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“I weep for you,” the Walrus said, “O Qysters,” said the Carpenter.
“J deeply sympathize.” “You've had a pleasant run!

With sobs and tears he sorted out Shall we be trotting home again?”
Those of the largest size, But answer came there none -
Holding his pockel-handkerchief And this scarcely odd, because
Before his streaming eyes. They'd eaten every one.

from “Through the looking Glass” by Lewis Caroll

Abstract. Given a set of parties {1,...,n}. an access structure is a
monotoune collection of subsets of the parties. For a certain domain of
secrets, a secret sharing scheme for an access structure is a method for
a dealer to distribute shares to the parties, such that only subsets in the
access structure can reconstruct the secret.

A secret sharing scheme is ideal il the domains of the shares are the
same as the domain of the secrets. An access struclure is untversally
ideal if there is an idcal sccret sharing scheme for it over every finite
domain of secrets. An obvious necessary condition for an access struc-
ture to be universally ideal is to be ideal over the binary and ternary
domains of secrets. In this work, we prove that this condition is also suf-
ficient. In addition, we give an exact characterization for each of these
two conditions, and show that each condition by itself is not sufficient
for universally ideal access structures.

1 Introduction

A secret sharing scheme involves a dealer who has a secret, a finite set of n par-
ties, and a collection A of subsets of the parties called the access structure. A
secret-sharing scheme for A is a method by which the dealer distributes shares
to the parties such that any subset in .4 can reconstruct the secret from its
shares, and any subset not in A cannot reveal any partial information about
the secret (in the information theoretic sense). A secret sharing scheme can only
exist for monotone access structures, i.e. if a subset 4 can reconstruct the se-
cret, then every superset of A can also reconstruct the secret. If the subsets that
can reconstruct the secret are all the sets whose cardinality is at least a certain
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threshold ¢, then the scheme is called ¢ out of n threshold secret shariug scheme.
Threshold secrct sharing schemes were first introduced by Blakley [Bla79] and
by Shamir [Sha79]. Secret sharinyg scliemes {or general access structures were
first defined by lto, Saito and Nishizeki in [ISN87]. Given any monotone access
structure, they show how 1o realize a secret sharing scheme for the access struc-
ture. Benaloh and Leichter [BL8S] describe a more efficient way to realize such
secret sharing schemes,

Even with the more eflicient scheme of {[BL&8], most access structures require
shares of exponential size: Even if the domain of the secret is binary, the shares
are strings of length 29(°) where n is the number of participants. The ques-
tion of lower bounds on the size of shares for some (explicit or random) access
structures is still open. On the other hand, certain access structures give rise to
very economical secret sharing schemes. A secret sharing scheme is called ideal
if the shares are taken from the same domain as the secrets. An access structure
is called m—tdeal if there is an ideal secret sharing scheme which realizes the
access structure over a domain of secrets of size m.

Brickell [Bri89] was the first to introduce the notion of m—ideal access struc-
tures. Brickell and Davenport {BD91] have shown that such structures are closely
related to matroids over a set containing the participants plus the dealer. They
give a nccessary condition for an access structure to be m—ideal (being a ma-
troid) and a somewhat stronger sufficient condition (the matroid should be rep-
resentable over a field or algebra of size m). Certain access structures, such as
the threshold ones, are m—ideal for m that is at least n. However, for domains
of secrets which contain m elements where m is smaller then n, the threshold
access structures are nof m—ideal (for threshold ¢ such that 2 <t < n—1),
as proved by Karnin, Greene and Hellman [KGH83]. This qualitative result was
nnproved by Kilian and Nisan {KN90], who showed that the ¢ out of n threshold
secret sharing scheme over a binary domain of secrets requires shares from a
domain that is at least of size n — ¢+ 2 (for 2 <t <n —1).

We say that an access structure is universally ideal if for every positive integer
m, it is m~1ideal. Universally ideal access structures are particularly convenient
to work with because they are very efficient no maiter what the domain of
secrets is. A simple example of a universally ideal access structure is the n out
of n threshold access structure. In this work we give a complete characterization
of universally ideal access structures, Our work builds upon results of Brickell
and Davenport which relate ideal access structures to matroids, as well as some
known results from matroid theory. An obvious necessary condition for an access
structure to be universally ideal is to be both 2—ideal and 3—ideal. Interestingly,
our main result states that this condition is also sufficient. We give examples

which demonstrate that just one of these two requirements is not a sufficient
condition to be universally ideal.

