
Invariant Signatures and
Non-Interactive Zero-Knowledge Proofs

are Equivalent
(EXTENDED ABSTRACT)

Shafi Goldwasser* and Rafail Ostrovsky"

Abstract. The standard definition of digital signatures allows a docu-
ment to have many valid signatures. In this paper, we consider a subclass
of digital signatures, called invanant signatures, in which all legal signa-
tures of a document must be identical according to some polynomial-time
computable function (of a signature) which is hard to predict given an
unsigned document. We formalize this notion and show its equivalence
to non-interactive zero-knowledge proofs.

* MIT. This research was supported in part by NSF-FAW CCR-9023313, NSF-PYI
CCR-865727, Darpa N0014-89-5-1988, BSF 89-00312.

** International Computer Science Institute at Berkeley and University of California at
Berkeley. Supported by NSF Postdoctoral Fellowship. Parts of this work were done
at MIT, Bellcore and IBM T.J. Watson Research Center.

E,F, Bnckell (Ed,): Advances in CryptOlOgy - CRYPT0 '92, LNCS 740, Pp' 228-245, 1993'
Q Springer-Verlag Berlin Heidelberg 1993

229

1 Introduction

Currently, due to the lack of proven non-trivial lower bounds on NP problems,
the theory of cryptography is primarily based on unproven assumptions such
as the difficulty of particular computational problems such as integer factoriza-
tion, or more generally the existence of one-way and trapdoor functions. It is
thus naturally desirable to establish minimal complexity assumptions for basic
cryptographic primitives, and to establish connections among these primitives.
Indeed, it has been an active and in many cases successful area of research. For
example, pseudo-random generators [BM] were shown to be equivalent to the
existence of any one-way function [ILL, HI. On the other hand, several other
primitives, such as secret-key exchange seem to require the trapdoor [IR] prop-
erty.

Digital signatures have been an especially interesting case in point. Originally
introduced by Diffie and Hellman [DH], the first implementation was based on
the RSX trapdoor function [RSX] which yields a deterministic signature scheme
where each document has a unique valid signature. Later, the notion of digital
signatures which are secure against chosen message attack3 was formally de-
fined by [GoMiRi] and proved to exist under a sequence of decreasingly weaker
assumptions: the existence of claw-free permutations [GoMiRi] (e.g. factoring)
the existence of trapdoor permutations IBeMi], the existence of one-way permu-
tations by [NY], and finally the existence of one-way functions by [Ro]. In all of
these schemes, each document may have many valid signatures.

The fact that digital signatures can be implemented if one-way functions
exist without the need for a trapdoor [NY, Ro] is somewhat remarkable, as by
definition a digital signature seems to posses the essential flavor of a trapdoor
function; namely, it should be easy for everyone to verify the correctness of a
signature, while it should be hard for everyone except a privileged user (with
access to the private file) to sign. In this paper: we study which aspects of digtal
signatures allows for this dichotomy and whether digital signatures can in some
cases be used in cryptographic protocols instead of trapdoor functions.

We show that the issue of having many different valid signatures of the same
document plays a role in the above question. That is, on the positive side, we

Note that RSA does not satisfy security against adaptive chosen message attack as
there do exist messages for which the signature can be forged.

230

show that digital signatures can sometimes be used instead of trapdoor func-
tions, provided that all valid signatures of the same document have an invariant
property which is unpredictable from the document itself. On the negative side,
we show that this invariant property for a signature scheme may require a trap-
door for its implementation (unless non-interactive zero-knowledge proofs among
polynomial-time participants can also be implemented without a trapdoor).

Invariant signatures are interesting in their own right, as they capture the
flavor of having a unique valid signature per document as in the case of RSA,
and yet can be proven secure against adaptive chosen message attack as in the
case of [GoMiRi, BeMi, NY, Ro]. Achieving these two aspects simultaneously
may prove valuable in applications.

1.1 Invariant Signatures

Let us recall the definition of digital signatures as defined in [GoMiRi]. Infor-
mally, the setting is as follows: in a network, every user can generate (using a
polynomial-time algorithm) a pair of keys: the public key and the correspond-
ing secret key. In addition to the generation algorithm, the signature scheme is
provided with two probabilistic polynomial- time algorithms: one for signing and
one for verifying. Given an arbitrary document, a user applies his signing algo-
rithm to the document, his public key, and his secret key. Given a signature of
a document, any other user can verify the validity of the signature by applying
the polynomial time verification algorithm to the signature, document, and the
public key of the signer. No adversary can forge a signature for a new document,
even after asking for arbitrary signature samples in an adaptive fashion.

