IIoaever, If there is a connected matroid 7 
that  is appropriate for .4 but is not represeriLable over the field GF(q), then 
the theorems do not determine wliether or not A is q-ideal. While we do not 
close the remaining gap for q-ideal access structures, we do give a complete 
characterization for universally ideal ones. LVe recall that an access structure A 
is universally ideal if it is q-ideal for any finite domain of secrets. Our main 
result is: 

Theoreiu6. The access s t ruc iure  A i s  uiii.ccrsally i d e a l  if and o n l y  if A is 
binary- ideal  (&ideal) and ternary- ideal  ($- ideal ) .  

The proof of the theorem proceeds along the following lines: We strengthen 
Theorem 4 of Brickell and Davenport. for the binary and ternary domains of 
secrets. N'e show that  over these domains, every reconstruction function can be 
expressed as a linear combination of tlie sliares of the parties. This enables US t o  
show that  if an access structure A is binary ideal, then there is a matroid 7 that  
is appropriate for A aid is representable over the binary field. The same result 
is proved for the ternary field. Then, using a known result from matroid theory, 
we conclude that if an access structure il is binary and ternary ideal, then there 
is a matroid 'T appropriate for A which is representable over any  field. Thus,  
by Theorein 5 of Brickell and Davenport, t,he access structure is q-ideal for any 
prime power Q. Using the Chinese reiiininder Tlieorcm, A is rn-ideal over any 
finite domain, namely is universally ideal, as desired. 

Definitioii7. Let I7 be a secret sharing scheme for n parties { 1, .  . . , n} ,  and 
the dealer which we denote by 0. The secret will be considered as the share of 
party 0 - the dealer. Let A C_ (0,. . . , a )  and i E (0 , .  . ., n}. The parties in A 
cannot reveal a n y  irijorrnation about the share of i if for every distribution on 
the secrets, every possible shares { s , } , ~ ~ ,  and every possible shares s ; ,  s: 

We also say that d is illdependent of :I with respect to I7 
~ 

T h e  Theorem in [BDDl] had a slightly weaker condition, which we omit for simplicity. 3 
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Definition 1 implies that if A C { 1 , .  . . n} and A # A , then in every secret 
sharing scheme realizing A the secref (i.e. the share of the dealer) is independent 
of the shares of the parties in A. 

Definitiou8. Let I7 be a secret sharing scheme. We say that  a subset A 
(0, 1,. . . , n} is dependent with respect to I7 if there exists an i E A such that 
the parties iu A \  {i} can reconstruct the &are of d (in the sense of definition 1). 
A subset A C_ (0,. . , n} is independent if for every i E A, i is independent of 
A \ { i} with respect to n. 

Notice that the notions of dependent and independent set with respect to a 
given secret sharing schemes are not c6mplementary. There could be a subset A 
of partiea which could neither reconstruct the share of any of its members (and 
thus A in not dependeut), yet could reveal some information on the share of one 
of its members (and thus A is not independent). However, for ideal secret sharing 
scheme, the following theorem of Brickell and Davhport  [BD91] establishes the 
desired relation between the two notions. 

Theorem9 (I3D911. Let lI be an ideal secret shoring scheme reulizing u nun- 
degenemle access sfructure A wilh n parties {1, . . . , n} over 80me dumain of 
secrets S.  Lei A E (0, .  . . , n }  . Then 

1. The subset A is either dependent or independent with respect to  17. 
8. The srrbsci A i s  independent with respect lo  I? if and only if A is an inde- 

pendent sei in a matmid T which is  appropriate for A . 
DefiuitionfO. Let q be a prime power, and L! a q-ideal secret sharing scheme. 
We say that n is linear if for every set that is dependent with respect to a, 
the reconstruction function is linear. That is, for every A C (0, , . . , n} and every 
0 5 i 5 n such that i # A and d depends on A with respect to l7, there are 
constants { t ~ j } ~ ~ ~ ,  CT (all in GF(q)) such that for every secret s E GF(q) and 
choice of random inputs T E R 

where the sum is mod q. 

W e  remark that the secret sharing scheme of Shamir [Sha79) is linear. The 
secret (or any other share) is reconstructed from the shares by substitution in 
the interpolating polynomial. The sufficient condition of Brickell and Davenport 
[BD91] (theorem 5) states that if an ifccesa structure A haa an appropriate 
matroid which is representable over GF(q), then A is q-ideal. Their scheme, 
using our terminology, is a linear q-ideal secret sharing scheme. Our next lemma 
states the reverse direction. 

