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Abstract .  We exhibit a two-prover perfect zero-knowledge proof sys- 
tem for 3-SAT. In this protocol, the  verifier asks a single message t o  each 
prover, whose size grows logarithmically in the size of the %SAT formula. 
Each prover's answer consists of only a constant number of bits. T h e  ver- 
ifier will always accept correct proofs. Given a n  unsatisfiable formula S 
the  verifier will reject with probability a t  least O((lSI-max-sat(S))/lSl, 
where max-sat (S) denotes the maximum number of clauses of S that  
may be  simultaneously satisfied, arid 1.5' denotes the total number of 
clauses of S. Using a recent result by Arora e t  al [2], we can construct for 
any language in NP a protocol with the property tha t  any non-member 
of the language be rejected with constant probability. 

1 Introduction 

In a multiple-prover interactive proof system, several provers, 9, P2,. . . try to  
convince a verifier V that  a common input c belongs to  a language L.  The 
verification proceeds in rounds; in each round, the verifier sends to  each prover a 
private message (query) and receives an answer. Each prover sees only the queries 
addressed to  i t ,  and cannot communicate with the other provers (at  least until 
the end of the round). When the protocol ends, the verifier decides, based on 
the input string and the messages received, whether or not to accept. 

Multi-prover proof systems were introduced by Ben-Or, Goldwasser, Kilian 
and Wigderson [7] in order t o  obtain zero knowledge proofs without relying on 
complexity assumptions such as the existence of one-way functions. In this paper 
we show another advantage of multi-prover proof systems by exhibiting a low 
communication two-prover perfect zero-knowledge proof system for 3-SAT (and 
thus for every language in NP). In contrast, no such low communication zero 
knowledge protocol is possible in a szngIe prover proof system, unless N P  C 
B P P .  

Kilian [16] has provided additional motivation for striving for low commu- 
nication in the two prover setting: he suggests enforcing the separation of the 
two provers by keeping them (say the two provers are implemented on a smart 
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card) at  some distance from each other. If the distance is long enough and the 
communication complexity is low, then the two provers do not have enough time 
to  communicate during the execution of the protocol. 

In the protocol we present, the verifier sends to  each of the two provers a query 
whose length is logarithmic in the length of the input string, and receives back 
answers whose length is constant. If the input string is not in the language, then 
the verifier detects cheating with some fixed probability a > 0. The protocol 
is perfect zero-knowledge, i.e. there is a polynomial time machine, called the 
simulator, that  produces for every possible (possibly cheating) verifier the same 
distribution of conversations as the verifier would have had with two “real” 
provers. 

To reduce the probability of error t o  2 - k  (rather than 1 - a) ,  the protocol 
can be executed O ( k )  times sequentiaily. Lapidot and Shamir [18] have provided 
an elegant zero-knowledge two prover protocol which is parallelizable, i.e. run- 
ning copies of it in parallel decreases the probability of error exponentially in 
the number of copies. However, it is not known whether this is true for general 
protocols. Feige and Lovasz [13] (continuing [19]) have provided a method that 
can be applied to any protocol in order to obtain a parallelizable protocol, how- 
ever the method does not preserve zero-knowledge. Finding such a method that  
preserves zero-knowledge is an open question. 

In our protocol the two provers sliare a common random string of only log- 
arithmic length. Thus, even if we consider the shared random string to be part 
of the communication complexity of the protocol, then it is still logarithmic. 
The existence of a shared random string is necessary, since we show that for low 
communication zero-knowledge protocols, the only languages that do not require 
the two provers to share a common random string are exactly those in BPP. 

Our protocol is constructive in the sense that  once two provers know a satis- 
fying assignment to  the formula, all they are required to do is some polynomial 
t ime computation. 

1.1 Definitions 

Definition 1 We say that a language L has a two p r o v e r  interact ive  proof sys- 
tem if there exists an interactive probabilistic polynomial time machine (called 
the verifier) I/’ and two interactive machines PI, P2 called Prover 1 and Prover 2 
respectively, satisfying the following conditions. All three machines have a com- 
mon input 3: which may or may not be in L .  The two provers once and for all 
agree on a common strategy. Moreover, prior to  each execution of the protocol, 
they may interact in order to share random bits. Once the protocol begins, they 
are assumed to be isolated from each other. The three machines follow a pre- 
scribed protocol consisting of several rounds; in each round, the verifier sends 
to each prover in private a message (query) and receives an  answer. When the 
protocol ends, the verifier decides whether or not t o  accept, based on the input 
string and the messages received. The protocol must satisfy 



21 7 

Vx E L there exist machines PI and Pz such that V accepts with probability 
1 (completeness); 
there is a fixed constant a > 0 such that Vx $ L and VP1, Pz the probability 
that I/’ accepts on input 2 is at  most 1 - a .  