The additional constraint we put on digital signatures so as to make them
invariant, is (informally) that there exists a deterministic poly-time computable
function g computed on signatures such that with high probability (1) for any
document D and for any two legitimate signatures u1 (D) and 02 (D) , g(ul (D)) =
g(crz(D)) and (2) given D , g (o (D)) is pseudo-random. If the above conditions
hold we say that the signature scheme is invariant under g .

Although not the subject of this paper, we suggest that our definition of
invariant signatures might serve as a good definition for what we may want
from a finger print of a document: hard to predict for any document even in an
adaptive setting, dependent perhaps on the time of inquiry, and yet unique.

23 1

1.2

We investigate the comparative difficulty of non-interactive zero-knowledge proofs
(NZZK) [BFM] and digital signatures (DS) [GoMiRi]. These seemingly differ-
ent primitives were shown to be connected in a paper by Bellare and Goldwasser
[BG], where it was shown that the existence of one-way functions and non-
interactive zero-knowledge proofs implies the existence of digital signatures (se-
cure against adaptive chosen-message attacks). We remark that the known con-
structions of non-interactive zero-knowledge proofs with polynomial-time partic-
ipants use the trapdoor permutations assumption [FLS], while digital signatures
can be implemented based on any one-way function [Ro].

We show that the existence of invariant digital signatures is equivalent to the
existence of non-interactive zero-knowledge proofs. That is, we show that while
a signature scheme in which a document can be signed in an unconstrained plu-
rality of ways requires the existence of any one-way function, a signature scheme
in which each document has unique or at least “similar signatures” (according
to any “nontrivial” poly-time computable function - this is the invariant prop-
erty!) requires the same assumptions as non-interactive zero-knowledge proofs
(i.e. currently the trapdoor assumption is necessary).

More precisely, we consider non-interactive zero-knowledge proofs in the ran-
dom string model, where users in the system can read a pre-existing common
(polynomial size) random string set up by the system (a model defined by
[BFM]). We prove that in this common random string model, the existence
of invariant digital signatures is equivalent to the existence of non-interactive
zero-knowledge proofs for any hard to predict N P language (see definition in
2.2). To prove this theorem we must define invariant signatures in the common
random string model.

Non-Interactive Zero-Knowledge Proofs and Digital Signatures

1.3
asymmetry

Suppose two probabilistic polynomial-time players (Alice and Bob) wish to agree
on a boolean predicate I?(.), so that when later given a randomly chosen z as
a common input, Bob can not predict B (z) with probability (over z and Bob’s
coin tosses) bounded away from half, but Alice can compute B (z) and convince
Bob of the value of B (s) . Under what assumptions can we implement such a
protocol?

A simple example: using digital signatures to achieve

Before we examine the above question, let us recall definitions of a one-way
function and a trapdoor function. Informally, a poly-time computable function

232

f is one-way if when we pick x uniformly at random and compute y t f(z),
it is infeasible for any polynomial time machine to find 2' in f - l (y) for a non-
negligible fraction of the instances. Again informally, a trapdoor function, is a

one-way function with an additional secret key, the knowledge of which makes
inversion easy.

Assuming the existence of one-way trapdoor permutations, Alice and Bob
can achieve the above task. In particular, they can agree on a trapdoor one-way
permutation (f,f- '), so that Alice knows (f : f - ') and Bob knows only f. In
addition, they agree on a hard-core [GL] bit B(-) for f. (Notice that Alice and
Bob must make sure that f is really a permutation for B(.) to be well defined.)
Subsequently, when z is given, Alice can invert f and compute a hard-core bit,
while Bob can not.

Can we achieve the above task using one-way functions which are not trap-
door? Let us examine if digital signatures (which do not need trapdoor in their
implementation) might be useful.

At first glance, to implement a simple protocol specified above could be done
using digital signatures as follows: Alice prepares a public and a secret key (of a
signature scheme), gives her public key to Bob and convinces him that her public
key is produced using an appropriate key-generation algorithm. Moreover , they
agree on a hard-core hit B of a signature for any document 2'. Notice that given
2 and a public key of Alice, the signature of z is hard to find for any polynomial-
time player, and thus Bob can not predict the hard-core bit of a signature of x,
while Alice can easily compute it. Since we can implement signatures based on
one-way functions (without the trapdoor) it seems that we can implement the
above protocol without the trapdoor ... What is wrong in this argument?