Lemma 11. If an access structure A has a linear q-ideal secret sharing scheme, 
then A has an appropriate mairoid which is represenfable over GF(q). 
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Prooj (skelcli). By Theorem 4 there is a matroid which is appropriate for A . 
Let 17 be a linear 9-ideal secret sharing scheme €or the access structure A . 
Using fl, we will coiistruct a dependence preserving niapping 4 from the set of 
points of the matroid, (0 , .  . . , n } ,  iiito a vector space over GF(q). 

The mapping qb will be constructed in two stages. In the first stage we will 
map V = (0 , .  . . , n} to GF(q)QXIRl, where R is the source of randomness used 
in l7. For every u E I.' we defiite 

$1(a) = ( ~ u ( ~ l , ~ l ~ , ~ u ( S l ~ ~ ? ) , . ~ ~ ~ ~ a ( ~ q ~ ~ ~ R ~ )  1 
intuitively #I(.) describes t,he shares of party Q with every secret and every 
random input. In the  second stage we coiistruct a iiiappiiig 4 2  which fixes some 
remaining teclinicalicies. \Ye leave tlir iktails to the filial version of this paper. 
These two mapyiiigs 41 and & liavc the property that A C V is dependent in 
7 if and only if 4 2  o q51(il) is linearly dependent in G F ( q ) t .  Thus d = 4 2  0 41 is 
a dependence preserving mapping, and by definition the appropriate matroid 'T 
is representable over GF(q). a 

Definition 12. \Ye say that a fuiictioii f : S' --. S is c o m p o n e n t  s ens i t i ve  if for 
every 1 5 i 5 t ,  every s1,. . . , si-1,  s;, 5 : .  s ;+ l , . .  . ~ sl E 5' ( s i  # si): 

f ( ~ 1 , .  . . , S i - 1 ,  s;, S i t l , .  . . , S L )  f ~ ( s I , .  . . , ~ i - 1 :  s:, ~ i + l , .  . . , S t ) .  

In other words, every change of tlie value of one variablc o f f ,  changes the value 
o f f .  

Letllnli* 13. Lc t  11 be a ( / - i d e a l  s ecr t t  sharing acheme .  ,Let i E { 0 ,  
A E (0 , .  . . , I # }  If a miainicrl su lsc t  s u c h  thut i d c p e i r d s  O I L  A and  i # A. L t t  
f : SI"l - s be the rcconslruclion f u n c t i o n  of f k e  i - f l i  share from the shares  of 
the part ies  i i i  .-I. ?'licit j is componen t  sensitive. 

Proo f. Oriiittect from this preliminary version. 

%l,7e now sliow that, tlie orily cornpoilent sensitive fuuctions for the binary and 
for the ternary domains are linear. IVe start  with the binary case. 

Lemnia14. Let f : GF(2)t - GF(2) be a c o m p o n e n t  sensztive f u n c t i o n .  T h e n  
f c a n  be erpresscd as a fzncnr function ui lh  non-zero c o e f i c i e n t s  over GF(2): 

t 

j(.~'i,. . . ,211 = c + C u,.cc; [ a ,  # o f o r  all i) 
i = l  

Proof. Oniitt.ed from this preliminary version 

We use Leinma 14 to give an exact characterization of binary-ideal access 
structures. 

Corollary15. A J ~  access s t ruc ture  A 
m a l r o i d  which 1s r e p r e s e n t a b l e  over CF('?) at id 1s approprznte f o r  A . 

1s btnary- ideal  i f  and o n l y  :f t h e r e  1s u 
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Proof. Let I7 be a binary-ideal secret sharing scheme that  realizes the access 
structure A . By lemma 13 tlie reconstructloti function of every dependent set 
is compotient sensitive. Tliercfore by lenima 14 every reconstruction function is 
linear over cfF(2), or in other words 17 is a linear scheme. By lemma 11, We 
conclude that  if A is binary-ideal tlicn A has an appropriate matroid that 
is representable over GF(2). The other direction is implied by the sufficient 
condition of Brickell and Davciiport [BDOl] (theorem 5). 

The nest  lemma p a r a h  Lemma 14, this time for the ternary case. 