The remainingof this paper is organized as following. In section 2 we give for-
mal definitions and quote the results of Brickell and Davenport. Section 3 states

our main theorem, and details its proof. Section 4 illustrates some clarifying
examples.
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2 Definitions and Related Results

This section contains formal definitions and known related results, that will be
used in the rest of this paper.

2.1 Seecrct Sharing Schemes
The definition of secret sharing schemes is based on [CK89].

Definition 1. Let S = {0,...,m— 1} be a finite set ol secrets. Let A C 2{1...n}
be a monotone set (such that § & A ) called the access structure. We say that a
secret-sharing scheme [T realizes an access structure .4 with domain of secrets
S if IT is a mapping IT : S x R — Sy x Sa x ... x S, {rom the cross product
of secrets and a set of random inputs to a set of n-tuples (the shares) such that
the following two requirements hold:

1. The secret s can be reconstructed by any subset in A . That is, for any subset
Ae A (A=, ..., 13,,”}), there exists a function by 1 S;, % ... x Si, — S
such that for every random inputs » it holds that if /I(s,r) = {s1,s2,....5n}
then ha({s:};e4) = s

2. Every subset not in A can not reveal any partial information about the
secret (in the information theoretic sense). Formally, for any subset A ¢ A |

for every two secrets a,b € 5, and for every possible shares {55}46/1 :
I?_r[ {Si}ie,\ | a } = r:_l[ {Si}ieA I b ]
We denote the shares of party ¢ by [T;(s.r).

Given a collection I' € 2{1»} thie closure of I, denoted by cl(I), is the
minimum collection that contains I” and is monotone (if B € cl(I") and B C C
then C € cl(I')). Given an access structure A , we denote A ,, to be the collection
of minimal sets of A, that is B € 4 ,,, if B € A and for every C ¢ B it holds
that Cg A . If A = {4 :]4] > t}, then a secret sharing for A is called a t out
of n threshold secret sharing scheme, and the access structure A is called the ¢
out of n threshold access structure.

Definition 2. A secret sharing scheme /T : S x R — 51 x ... x S, is m—ideal
if |S1] = 1S2| = ... = |S.u] = |S| = m, that is the domain of the shares of each
party has the same size as the domain of the secrets, and this domain contains
m elements. An access structure A is m—ideal if there exists a m—ideal secret
sharing scheme that realizes A . An access structure A is universally tdeal if for
every positive integer m the access structure A is m—ideal.
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2.2 Matroids

Before we continue, we recall the definition of matroids . Matroids are well
studied combinatorial objects (see for example Welsh [Wel76] ). A matroid is an
axiomatic abstraction of linear independence. We give here one of the equivalent
axiom systems that define matroids. A matroid 7 = (V,7) is a finite set V and
a collection T of subsets of V such that (I1) through {I3) are satisfied.

m)odez.

(I2) X eZaudY C XthenY eZ.

(I3) If XY are members of T with |X
that Y U{z} € T.

= |Y| + 1 there exists z € X\Y such

For example every finite vector space is a matroid, in which V is the set of
vectors and Z is the collection of the independent sets of vectors. The elements
of V are called the points of the matroid and the sets in Z are called independent
sets. A dependent set of a matroid is any subset of V' that is not independent. The
minimal dependent sets are called circuits. A matroid is said to be connected if for
any two elements in V, there is a circuit containing both of them. The maximal
independent sets are called bases. In every matroid, all bases have the same
cardinality, which is defined as the rank of a matroid. A matroid is representable
over a field F if there exists a dependence preserving mapping from the points
of the matroid into the set of vectors of a vector space over the field. In other
words, there exist k£ and a mappiug ¢ : V — F* that satisfies:

A C V is a dependent set of the matroid ilf ¢(A) is linearly dependent.