The problem, is that this bit is not well defined. That is, the specification of
digital signatures allows for many legal signatures of 5 . However, if we put an
additional constraint on the digital signature scheme, then the above argument
will go through. The additional constraint is to have an invariant signature
scheme (as above). Then, to implement the above game, Alice can use a hard-
core bit of g(a (D)) (where all signatures of D are invariant under g) and the bit
is well-defined. Thus, notice that invariant digital signatures can be used in the
above setting instead of a trapdoor function.

233

2 Model and Definitions

2.1

We use the usual 0 , o and l / o (l) (asymptotically tending to co) notation. We
fix some function s(n) = nl/o(l) and call it infeasible. We call r(n) = 1/so(l)(n)
negligible and 6(n) = l /O(nc),c > 0 noticeable. In this case, n is a security
parameter, which we omit when clear from the context. We use standard defini-
tions of one-way functions and computationally indistinguishable distributions
(see, for example,[GL, ILL, HI). If S is a probability space then 2 t S denotes
the algorithm which assigns to x an element randomly selected according to S.
For probability spaces S, T , . . ., the notation Prlp(z, 9,. . .) : z t S ; y t T ; . .)
denotes the probability that the predicate p (z , y, . . .) is true after the (ordered)
execution of the algorithms 5 c S, y t T , etc. The notation {f(z, y , . . .) : z t
S; y t T ; . . .} denotes the probability space which to the string 0 assigns the
probability Pr(u = f(s, 3:. . .) : x t S; y t- 7’;. .), f being some function. If S
is a finite set we will identify it with the probability space which assigns to each
element of S the uniform probability &. (Then 5 t S denotes the operation of
selecting an element of S uniformly at random).

Negligible, noticeable and infeasible functions

2.2
Common Random String Model

Yon-interactive zero-knowledge proofs were introduced in [BFM]. We note that
this is where the “common random string model” was introduced as well.

Non-Interactive Zero-Knowledge (n / Z Z K) Proofs in the

Common random str ing model: at the time of the system set-up a string
of a fixed [polynomial in the security parameter) length is chosen uniformly at
random and published by a trusted center for everyone in the system (provers]
verifiers, users etc.) such that it can be read but not modified.

Informally, a ,v12K proof of an A’P statement in a common random string
model is a way for any polynomial-time user to convince other users that some
statement is true without revealing anything else. That is, given a common
random string, and a witness to an JVP statement, there should be a probabilistic
poly-time algorithm (for the prover) which constructs a proof of that statement,
and a probabilistic poly-time algorithm (for the verifiers) to check that the proof
is correct. Moreover, such proof should not reveal anything about the witness.

Formally, the following definition is essentially taken from [BDMP].

234

Definition 1. We fix an N'P language L (with poly-time relation p (- , -) and con-
stant d such that 5 E L ifF 3w, Iw] <]xid, p(z, w) = 1.) We say that two probabilis-
t ic polynomial-time algorithms (prover(., ., -), verifier(., -, .)) constitute bounded
hfZ2K: for language L if the following conditions are satisfied: there exist a poly-
nomial I such that

Completeness:

Soundness:

Zero-Knowledge:

For all 5 E L , 1x1 = n, sufkiently large n, and E negligi-
ble, where w is such that]w(< nd and p(z.w) = 1, the
Pr(werzfier(z, w, c) = accept : c t {0, ~ } l (~) ; y t prower(x, w, c))
> 1 - e(n).
(Here, c is the "common random string", w is the NP wit-
ness, and y is the output of the prover which is computed non-

interactively. The probability is taken over the choice of c and
the prover's coin tosses).
For all probabilistic polynomial-time players prmer', z 6 L ,
15) = n, for sufficiently large n, and negligible E, the
Pr(werzfier(z, w, c) = accept : c c {o. I } ' (~) ; y t prower'(z, c))
< c(n).
(Here, the probability is taken over the choice of c and prover's
coin tosses).
There exists a probabilistic expected polynomial-time algorithm
S(. , .) such that for al l 1: E L , 1x1 = n, and w such that (w(< nd
and p(z, w) = 1, for all probabilistic polynomial time algorithms
D , for all sufficiently large n, the

1 Pr(D(c , 2, y) = 1 : c t (0, I) ' (~) ; y c prover(%, w, c)) -

Pr(D(c, 5 , S(Z, c>> - 1 : c t (0, ~ } ' (~)) l < e (n)

In the above c is called the "common random string", and 1 the length of the
common random string.