Note that this definition is not standard in that cy is not required to be say 2/3. 
However, by running the protocol sequentidly several times (as a function of a) 
one can get arbitrary small probability of accepting erroneously. Showing that  
the probability goes down when the protocols are run in parallel is a major open 
problem in this area. 

Part  of the strategy that the two provers agree on may simply be a common 
random string. This is used to obtain the zero-knowledge property defined below. 

Definition 2 For a given verifier V .  provers PI and Pz, and input 2, we define 
V i e w v , p , l p , ( ~ )  be the distribution over the interaction between verifier V and 
provers PI and P2. This distribution is over V’s coin tosses and the random 
choices made by PI and P;I 

Definition 3 A two prover interactive protocol V, PI, Pz is perfect zero knowl- 
edge f o ~  V if there exists a probabilistic polynomial time machine S that  on 
input z outputs a string whose distribution is ViewV,p,,p,(;c). A language L is 
said to have a perfect zero-knowledge protocol if it has a two-prover interactive 
proof system V, PI , P? such that for every V‘ the protocol V’, PI , Pz is perfect 
zero-knowledge for 1’’. 

The communication complexity of a protocol is composed of three parts: 

1. the total length of the queries sent by the verifiers; 
2. the total length of the answers given by the provers; 
3 .  the length of the random string shared by the two provers. 

The term low communication will mean that the sum of these three compo- 
nents is logarithmic in the length of the input string. 

1.2 Background 

Multi-prover proof systems have inspired much research in Complexity The- 
ory [5, 8, 9,  10, 11, 13, 14, 191. In particular, Babai, Fortnow and Lund have 
shown that the class of languages that are recognized by multiple prover proof 
system where the verifier is a polynomial time machine and the communication 
is restricted to  be of polynomial length is exactly NEXP-Time. This was  scaled 
down to the N P  setting [ 3 ,  4, 121, culminating in the result of Arora, Lund, Mot- 
wani, Sudan and Szegedy [2] showing a two prover proof system for NP in which 
the length of the queries that, the verifier sends to the provers is logarithmic in 
the length of the input string, and the answers are of constant length. From this 
they derive: 
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Theorem 1 121 There is a p > 0 such that for a n y  language L E N P  there is 
a polynomial time reduction R f r o m  L to 3-CNF formulas such fhat for x E L 
R(x)  is a satisfiable 3-CNF and for  all  x @ L,  a fraction of at  most 1 - p of the 
clauses of R(x) can be satisfied simultaneously. The proof is constructive in the 
sense that given a witness for x J s  membership an L ,  there is a polynomial t ime 
procedure that yields a satisfying assignment l o  R ( x ) .  

We will apply this theorem to get our protocols. This theorem (or actually its 
precursor [4]> was already used by Kilian [I71 to lower the communication com- 
plexity of single prover zero knowledge arguments and proof systems. However, 
by a simple observation, the only languages that have a single prover proof sys- 
tem with logarithmic communication are those in BPP. Thus, if we are aiming 
at logarithmic communication we must have two provers. 

We further observe that the two provers must share a random string in order 
€or a low-communication protocol to be zero-knowledge; for if not, by running the 
simulator enough times we can get the response on any query to each prover, 
and thus can simulate each prover on-line. If the two provers do not share a 
random string, then their responses are independent polynomial time samplable 
distributions and thus there is a probabilistic polynomial time machine that 
can compute the probability that the verifier accepts, whence L is in BPP. We 
do not know whether it is possible for the two provers to share fewer than 
the logarithmically many random bits required by our protocol. However, in 
Section 3 we show that s2(log log n) random bits are essential. 

2 The Interactive Proof System 

We construct the interactive proof system in two steps. In the first step we use 
the result of Barrington [6] to reduce checking that an assignment satisfies F to 
checking that an assignment to variables in the permutation group SF, satisfies 
certain equations (over Ss).  hlore precisely, each clause of F gives rise to one 
equation over SS. We also provide a way for the verifier to check consistency 
among distinct occurrences of each literal in F .  In the second step we use the 
randomizing tableaux of Kilian [15] to construct for each equation a 2-prover 
interactive proof system for an assertion about a product. 