2.3 Relation between Sccret Sharing Schemes and Matroids

The next definition relates access structures and matroids.

Definition3. Let A be an access structure with n parties {1,...,n} and let
T = (V,I) be a connected matroid. We say that the matroid T is appropriaie
for the access structure 4 if V = {0,...,n} and

A =d({C\{0}:0€ C and C is a minimal dependent set of T})

That is, the minimal sets of the access structure A correspond to the minimal
dependent sets in the matroid which contain 0. Intuitively, 0 is added to the set
{1,...,n} to “play the role” of the dealcr.

There are various properties which the collection of minimal dependent sets
in a matroid must satisfy, and these properties do not necessarily hold for an
arbitrary access structure. Not every access structure has an appropriate ma-
troid. But if a connected matroid is appropriate for an access structure, then
it is the only matroid with this property (see [Wel76], Theorem 5.4.1). Brickell
and Davenport {BD91] have found relations between the two notions when A is

an ideal access structure. The next two theorems almost characterize m—ideal
access structures.
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Theorem 4 (necessary condition) [BD91). Ifa non-degenerate access struc-
ture A is m—ideal for some positive infeger m, then there exists a connected
matrotd T that is appropriate for A .

Theorem 5 (sufficient condition) {BD91]. 2 Let ¢ be a prime power, and A
be a non-degenerate access structure. Suppose that there is a connected matroid

T that is appropriate for A . If T is representable over the field GF(g), then A
is q—ideal.

3 The Characterization Theorem

The two theorems of Brickell and Davenport almost characterize g—ideal access
structures for ¢ a prime power. However, If there is a connected matroid 7
that is appropriate for 4 but is not representable over the field GF(q), then
the theorems do not determine whether or not A is g—ideal. While we do not
close the remaining gap for g—ideal access structures, we do give a complete
characterization for universally ideal ones. We recall that an access structure A

is universally ideal if it is g—ideal for any finite domain of secrets. Qur main
result is:

Theorem 6. The access siruciure A s universally ideal if and only if A s
binary-ideal (2-ideal) and ternary-ideal (3-ideal).

The proof of the theorem proceeds along the following lines: We strengthen
Theoremn 4 of Brickell and Davenport for the binary and ternary domains of
secrets. We show that over these domains, every reconstruction function can be
expressed as a linear combination of the shares of the parties. This enables us to
show that if an access structure .4 is binary ideal, then there is a matroid 7 that
is appropriate for A and is representable over the binary field. The same result
is proved for the ternary field. Then, using a known result from matroid theory,
we conclude that if an access structure A is binary and ternary ideal, then there
is a matroid 7 appropriate for .4 which is representable over any field. Thus,
by Theorem 5 of Brickell and Davenport, the access structure is g—ideal for any
prime power q. Using the Chinese remainder Theorem, A4 is m—ideal over any
finite domain, namely is universally ideal, as desired.

Definition7. Let IT be a secret sharing scheme for n parties {1,...,n}, and
the dealer which we denote by 0. The secret will be considered as the share of
party 0 - the dealer. Let 4 C {0,...,n} and 7 € {0,...,n}. The parties in A
cannot reveal any information about the share of i if for every distribution on
the secrets, every possible shares {s4},. 4, and every possible shares s, s]

f}'[ H{(S_.?') =8 | {Sa}ae,x l = ?f[ H!’(Sv") = s’i | {sa}aeA ]

We also say that i is independent ol .4 with respect to /7.

3 The Theorem in [BD91] had a slightly weaker condition, which we omit for simplicity.
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Definition 1 implies that if A C {1,...,n} and A ¢ A, then in every secret
sharing scheme realizing A the secret (i.e. the share of the dealer) is independent
of the shares of the parties in A.

Definition8. Let IT be a secret sharing scheme. We say that a subset A C
{0,1,...,n} is dependen! with respect to II if there exists an i € A such that
the parties in A\ {i} can reconstruct the share of i (in the sense of definition 1).
A subset A C {0,...,n} is independent if for every i € A, i is independent of
A\ {i} with respect to IT.