REMARKS:

- One difference from above definition to [BDMP] is that we impose the
soundness condition only on probabilistic polynomial-time prover's. This
is not actually necessary as known constructions achieve soundness against
all prover's. However, as in the context of this paper we show equivalence to
a digital signatures in which a reasonable forger to consider is probabilistic
polynomial time, we relax the soundness requirement here as well.

235

- The above definition is specified for a single theorem of a fixed polynomial
size. This bounded NT2K definition can be extended to polynomially-
many theorems each of polynomial length and to many users in the roles
of both provers and verifier. This is the notion of N L Z K we adopt here.
To modify the above definition to accommodate this extension, we must
require (as in [BDMP]) the existence of many pairs of prover, , verifieri for
which completeness and soundness are true, and change the zero-knowledge
condition as follows.

[Zero-Knowledge':] There exists a probabilistic expected polynomial time
algorithm S such that for allzl ,x2, . . . E Ln(0 , l}", where IwlJ, 12021, ... < nd
and p (z ~ , w l) = 1, p(z2,wz) = 1,. . ., for all probabilistic polynomial time
algorithm D , for all sufficiently large n. for all negligible 6,

IPr(D(c,(zl,yl),(s2,yz),...) = 1 : c+- { 0 , 1 } Q n) ; y 1 + p r m e r l (z l , w , c) ;
y2 +- prmm(z2, WZ, c); . . .) -
Pr(D(c, (5 1 , S (z l j c)) , (22,S(22, c)), . . .) = 1 : c t (0, I } ' [~)) I < ~ (n) .

- Another aspect of JV'ZZK is a preservance of zero-knowledge in an adaptive
setting, which means that even after requesting polynomially-many proofs
one by one, the probability for polynomial-time ildv (over its coin-flips) of
being able to distinguish an NIZK proof of a new theorem from the run of the
simulator is negligible. Notice that if .i\i'ZZIc proofs remains Zero-Knowledge
even in an adaptive setting, then the statements may be dependent on the
previous proofs and on the common random string. From now on, when we
refer to .b'TZK, we refer to ,V'ZZK which is secure in an adaptive setting.
To modify the above definition to accommodate this extension we further
refine the zero knowledge condition as follows.

[Zero-Knowledge":] There exists a probabilistic expected polynomial time
algorithm 5 such that for all polynomial time Adu , for all probabilistic poly-
nomial time D, for all sufficiently large n, for all negligible E ,

[Pr(D(c, (z ~ , y ~) , (z2 ,y2) , . . .) = 1 : c t (0 , l}L(n);zl t Adv(c);

Pr(D(c, (5 1 , ~ (q , c)), (22, s (s2 , c)) , . . .) = 1 : c t (0, ~ } l (~) ; q t ~ d v (c) ;
YI + (51, ~ 1 , c); 5 2 +- Adu(c, 2 1 , y i) ; ~2 + prmm (2 2 , ~ ~ ~ c)i . . -

YI +S(zcl,c);x2 t A d v (c , s i , S (z i , ~)) ; y ; ! t s (~ 2 , ~) ; . . .) I < ~ (n) .

- We note that in our setting, provers are polynomial-time machines.

- An additional property of iVZ2rC that we must stress is of being publically
veri,fiable ,VX.ZK proof system, which means that the proof can be verified by
any polynomial-time machine which has access to a common random string.

236

In [BFM? DMP1, BDMP] it was shown how N Z 2 K could be implemented,
based on algebraic assumptions. In [DMP2, KMO] the N Z 2 K was implemented
based on the general complexity assumptions and without a common random
string, but at a price of a small pre-processing stage, which was interactive.
Finally, in [FLS] it was shown how N12K could be implemented without pre-
processing, based on (verifiable) trapdoor one-way permutations. (In [BY] , they
show how verifiability requirement could be implemented based on trapdoor
one-way permutations). Moreover, in [FLS] it was shown how to convert N Z 2 K
into publically-verifiable and adaptively secure (see remarks above) h/zzlc proof
system. Again, we mention that it is not known how the assumptions (of one-way
trapdoor permutations) could be reduced further.

Definition 2. We say that a Language L is hard to predict if there exist a proba-
bilistic polynomial time algorithm S(1”) (which samples X E (0, l}n) such that
for every probabilistic polynomial-time algorithm Adv, for all sufficiently large
n and for all negligible E , the probability (over S and Adv coin tosses) that Adv
can correctly decide if X E L is less then 3 + ~ (n) .