The entire proof system is therefore as follows. All parties apply Barrington’s 
result to obtain the set of equations over variables in 5’5. The Verifier then 
randomly chooses either to check consistency or to check that a randomly chosen 
clause is satisfied. We now describe each of these steps and checks. 

2.1 

For reasons of zero-knowledge we first make F a little more “robust” by ex- 
pressing each variable y, E F as the exclusive or of three new sub-variables 
x a l ,  +,2, x,3 .  Note that information about up to three variables in the robust 
formula gives no information about any variable in F. From now on we simply 
assume that F is in this robust form. 

Reduction to Equations over Sj 
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Following the exposition in [6], a permutation bTanching program of width 5 
and depth d is a level graph. Each level is labeled with one of n input variables 
21,. . . , xn, and contains 5 vertices, Associated with each level C is a pair of 
permutations T; ,  T: E Ss. Given a setting of the input variables, the level yields 
the permutation ~ j ”  if the variable associated with level .! has value j E ( 0 , l )  in 
the assignment. On input setting x the branching program yields the product 
of the permutations yielded by each of the levels. For level l we let gf denote 
the variable over SF, that  has value either A; or T: according to  the value of the 
(Boolean) input variable associated with level b. 

A permutation branching program B is said to 5-cycle recognize a set A C_ 
(0, l}n if there exists a five-cycle u E Ss\e (called the oulpud) such that B ( x )  = u 
if x E A and B ( x )  = e if x $ A,  where e is the identity permutation. 

Theorem 2 (Barrinyton [6]): Let A be recognized by a depth d fan-in 8 Boolean 
circuit. Then A is jive-cycle recognized by a permuiation branching program of 
depth 4 d .  

We will apply Barrington’s result to a very specific type of circuit: one that 
checks that  the clause 

b ill @ Y i l ?  8 ~ i , 3 )  v ( ~ i , l  CB ~ 1 ~ 2  CB yi33) v ( y i 3 1  EB 3432 ~ i 3 3 )  

is satisfied by the input. The clause has at  most 9 distinct variables. 
We assume that the robust F is a conjunction of clauses of the type just 

described (that is, F is in a sort of robust 3-CNF), so each clause has constant 
size. For each clause c; having variables 2 6 1 ,  z,2, . . . , zi9 all three parties create 
a constant-depth Boolean circuit Ci, which, given an assignment xi to the 2 ; j 9 s ,  

checks that  xi satisfies ci. Letting A, be the set of assignments t o  z i l ,  zi2, . . . , xi9 

satisfying Ci, the parties then apply Barrington’s result to  obtain a permutation 
branching program Bi that five-cycle recognizes Ai .  Let u; E 5’s be the output of 
Bi. Letting d be the depth of B;, the construction yields an equation g i l  . . . g i d  = 
u;. Here, gij, is associated with the (Boolean) variable that  labels level j in B;, 
taking on T:’ or i ~ y  according to  the value of the associated Boolean variable. 
Thus,  F is satisfiable if and only if (1) for all 1 5 i 5 rn, the equations gil . . .g id  = 
CT, are Satisfiable (over the 7&j1s), and (2) for all b , p , j , q  such that the same 
variable is associated with level 1 of Bp and level j of B,, g l p  = T:“ iff g j q  = re’’ 0 

in this satisfying assignment to the g’s. 

. .  

2.2 Checking an Equation 

Consider the ith equation g i lg i2 .  . .g id = ui. Let us suppress the subscript i for 
ease of notation, so that we get y l g 2 . .  . Y d  = u. Let h = {hj 11 5 j 5 d ,  hj E 
{4,4}} be an assignment to  the g’s satisfying the equation, We use a slight 
modification of the randomzzzng tableauz of Kilian [15] to allow the Provers to 
convince the verifier of the existence of h. 