Notice that the notions of dependent and independent set with respect to a
given secret sharing schemes are not complementary. There could be a subset A
of parties which could neither reconstruct the share of any of its members (and
thus A in not dependent), yet could reveal some information on the share of one
of its members (and thus A is not independent). However, for ideal secret sharing
scheme, the following theorem of Brickell and Davénport. [BD91] establishes the
desired relation between the two notions.

Theorem 9 ([BD91]. Let IT be an ideal secret shan’ng scheme realizing ¢ non-
degenerale access structure A with n parties {1 .,n} over some domain of
secrels S. Let AC {0,...,n} . Then

1. The subset A is either dependent or independent with respect o IT.
2. The subset A is independent with respect to IT if and only if A is an inde-
pendent sel in a malroid T which is appropriate for A .

Definition10. Let ¢ be a prime power, and IT a g—ideal secret sharing scheme.
We say that IT is linear if for every set that is dependent with respect to 17,
the reconstruction function is linear. That is, for every A C {0,...,n} and every
0 € i € n such that i € A and ¢ depends on A with respect to I7, there are
constants {aj}, A o (all in GF(¢)) such that for every secret s € GF(g) and
choice of random inputs r € R

IL(s,r) =0+ Ea,-l]j(s,r)
jea

where the sum is mod ¢.

We remark that the secret sharing scheme of Shamir [Sha79] is linear. The
secret {or any other share) is reconstructed from the shares by substitution in
the interpolating polynomial. The sufficient condition of Brickell and Davenport
[BD91] (theorem 5) states that if an access structure .4 has an appropriate -
matroid which is representable over GF(q), then A is ¢—ideal. Their scheme,

using our terminology, is a linear g—ideal secret sharing scheme. Our next lemma
states the reverse direction.

Lemmall. If an access structure A has a linear ¢—ideal secrei sharing scheme,
then A haes an appropriste matroid which is representable over GF(q).
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Proof (sketch). By Theorem 4 there is a matroid which is appropriate for A .
Let /T be a linear gq—ideal secret sharing scheme for the access structure A .
Using IT, we will construct a dependence preserving mapping ¢ from the set of
points of the matroid, {0,...,n}, into a vector space over GF(q).

The mapping ¢ will be constructed in two stages. In the first stage we will
map V = {0,...,n} to GF(¢)?*!f!, where R is the source of randomness used
in IT. For every a € V" we define

¢1(a) = ( Hulsy,r1), Halsy,m2), - Halsq 7iR1) )

intuitively ¢1(a) describes the shares of party a with every secret and every
random input. In the second stage we construct a mapping ¢2 which fixes some
remaining techinicalities. We leave the details to the final version of this paper.
These two mappings ¢; and ¢, have the property that A C V is dependent in
T if and only if ¢2 0 $,(A) is linearly dependent in GF(q)!. Thus ¢ = g2 0¢1 18
a dependence preserving mapping, and by definition the appropriate matroid 7

is representable over GF(y). a
Definition 12. We say that a function f : §* — S is component sensitive if for
every 1 < i<t every s1,....5i-1, 5,5, Sit1,--..5t € 5 (8] # 5i):
] !
f(Sl,..-,Si-[,Si,Si+1, ‘. 'yst) F f(slv .. 'vsi—-l:si\si-}'l) . '788)'

In other words, every change of the value of one variable of f, changes the value

of f.

Lemmal3. Let IT be a q—ideal secret sharing scheme. Let i € {0,...,n}, and
A C{0,...,n} be a nunimal subsel such that i depends on A and ¢ ¢ A. Let
f: 818 — S be the reconsiruction function of the i—th share from the shares of
the parties in A. Then f is component sensitive,

Proof. Omitted [rom this preliminary version.

We now show that the only component sensitive fuuctions for the binary and
for the ternary domains are linear. We start with the binary case.

Lemmal4. Let f: GF(2)! — GF(2) be a component sensitive function. Then
f can be expresscd as a lincar function with non-zero coefficients over GF(2):

t
fle,. . z)=0+ Zu.'.v,- (a; 0 for all i).
i=]

Proof. Omitted from this preliminary version.

We use Lemnma 14 to give an exact characterization of binary-ideal access
structures.