Lemma16. Lcl  f : GF(3)' - GF(3) be n component senstlive funclzon. Then 
f can be erpresscd (is a liiwar Juiic11oii with non-zero coeficzenis over  GF(3): 

Proof (sketch) .  The proof relies on the observation that  any partial assignment 
to  the variables of a conipoiiciit seiisitive function results in a new component 
seiisitive function (of the remaining variables). In addition, a component sensitive 
function of one variable is a permutation of its domain. 

Fur any finite field CF(q), any  function tvliiclt maps GF(q) t  into GF(q) can be 
espressed as a multivariable polyi~oinial over the field, in which every monomial 
or f coiitaiiis variables whose powers do not exceed q - 1 (since ~4 x). In our 
case the power will not esceetl 2. 

lye first, show that no terin i n  the polynoiiiial f contains a variable of degree 
2. Suppose, wit.lrout loss of gt>iierality, that 2; a.ppears in some monomial. The 
polynomial f will have the form: 

2: . P l ( X 2 ,  . . . , %) f .tl . p 2 ( * ' 2 , .  . . ,2,i) + p3( .2 ,  . . ., ;cn) 

where the polynomial yl is iiot identically zero, and p z , p 3  are arbitary poly- 
nomials. iieiice there esists a substitutiori to tlie variables x2, 
the value o f p l  after the substitution is not zero. This substitution to  f yeilds a 
polvnoiiiial iu XI  , of the form ux? -t bx.1 + c. The coefficient of 21, a ,  is non-zero. 
By the observat.ion mentioned above, the resulting function of z1 should also be 
coiiipoiient sensitive. I t  is not hard to  check t,l:at any degree 2 polynomial over 
GF(3) is not a perrnut.alioiis, and therefore is not component sensitive. Thus f 
coiltailis no variable of degree '2, so all its iiionoinials are multilinear. 

We sCdl have to show that  f contains 110 iiionomial with two variables. We 
0 

!Ye remark that GF(3)  is the largest field where every component sensitive 
function is linear. Already for GF(.I), there are 4! = 24 component sensitive 
functions of one variable (perniutntious), bu t  only 3 - 4 = 12 non-constant linear 

' Every polponiial of the Corm a . + b where a # 0 is a permutation. There are 6 
such polynornids and there are G permutations over GF(3), therefore every degree 2 
polynomial cannot be a perinu t.atiou. 

leave the details to the final version of the paper. 



191 

€unctions. Now using tlie same arguments as in tlie proof of Corollary 15 (for 
the binary case), we conclude with the following charcterization of ternary-ideal 
access structures. 

Corollary 17. A n  access structure A is ternary- ideal ,  if and only i f  there is a 
muiroid which is represcnlable  o v e r  C F ( 3 )  a n d  is appropr ia t e  f o r  A , 

We saw that represelltation over GF(2) determines i f  an access structure is 
binary-ideal, ail4 representation over CF(3) determines if an access structure is 
ternary-ideal. Therefore, if an access structure is both binary-ideal and ternary- 
ideal, then i t  has an appropriate matroid !.hat is represeiitable over GF(2) and 
over G F(3). The nest proposition froin [t\.'eliG] states strong implications of the 
representatabilit,~ over the two finile fields. I t  will be used to complete the proof 
of our main theoreni. 

Propositionl8. .4 rnalro id  7 is reprcseii lable uuer  GI'(2) a n d  over GF(3) if 
a n d  o n l y  i f  I is represenluble  over  a n y  j ie ld .  

Using t.Iiis proposition we get: 

Corollary 19. If a,& access s t ruc ture  A is binury- ideal  and  t e rnary - idea l  then 
for e v e r y  q such f h a t  q i s  a pi-inic potccr, A is q- ideol .  

Proof. If an access structure A is binary-ideal and ternary-ideal, then by corol- 
laries 15 and 17 the access structure A lias an appropriate matroid 7 that  
is representable over CF(2) aiid over GF(3) (remember that there can be only 
one appropriate inatroid for A ). IIeiice proposition 18 implies that  7 is repre- 
sentable over aiiy field. From Theorem 4 we conclude that the access structure 
A is ideal over any firiite field: i.e. ,-I is q-ideal for every prime-power q.  [7 

Corollary20. If a n  access s t ruc ture  A is binary- idcal  a i d  t e rnary - idea l  i h e n  
f o r  e v e r y  posi l ive  i i i t q e r  m, f he  acccss s t ruc iure  A is  in- ideal .  