Let T be the following array with 3 rows and d columns. T[l,j] = hj for 
all 1 5 j 5 d .  Note that n,, , , , ,T[l.j] = u.  Let T ~ , ~ , .  . . , r l , d - l  be elements 

_. 
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of 5's chosen independently and uniformly at  random. Then T[2,1] = h l r ~ , ~ ,  
T[2, d] = ~ c , ; - l h d ,  and for all 1 < j < d ,  T[2, j ]  = r c j T l h j r l , j .  Note that  again nlSjsd T[2, j ]  = r. Finally, we randomize again, choosing d - 1 new random ele- 
ments r 2 , 1  . . . q d - 1  E Ss, and setting ~ [ 3 , 1 ]  = 272, 1]rz,lt ~ [ 3 ,  d] = T;,;-,T[Z, d], 
and for all 1 < j < d,  T[3, j]  = ~ < f - ~ T [ 2 , j ] r ~ , j .  Once again rj1ij<dT[3,j] = Q. 

Moreover, neither the second nor the third row of T contains any information 
about the assignment h. 

For any i, j such that  i E { 1,2} and j E { 1, . . . d } ,  let the i, j reclungle 
be the two entries T[i , j] ,T[i  + l,j]. Given the i , j  rectangle and the random 
elements ~ i + ~ , j - l ~  ri+l,j (if j = 1 or j = d then only one of these is defined), it 
is easy to  check that ~ , ~ ' ~ , ~ - ~ ~ [ ~ , ~ ] r i + l , j  = T[i  + l,j]. In addition, if T is not 
a randomizing tableau for h, r~ then some rectangle will fail this test [15]. This 
suggests the following 2-prover interactive proof system, 

The Verifier interacts with each prover once. In each interaction it may make 
the following requests. From PI it can request t o  see one of (1) the third row 
of the tableau (T[3 , j ] ,  1 5 j 5 d ) ;  (2) the i, j rectangle, for some 1 5 i 5 2 and 
l i j l d .  

From Pz the Verifier ca.n request to  see o n e  of: (1) an element from the second 
and third rows of the of the tableau; (2) all the random elements i - l , j ,  1 5 j 5 d ;  
(3) all the random elements P Z , ~ ,  1 5 j <_ d ;  (4) the assignment xj, where xj 
labels one of the levels in the branc.hing program. 

The Verifier chooses either to check that the equation is satisfied or that  
the tableau is correctly constructed. To check that the equation is satisfied, the 
Verifier requests the third row from PL (option (1)) and an element of the top 
row from Pz (option (1)). To check that  t'he tableau is correctly constructed, the 
verifier has three possible options. In all three, it requests an i , j  rectangle from 
Pl . 

If i = 1: (a) The Verifier can request the assignment to the (Boolean) variable 
associated with level j .  This checks consistency with PI and that the hj's are 
chosen from the right sets {the 7 ' s ) .  (b) The Verifier can request the randomizers 
for row 2 .  This checks that  row 2 is formed correctly from row 1. (c) The Verifier 
can request the element from 772, j ] .  This checks consistency with P I .  

If i = 2: (a) The Verifier can request the randomizers for row 3, checking that 
row 3 is formed correctly from row 2 .  (b) The Verifier can request an element 
from the rectangle, checking consistency with 9. This completes the description 
of the protocol. 

Intuitively, the most information a cheating verifier can possibly obtain about 
the bottom row (the assignment h) is the assignment to  two of the permutations 
gj. Since each of these is associated with only one variable of the robust form 
of the Boolean formula F ,  and since the values of any two variables in the 
robust form yield no information about the value of any Boolean variable in the 
satisfying assignment to  the original F ,  the procedure is truly zerc-knowledge. 
Finally, since the randomizing tableau is for a single clause, it is of constant 
size, Thus any error in the construction of the tableau is detected with constant 
probability. 
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Remark: Checking Consistency 
Let 2, be a variable in the robust form of F. Clearly, xo may appear several 

times, and it must have the same assignment each time it appears. Let 2, appear 
in clauses p and q ( p  and q may be equal). Then for some j, k, zo is the variable 
associated with level j of Bp and level k of B,. Letting and $lj be the two 
permutations a t  level j of Bp,  and making analogous definitions for level Ic of 
B,, the verifier must check that  h,j = 6lJ e h , k  = T : > ~ .  To check this, the 
Verifier asks PI for the 1 , j  rectangle from the tableau for B p ,  and asks Pz for 
the assignment x, wzthout disclosing to PZ the name of the clause ( p  or q )  that  
i t  is examining. This is covered by Case i = l(a) above. 