Corollary 13. An access structure A is binary-ideal if and only if there is a
malroid which is representable over GF(2) and is appropriate for A .
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Proof. Let IT be a binary-ideal secret sharing scheme that realizes the access
structure A . By lemma 13 the reconstruction function of every dependent set
is component sensitive. Therefore by lemma 14 every reconstruction function is
linear over GF(2), or in other words [T is a linear scheme. By lemma 11, We
conclude that if A is binary-ideal then A has an appropriate matroid that
is representable over GF(2). The other direction is implied by the sufficient
condition of Brickell and Davenport [BD91] (theorem 5). O

The next lemma paralles Lemma 14, this time for the ternary case.

Lemma16. Let f: GF(3)! — GI(3) be a component sensitive function. Then
[ can be expressed as a linear function with non-zero coefficients over GF(3):

1
f(.rl,...,;z:t):o'ﬁ-Zcx,-;r,v {a; £ 0 for all 3).

=l

Proof (sketch). The proof relies on the observation that any partial assignment
to the variables of a compouent sensitive function results in a new component
sensitive function {of the remaining variables). In addition, a component sensitive
function of one variable is a permutation of its domain.

For any finite field GF(¢), any function which maps GF(q)* into GF(g) can be
expressed as a multivariable polynomial over the field, in which every monomial
ol f contaius variables whose powers do not exceed ¢ — 1 (since z¢ = ). In our
case the power will not exceed 2.

We first show that no term in the polynomial f contains a variable of degree
2. Suppose, without loss of generality, that 27 appears in some monomial. The
polynomial f will have the form:

J"’f 'pl(‘z:'ly "‘?:cfl_) + Ty pl(’r2~ .,I”) +p3("£21 -"1’7"11.)

where the polynomial p; is not identically zero, and ps,pa are arbitary poly-
nomials. Hence there exists a substitution to the variables 24, ..., 2, such that
the value of p; after the substitution is not zero. This substitution to f yeilds a
polynomial in 2y, of the form az?+bz; +c. The coefficient of z,, a, is non—zero.
By the observation mentioned above, the resulting function of z; should also be
component sensitive. It is not hard to check that any degree 2 polynomial over
GF(3) is not a permutation®, and therefore is not component sensitive. Thus f
contains no variable of degree 2, so all its monomials are multilinear.

We still have to show that f contains no monomial with two variables. We
leave the details to the final version of the paper. O

We remark that GF(3) is the largest field where every component sensitive
function is linear. Already for GF(4), there are 4! = 24 component sensitive
functions of one variable (permutations), but only 3 -4 = 12 non-constant linear

* Every polynomial of the form a - z; + b where a # 0 1s a permutation. There are 6
such polynomials and there are 6 permutations over GF(3), therefore every degree 2
polynomial cannot be a permutation.
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functions. Now using the same arguments as in the proof of Corollary 15 (for
the binary case), we conclude with the following charcterization of ternary-ideal
access structures.

Corollary 17. An access structure A is ternary-ideal, if and only if there 1s a
matroid which is represcniable over GF(3) and is appropriete for A .

We saw that representation over GF(2) determines if an access structure is
binary-ideal, and representation over GF(3) determines if an access structure is
ternary-ideal. Therefore, if an access structure is both binary-ideal and ternary-
ideal, then it has an appropriate matroid that is representable over GF(2) and
over GF(3). The next proposition from [Wel70] states strong implications of the
representatability over the two finite fields. Tt will be used to complete the proof
of our main theorem.

Proposition18. A matroid T is representable over GF(2) and over GF(3) if
and only if T is representable over any field.

Using this proposition we get:

Corollary 19. If an access structure A is binary-ideal and ternary-ideal then
for every q such that q ts a prime power, A is g—ideal.

Proof. If an access structure A is binary-ideal and ternary-ideal, then by corol-
laries 15 and 17 the access structure A has an appropriate matroid 7 that
is representable over GF(2) and over GF(3) (remember that there can be only
onc appropriate matroid for A ). Hence proposition 18 implies that 7 1s repre-
sentable over any field. From Theorem 4 we conclude that the access structure
A is ideal over any finite field, i.e. A is q—ideal for every prime-power ¢. O

Corollary 20. If an access siructure A is binary-idcal and ternary-tdeal then
for every posilive integer m, the access structure A is rn—ideal.