Proof. Let S be a finite domain of secrets of size r n .  Let m = p i 1  . p >  . . . . . 
p:' where p j  are distinct primes. Given a secret s E S for every 1 5 j 5 2 :  
independently, we use the ideal secret sliariiig scfieine to share s mod pii. Every 
subset of part.ies A E A can recoiistruct s mod p I j ,  therefore using the Chinese 
remainder Theorem, they can reconst,ruct tlie secret. Since for each j the secret 
s mod p y  is shared independently, then every subset A q' A does not know 
anything about the secret s. 

This last. corollary is a restatement of Theorem G ,  and it completes the argu- 
ments in the proof of our main result. 

4 Examples 

In this section we formulate several known constructioiis from matroid theory 
as ideal access structures. Our first two esamnlrs show that the rondi t inn  of 
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Tlieorcin 6 cannot be relaxed: Being either just  2-ideal or just  3-ideal is not 
sufficient for being universally ideal. Then, we demonstrate how graphic and 
cograpliic matroids give rise to iiiteresting classes of universally ideal access 
schemes. 

Example 1 (the 2 out of .3 occess structure) , IVe recall that  the 2 out  of 3 ac- 
cess structure is the access structure with 3 parties in which every two parties 
togel;hcr can recoiistruct the secret, and every party by itself does not know 
anythiiig ahout the secret. The appropriate matroid for this access structure is 
tlie matroid witJi V = { O , i ,  2 , 3 }  a i d  Z = {--I : (ill 5 2} .  It is not difficult to 
verify that this rnatroid is not representable over GF(2), hence the 2 out of 3 
access structure is not 2-ideal. But this access structure is 3-ideal, as the follow- 
ing scheme clemonstratcs: 
Let s E {0, 1,2} be the secret.. The dcaler CliOOSe5 at random a nuniber T E 
(0, 1,2}. the sliare of party 1 is I * ,  tlie share of party 2 is T + s, and the share 
of parry 3 is r -I- 2s.  This access structure dcnioiistrates that being 3-ideal does 
not suffice to  guarantee that iui  access schi-me is iiiiiversally ideal. 

Examp/e1 .  Consider thc following access structure F (see Fig. 1). The set of 
parties is { I ,  2 , 3 , 4 , 5 ,  G I .  The 1tccess structure is the closure of the set 

The matroid that  is appropriate for t h s  access structure is the Fano matroid 
[IVeliS], which is reprcseniable oiily over ficlris of characteristic 2. Hence F is 
2-idea1, and is iiot 3-ideal. The 2-ideal secret sharing scheme for F uses two 
ra idom bits ro, 1'1 wliich are cliosen independently with uniforni distribution. 
The scheme is described 111 r ig .  2 .  This access structure demonstrates that being 
'2-ideal does l l ~ t  suffice to guarantee that a11 access scheme is unikersally ideal. 

1 

4 S 6 

Fig. 1. The niiiiinial sets of t.he access strrtcture .F 

The access structure 3' = c l ( F m  u { 3 ,  -1.5}) has  a appropriate matroid that 
is representable over GF(3) but not over GF(2)  [Wel76]. Actually, trhe 3-ideal 
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4 5 6 
0 0 a 

r,+s r,+ s r,+r i+ s 

Fig. 2. An ideal scheine lor F with secret s and random illdependent inputs TO, r1 

secret sharing scheme for  3’ is tlic siiiiie ;IS tlie binary scheme for 3, except 
here ro, r1 are clioseii uniformly and independently from (0, 1,2}. Notice that  
the parties { 3 , 4 , 5 }  can reconstruct 2s  over the two fields, which is useless over 
GF(2), but enables to reconstruct the secret over GF(3).  This access structure 
demonstrates again that being 3-idcal tlocs not suffice to  guarantee that  an 
access scheme is universally ideal. 

Example 3. Here we give a niethocl for conibining two ideal access structures for 
n and F parties int,o a n e w  ideal access s t ruct ,urc  for rz + & - 1 parties. Let A be a 
non-degenerate access structure wit11 part.ies { 1: , . . . n } ,  and let A 1 be an access 
structure w i t h  parties { t i  + 1, , n  + C ) .  \Ve dciiote by A ’ = A (i, A 1) the 
access structure with n + C - l  parties { I , .  . . , i - I ,  i + 1,.  . . , n ,  n + 1 , .  . . , n + f}. 
and reconstructing sets 

A ’ = {e : e E A and i I$ e }  U { ( e  \ { i } ) u e 1  : e E A .  i E e ,  and e l  E A I}. 