Remark: Reducing the Number of Shared Random Bits In the descrip- 
tion above it was assumed that the random bits used by the provers were com- 
pletely independent. However, a closer examination reveals that  since the verifier 
never sees more than a constant number of bits, they can be chosen to  be c-wise 
independent for some constant c. Thus, the size of the probability space that  
generates them can be O(1ogn) bits (see e.g. [l]). 

2.3 Putting it All Together 

Without communicating, the Provers and Verifiers construct the robust form of 
F and the j-cycle permutation branching programs for each of the m clauses 
of the robust form of F. Using their shared random bits, the Provers construct 
randomizing tableaux for all clauses consistent with a fixed satisfying assignment 
to  the robust form of F. The Verifier randomly chooses a clause and one of the 
six legal pairs of questions described in the previous subsection, and proceeds 
accordingly. Note that the Verifier must tell PI which clause i t  has chosen, while 
it does not tell Pz the chosen clause when it requests from P2 the value of an 
assignment. 

We now sketch proofs that our proof system is complete, partially sound and 
secure. 

Theorem 3 (completeness) I f  x, the assignment known to PI and P2, satzs- 
fies the robust form of F ,  then V wall always accept. 

Proof. (Sketch) By construction of the randomizing tableaux, a simple case anal- 
ysis shows that any constraints that  V chooses to check will be satisfied. 

Theorem 4 (soundness) There exzsts a constant c > 0 such that V will reject 
with probabi l i ty  a t  least 

c( IS1 - max-sat(S)) 

PI 1 

where mu-sat(S) denotes Ihe maximum number o f  clauses of S ihat  may be 
simultaneously satisfied, and IS( denotes the total number of clauses of S. This 
theorem holds regardless of the strategies o f  the provers, P I  and P 2 .  
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Proof [Sketch) First, by a standard lemma [7], there exist optimal deterministic 
provers, i)l and P z ,  that cause V to accept with the highest possible probability. 
It suffices to show that even with these provers, V will reject sufficiently often. 

Pz7s responses to queries about x constitute an assignment. Its responses 
to queries about rows 2 and 3 of the tableaux define these rows, just as its 
responses to queries about the randomizers define these objects as well. Let z; 
be associated with some level 1 of B,, for some clause cp. 

Let cp be chosen at random. Then with probability at  least 

c(lS1- max-sat(S)) 

1st 1 

cp is not satisfied by x. It suffices to show that when this happens V will reject 
with some constant probability, regardless of what PI. does. In this case, B p ( x )  = 
e,  so either the product of the elements of the top cow of the randomizing tableau 
for B, equals e ,  or the tableau is badly formed. Because the tableau is of constant 
size the error will be detected with constant probability. 

Theorem 5 The proof system achieves perfect zero-knowledge. 

Proof. (sketch) In order to prove this theorem, we construct a simulator M such 
that for any satisfiable 3-SAT formula F ,  any verifier V will obtain the same 
view by interacting with i c I  as by interacting with PI and Pz. Recall that in the 
first step of the interactive proof system. before any communication begins, F 
is made “robust” by replacing every variable in F with 3 new variables. Let Xi 

denote the provers’ assignment to z, in the original formula. Then the provers 
may choose any random assignment to the sub-variables zil , . .z,3 so that the 
exclusive-or of these is x t .  

The verifier makes one of 2 kinds of queries to PI and 4 kinds of queries to 
P2 for a total of 8 kinds of pairs. The analysis is straightforward; we discuss only 
the case in which V requests a rectangle from PI and an assignment to some I, 
from P2. 

Let the (possibly faulty) Verifier request rectangle i, j in the randomizing 
tableau for B, from PI. If i = 2 then the rectangle contains two independent 
randomly chosen elements of Ss, so simulating PI’S response is trivial. If i = 1 
then since the variable associated with level j of Bp is from the robust form 
of F ,  both possible assignments to this variable are equally likely. Thus, either 
element of {T : ” ,  T ; I ~ }  is equally likely, so the simulator can choose T[i, j ]  from 
this set, and T[i  + l ,j] from Sg.  Finally. the response from PZ needs only to be 
consistent with the response from PI. 

In the final version of the paper we will show how the number of bits that the 
provers send can be reduced to three - two by one prover and a single bit by the 
other. Note that this is the best possible, unless P = N P ,  since the existence of 
a two bit proof system can be translated to a 2-SAT problem. 
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3 Lower Bound on the Number of Shared Random Bits 

In this section we show that the two provers must share R(1oglogn) random 
bits. 