P}t where p; are distinct primes, Given a sccret s € S for every 1 < j < ¢,
independently, we use the ideal secret sharing scheme to share s mod p;-’. Every
subset of parties A € A can reconstruct s mod p}"‘ therefore using the Chinese
remainder Theorem, they can reconstruct the secret. Since for each j the secret

s mod p}j is shared independently, then every subset 4 € A does not know
anything about the secret s. g

Proof. Let § be a finite domain of secrets of size m. Let m = p’i‘ <p;’ .

This last corollary is a restatement of Theorem 6, and it completes the argu-
ments in the proof of our main result.

4 Examples

In this section we formulate several known constructions from matroid theory
as ideal access structures. Qur first two examples show that the condition of
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Theorem 6 cannot be relaxed: Being either just 2—ideal or just 3—ideal is not
sufficient for being universally ideal. Then, we demonstrate how graphic and

cographic matroids give rise to interesting classes of universally ideal access
schemes.

Ezample 1 (the 2 out of 3 access structure) . We recall that the 2 out of 3 ac-
cess structure is the access structure with 3 parties in which every two parties
together can reconstruct the secret, and every party by itself does not know
anything about the secret. The appropriate matroid for this access structure is
the matroid with V' = {0,1,2,3} and T = {4 :|4| < 2}. It is not difficult to
verify that this matroid is not representable over GF(2), hence the 2 out of 3
access structure is not 2-ideal. But this access structure is 3-ideal, as the follow-
ing scheme demonstrates:

Let s € {0,1,2} be the secrct. The dealer chooses at random a number » €
{0,1,2}. the share of party I is r, the share of party 2 is r + s, and the share
of party 3 is r + 2s. This access structure demonstrates that being 3—ideal does
not sulfice to guarantee that an access scheme is universally ideal.

Ezample 2. Consider the following access structure F (see Fig.1). The set of
parties is {1,2,3,4,5,6}. The Access structure is the closure of the set

Fumo={{1,1}.{2,5},{3,6} . {1,2,6) . {1,3,5}.{2,3,4}, {4,5,6}} .

The matroid that is appropriate for this access structure is the Fano matroid
[Wel76], which is representable only over ficlds of characteristic 2. Hence F is
2—-ideal, and is not 3—ideal. The 2—ideal secret sharing scheme for F uses two
random bits rg, 7y which are chosen independently with uniform distribution.
The scheme is described in Fig. 2. This access structure demonstrates that being
2—ideal does not suffice to guarantee that an access scheme is universally ideal.

1 2 3
[ J
NS
4 5 6

Fig. 1. The minimal sets of the access structure F

The access structure F' = cl(F,, U {3,4.5}) has a appropriate matroid that
is representable over GF(3) but not over GF(2) [Wel76]. Actually, the 3—ideal
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T, T, To+I,
[ L o
1 2 3
4 5 6
[ ® ®
TS I+s TG+ S

Fig. 2. An ideal scheme for F with secret s and random independent inputs ro, 1.

secret sharing scheme for F’ is the same as the binary scheme for F, except
here ro,r; are chosen uniformly and independently from {0,1,2}. Notice that
the parties {3,4,5} can reconstruct 2s over the two ficlds, which is useless over
GF(2), but enables to reconstruct the secret over GF(3). This access structure
demonstrates again that being 3—idcal does not suffice to guarantee that an
access scheme is universally ideal.

Erample 3. Here we give a method for combining two ideal access structures for
n and ¢ parties into a new ideal access structure for n + ¢~ 1 parties. Let 4 bea

non-degenerate access structure with parties {1,...,n}, and let A ; be an access
structure with parties {n+1,...,n4 (}. We dcuote by A" = A4 (i, A 1) the
access structure with n+¢—1 parties {{,...,i=1,i+1,...,n,n+1,...,n+ £},

and reconstructing sets

A'={e:ec A andi%e}U{(e\{i})Uel re€ A, i€e, and ey éAl}A
That is, the sets that can reconstruct the sccret in the new access structure are:

— The sets from A that do not contain party 4.