That  is, the sets that can reconstruct tlic secret in the new access structure are: 

- The sets from A that  do not contsin party i. 
- The sets from A that  do contain 1mrt.y i, i n  which we replace the party i 

wit.11 each sct of A 1. 

Let A be a non-degenerate access structure, let i be a party in A , and let 
A 1 be an access structure. JYe will show that if A and A 1 are universally 
ideal then A ’ = A ( ; , A  1) is uiiivcrsally ideal, by describing (for every m) an 
rn-ideal secret sharing scheme for A ’. Given a secret s use an rn-ideal scheme 
to generate shares for h e  parties in ,4 . Let a be tlie random variable that  
denotes the share of part,y i in t,he sclieiiie for A . Now use an nz-ideal scheme 
for A 1 with secret u to generate shares for the partics in A 1. 

It is easy to  see that the 1 out of ’2 threshold access structure is universally 
ideal (give tlie secret to tlie two parties). The 2 out of 2 tiireshold access structure 
is also universally ideal (give the first party a random input T ,  and to  the second 
party s + 7- mod t n ) .  Using these two access structures as building blocks, and 



194 

umng the above construction recursively, we get a class of universally ideal access 
structures. The resulting class of access structure3 is a special case of access 
structures whose appropriate matroids is graphic, a class which we discuss next. 

Etample 4. Let G = (V, E) be an undirected graph. The cycles of G (as defined 
in graph theory) are the minimal dependent sets of a matroid 7 ( G )  on the edge 
set E. In other words, the sets of points of the rnatroid 7(G) is the set of edges 
of C, and A E E is an independent set of 7(C) if A does not contain cycles, 
i.e. A is a forest in G. A matroid 7 is graphic if there exists some graph G 
such that 7 is isomorphic to the cycle matroid 7 ( G ) .  Every graphic matroid is 
representable over any field [We176]. Therefore if an access structure A has a 
graphic appropriate matroid, then A is universally ideal. To be more precise, 
let C = (V,E)  where V = (0, l , . .  .,n}, E V x V, and eo = (0 , l )  E E be a 
special edge which corresponds to the dealer. Let 

A (C) = cl({C \ {eo} : C E E is a minimal cycle that contains eo}) 

Then A (G) is universally ideal. The scheme 17 for graphic matroide is actu- 
ally quite simple. Let r =< r1,rj,. . ., rlvl-1 > be the random input (IVl - 1 
independent values). Then for every ( i ,  j) E E ( i  5 j )  

For every simple path which starts at node 1, and ends at node 0, it is possible 
to assign f l  weights to the shares dong the path, such that the weighted sum 
is equel to the secret 8 .  This scheme was found previously (not in the context of 
graphic matroids) by Benaloh and Rudich [BRSq. 

We demonstrate this construction on a specific graph Go, shown in Fig. 3. 
The cycles in the graph are: 

{eO,e2,e3) ,{eO,el,ea,e4) ,(el,e3re4), 

and these sets are the minimal dependent sets of  GO). The access structure 
A (Go) is the closure of {{ea,e3} ,(el,ez,e4)}. The dealer is the edge eg. The 
shares of the parties e2 and e3 are rl - r 2  and ‘1 + s - r 2  respectably and they 
can reconstruct the secret by substructing their shares. 

Example 5. Let G = (V, E) be an undirected graph. A cut in G is a collection 
of edges such that deleting them from G, increases the number of connected 
components in the remaiuing graph. The cuts of G are the minimal dependent 
sets of a matroid 7*(G) on the edge set E. A matroid ‘T is cographic if there 
exists some graph C such that 7 is isomorphic to the cut matroid ‘T*(G). Every 
cographic matroid is representable over any field [We176]. Therefore if an access 
structure A has a cographic appropriate matroid, then A is universally ideal. 
To be more precise, let G = (V,E)  where V = { O , l , .  . ., n}, E V x V, and 
eo = (0 , l )  € E be a special edge which coresponds to the dealer. Let 

A *(G) = cl({C \ (eo) : C C_ E is a minimal cut that contains eo}) 
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2 

0 

Fig.3. The graph Go. 

Then A *(G) is universally ideal. We again demonstrate this example on the 
graph Go shown in Fig. 3. The cuts of Go are 

{eo, e l ,  4 I {co,  e21 , {eo,  E31 e.41 3 { e l *  e 2 ,  e3) > {e l ,  E4) I { e2 ,  e 3 d  > 

and these are the miiiimal dependent sets of the matroid 'T*(Go). 
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