Let T be the number of shared random bits. We make several simplifying 
assumptions: let the total number of possible queries to each prover be polync- 
mial in n; let the protocol be one round, i.e. the verifier sends the queries t o  the 
provers and they respond; let the provers responses be limited to  c 5 2‘ possi- 
bilities (in this section we do not require c to  be constant); let the two provers 
have no random bits other than the T shared random bits. Some of the above 
assumptions can be relaxed (see remarks at the end of this section). 

We will show that if 3-SAT is recognized by a 2-prover zero-knowledge inter- 
active proof system obeying these constraints and T € o(loglogn), then 3-SAT 
E B P P .  The main idea is t o  first show that a small number of random bits 
impiies that  the two provers have only a small number of different strategies for 
answering the queries. We then show that this implies that on inputs of 3-SAT 
of any length n, in polynomial time it  is possible, using the simulator whose exis- 
tence is guaranteed by the zero-knowledge property, to  reduce the problem to  an 
instance of M A T  of size strictly less than R .  By repeating this at most n times 
(a more careful analysis shows that  loglogn times suffice), we can therefore, in 
polynomial time, reduce the problem to one that can be efficiently solved by 
brute force. 

Fix a satisfiable input formula F of n variables for the remainder of the 
discussion. 

Let u1. . . . , u, (.I, . . . , vm)  be all the possible queries, over all random choices 
of the verifier, that the verifier could send to  PI (Pz). The first step in the 
reduction is to split the U’S (v’s) into a (relatively) small number of equivalence 
classes. We describe the procedure for splitting the u’s. The u ’ s  are handled 
similarly. 

Intuitively, u1 and u2 will be in the same class if PI does not distinguish 
between them. However, for any random string s shared by the two provers, even 
using the simulator, there is no way to compare the behavior of PI on query u1 
with its behavior on query u2, since each invocation of the simulator queries Pi 
exactly once and on differefit invocations of the simulator the simulated PI may 
have different random strings. We must therefore define the equivalence classes 
in a slightly more roundabout fashion, so that  we can compute them using the 
simulator. 

Let ( u , v )  be an arbitrary pair of queries to PI and P2, respectively. Let 
Answers((u, u ) ,  s) denote the pair of responses on this pair of queries when the 
provers share s. Let Pairs(u, u )  = {Answers((u, v), .)Is E (0 , l )“ ) .  Then 

u1 - u2 u Vv(Pairs(u1, v) = Pairs(u2, v)). 

Intuitively, although the verifier might distinguish between similar queries, Pi 
does not. 

At a high level, we will proceed as follows, To reduce the size of the problem 
we use the sirriulator to  compute the equivalence classes, arguing that  there 
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are not too many of them. The entire strategy of the two provers can then be 
described by the number of pairs of classes times the number of pairs of responses 
(c2, assuming each prover sends one of only c possible answers on each query). 
But the description of the strategy is just a string, so we have reduced the 
problem to one of finding a string of a t  most this length that  causes the verifier 
to accept. We now give more details. 

By assumption, the number of u's is a t  most polynomial in n. We now show 
that,  using the simulator, we can compute Pairs(u,v) for all pairs of queries 
u , v ,  in B P P .  For each u we proceed as follows. For each D, run the simulator 
many times with a verifier that asks the pair of queries (u, vi), to  obtain the set 
Pairs(u,vi). (It may be that the honest verifier never asks this particular pair 
of queries. However, some cheating verifier must do so.) Note that  as long as 
the number of shared random bits is at  most O(1ogn) every element of this set 
will be discovered with arbitrarily high probability in polynomial time. The sets. 
Pairs(u, v) are then used to determine the equivalence classes. 

Note that for every query u there is a vector of possible replies, each an 
element in { 1, . . . , c), and indexed by the shared random string s. Let this vector 
of reply be the color of the query. There are only c2' possible colors. Moreover, 
if two queries have the same color then they are in the same equivalence class 
(an equivalence class may include queries of different colors). Thus, the number 
of equivalence classes is at most 2'. If r is sufficiently small, then we can obtain 
a representative from each equivalence class on the u's and on the v 's .  Using the 
simulator with the real verifier we can obtain, with arbitrarily high probability, 
for all pairs of representatiyes ( u , ~ )  such that on some execution the verifier 
actually asks this pair of queries, the set Pairs(u, u ) .  Call this set a constraint. 
Note that IPairs(u,v)[ 5 c 2 .  