— The sets from A that do contain party #, in which we replace the party i
with each set of 4 ;.

Let A be a non-degenerate access structure, let ¢ be a party in A, and let
A 1 be an access structure. We will show that if 4 and A ; are universally
ideal then A’ = A (i, A ;) is universally ideal, by describing (for every m) an
m~—ideal secret sharing scheme for A . Given a secret s use an m—ideal scheme
to generate shares for the parties in A . Let a be the random variable that
denotes the share of party i in the scheme for A . Now use an m~—ideal scheme
for A 1 with secret « to generate shares for the partics in A ;.

It is easy to see that the | out of 2 threshold access structure is universally
ideal (give the secret to the two parties). Tlie 2 out of 2 threshold access structure
is also universally ideal (give the first party a random input r, and to the second
party s + r mod m). Using these two access structures as building blocks, and
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using the above construction recursively, we get a class of universally ideal access
structures. The resulting class of access structures is a special case of access
structures whose appropriate matroids is graphic, a class which we discuss next.

Ezample §. Let G = (V, E) be an undirected graph. The cycles of G (as defined
in graph theory) are the minimal dependent sets of a matroid 7(G) on the edge
set E. In other words, the sets of points of the matroid 7(G) is the set of edges
of G, and A € E is an independent set of 7(G) if A does not contain cycles,
ie. Ais a forest in G. A matroid T is graphic if there exists some graph G
such that 7 is isomorphic to the cycle matroid 7(G). Every graphic matroid is
representable over any field [Wel76]. Therefore if an access structure A has a
graphic appropriate matroid, then A is universally ideal. To be more precise,
let G = (V,E) where V= {0,1,...,n}, ECV xV,and o =(0,1) E Ebe a
special edge which corresponds to the dealer. Let

A (G) = d({C\ {eo} : C C F is a minimal cycle that contains eg})

Then A (G) is universally ideal. The scheme IT for graphic matroids is actu-
ally quite simple. Let » =< ry,r3,...,7v|-1 > be the random input (|V]| -1
independent values). Then for every (i,j) € E (i < j)

ri — 1 t£0
Tapon) = {372,120

For every simple path which starts at node 1, and ends at node 0, it is possible
to assign 1 weights to the shares along the path, such that the weighted sum
is equel to the secret s. This scheme was found previously (not in the context of
graphic matroids) by Benaloh and Rudich [BR89].

We demonstrate this construction on a specific graph Gy, shown in Fig. 3.
The cycles in the graph are:

{80; €2, 33} ’ {80’ €1,¢€2, 64} ’ {61, €3, 64} ’

and these sets are the minimal dependent sets of T7(Gg). The access structure
A (Go) is the closure of {{e2,ea},{e1,e2,¢e4}}. The dealer is the edge eg. The
shares of the parties e; and e3 are 1 — r9 and r; 4+ § — r; respectably and they
can reconstruct the secret by substructing their shares.

Ezample 5. Let G = (V| E) be an undirected graph. A cut in G is a collection
of edges such that deleting them from G, increases the number of connected
components in the remaining graph. The cuts of G are the minimal dependent
sets of a matroid 7*(G) on the edge set E. A matroid 7 is cographic if there
exists some graph G such that 7 is isomorphic to the cut matroid 7*(G). Every
cographic matroid is representable over any field [Wel76]. Therefore if an access
structure ,A has a cographic appropriate matroid, then .A is universally ideal.
To be more precise, let G = (V, E) where V = {0,1,...,n}, EC V x V, and
¢o = (0,1) € E be a special edge which coresponds to the dealer. Let

A*(G) = H({C\ {e0} : C C F is a minimal cut that contains ep})



Fig.3. The graph Go.

Then A *(G) is universally ideal. We again demonstrate this example on the
graph (G¢ shown in Fig. 3. The cuts of G are

{60, €1, 63} ' {Fo, 6’2} ) {60, €3, 64} , {61, €2, 83} ) {61,64} ,{82, 6’3,64} )

and these are the minimal dependent sets of the matroid 7*(Gy).
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