To reduce the size of the problem, we make the following definitions. Let 
zll, . . . , ue be representatives of the classes of queries to 4, and let v l , .  . . , V k  be 
representatives of the c!asses of queries to P2; note that t, k 5 c2'. Let S1 be a 
function from the representatives ui to { 1, . . . , c}, and let Sz be a function from 
the representatives v j  to { 1, . . . , c}. The problem now reduces to finding 5'1 and 
SZ satisfying the following condition. For all pairs of representatives u,, v j  such 
that in some execution of the interactive proof system, V sends a member of the 
class represented by zli to  PI and a member of the class represented by v j  to Pz, 

(Sl(ui), S 2 ( ~ j ) )  E Pairs(uj, vj). 

Thus, the problem of proving that F E 3 - SAT can be reduced to  the 
problem of finding a strategy for the provers that  satisfies these constraints. 
I t  follows that the question of whether a strategy exists can be defined by a 
string that  is a t  most the square of the number of classes times the square of 
the number of possible responses. That  is, the length of the description of the 
constraints that the strategy must satisfy is a t  most ( c ~ ~ ) ~  . c2 = 22'"''). Since 
this question is clearly in X P ,  it follows from the Cook-Levin Theorem that  
there exists a polynomial p such that a string z is such a strategy if and only 
if some (effectively computable) formula F, of length ~(121) is satisfiable. Thus, 
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if ~ ( 2 ~ ~ ’ ~ ‘ ~ ’ )  < n then the original problem of size n can be reduced, in B P P ,  
to  a problem of strictly smaller size. This happens when P = o(log1ogn). We 
therefore have the following theorem. 

Theorem 6 Led L be an  NP-comple te  language recognizable b y  a perfectly com- 
plete perfect zero-knowledge two prover interactive proof system in which the wer- 
afier poses a single query t o  each prover, the reply from each prover is restricied 
t o  a single element from a set of size c 5 2’, and the provers have no random 
bits other than the shared random bits. Then if the number of shared random bits 
is  o(log1ogn) then L E B P P .  

Note that  we have not used the fact that  the probability of acceptance in 
case the formula is not satisfiable is less than cy < 1 and that  the provers are 
polynomial time machines (with access to  a satisfying assignment). 

Remarks : 
(1) Virtually the same proof shows that the provers must share L’(1oglogn) 
random bits also in statzslzcal zero knowledge proofs for NP. 
(2) If the provers do not use private random bits, we can assume that the range 
of possibilities of the provers’ replies (denoted by c) is a t  most of size 2‘. Given 
that there are only r shared random bits and no private random bits, then on 
every possible query there are at  most 2‘ answers that the prover may give. 
Using the simulator these answers can be enumerated The protocol can then 
be changed with the prover giving a pointer of r bits into this list, instead of 
sending the full answer. The resulting protocol would be only statistical zero 
knowledge, and would not have perfect completeness. Nevertheless, the praof of 
the lower bound would still hold with minor modifications. 
(3) If the number of possible queries is not polynomial in n then i t  is still possible, 
in polynomial time, t o  find all the equivalence classes that  are “likely” to  be asked 
and all the constraints that  are likely to influence. The construction proceeds 
the same way, only we simply ignore “unlikely” queries. 
(4) The protocol may contain several rounds instead of one round. The concate- 
nation of a prover’s answers plays the role of the prover’s answer in the single 
round case. The only difficulty is in implementing remark 2. However this can 
be solved by making c no larger than 2 2 r ,  which does not affect the lower bound. 
(5) We can allow the provers to  have an arbitrary number T of private random 
bits, provided logc + r E o(1oglog n ) .  The main difference is in the definition of 
the color of a query. In the new definition, each entry in the vector is replaced 
by a list of possible responses, which vary according to the private random bits 
of the prover. 
(6) Under most assumptions, the lower bound on the number of random bits 
shared by the provers can be pushed up to loglogn - 3. 
(7) While the lower bound shows that R(log1og n)  shared random bits are nec- 
essary, the proof relies on the fact that  the protocol must be zero-knowledge for 
al l  verifiers. Indeed, our protocol can be easily modified to  use only O(1) shared 
random bits if zero-knowledge is only required against the honest Verifier. 
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