REMARK: The above definition can be modified as follows: we say that a
language L is sometimes hard to predict if there exist a probabilistic polynomial
time algorithm S(ln) (which samples X E { O , l J n) such that on a noticeable
fraction H of S(ln), for every probabilistic polynomial-time algorithm Adv, for
all sufficiently large n and for all negligible E, the probability (over S and Adv
coin tosses) that Adv on X in H can correctly decide if X E L is less then

+ c(n).

Definition 3. We say that nontrivial ,b‘ZZK exists, if there exists a (sometimes)
hard to predict L E .k’P which possesses an A T Z K proof system.

We note that the existence of NZZK proofs for (sometimes) hard to predict
L implies the existence of one-way functions [OW].

2.3 Invariant Digital Signatures (ZNV - D S)

The formulation of the digital signatures of [GoMiRi] allows any document to
have many valid signatures (i.e. accepted by the signature verification algorithm
as valid) of the same document. For invariant signatures we make the additional
requirement that all valid signatures of the same document be “similar”, that
is, there exists an easy to compute function defined on signatures which yields
the same value for all signatures of the same document. This function should

237

be hard to compute from the document itself with access to the public key (but
without access to the secret key).

In the following definition we incorporate the possibility that a common
random string c was published by a trusted center at the time of a system set
up for everyone in the system (signers and verifiers) to read but not to modify.
This is similar to the set up of NIZK (see previous section). The definition of an
invariant digital signature scheme can be made in the standard model as well
(without the presumption of the existence of c) , but as in this paper we show
the equivalence of invariant signatures and NIZK in the common random string
model, we present the definition of invariant digital signatures in this model.
The polynomial E(n) will denote the length of the common random string with
security parameter n.

Definition 4. An invariant signature scheme K is a quadruple (G, S! V, g)

such t h a t the following conditions hold: le t I be a polynomial function

G: is a probabilistic poly-time computable algorithm (the "key gen-

eration" algorithm) which on input In (the security parameter),

c E {0, l}'(n) (the common random string) outputs a pair of strings

(secret-key, public-key). We let the random variables GI (In) de-

note the first output and G2(ln) the second output. (Wlog we let

IG1(1")I = lGa(l")l = n The probability is over c t {O, l} ' (*)
and G's coin tosses.)

is a probabilistic poly-time computable algorithm (the "signing" al-
gorithm) which on input strings l", c E {O,l}"") (the common

random string), D E {O,l.}* of length polynomial in n (the docu-

ment), and a pair of strings {secret-key,pubEic-key} in the range

of G(1", c) outputs a string. The output is referred t o as t h e "signa-

ture" of D (with respect t o public- keg and c) . When the context

is clear we let a (D) denote an output of S(ln, D, G(l", c) , c) .

is a probabilistic poly-time computable algorithm (the "verification"

algorithm) which receives as inputs the strings In (the security

parameter), D E (0, l}' of length polynomial in n (the document),

s (the presumed signature of D), c E (0, l}f(n) and public - key E
Gz(l"), and outputs either true or false. We require t h a t for all D
in n, the Pr(V(l", D! s,pbEic - k e y , c) = true : c t (0 , l}'(");
{secret - k e y , p b l i c - k e y } c G(l",c);s t S (l n , D , {secret -
k e y , public - k e y } , c)) = 1

S:

V :

238

(Namely, signatures produced by the signing algorithm S are
always accepted by the verifying algorithm V for any pair of public
and private keys produced by key generation algorithm G).
If V (l n , D , s , public-key, c) = t r u e then we say that s is a "valid"
signature of D (with respect t o public - key and c) .

Let F be a probabilistic poly time forging algorithm which receives
as input the strings l", c E (0, l}'(n), and pzLbEic- key E Gz(1");
can request and receive signatures with respect t o public - key
and c of polynomially-many adaptively chosen documents { D z } and
finally outputs a pair of strings (D , s) . Then, for all such F , for all
sufficien.tly large n, for all negligible functions c , the probability that
F outputs (D, s) where L, $ {Di}, and s is a valid signature of D
with respect t o public - key and c is less than e(n).

(The probability is taken over the outcome of G, signatures of
D,, and the coin tosses of F) .

security:

invariant function g(. , .): is a polynomial time computable function which
takes as input strings 1" and s (when clear we use notation g (s)

for g(l", s)) and produces as output a string t E {0, l}'(n) where
T is a fixed polynomial, such that:

invariance Let ildv be a probabilistic polynomial-time algorithm which re-
ceives as input strings In , c E (0, l}L(n), and produces as out-
put the tuple (public - key,D,ol(D),02(D)) where public-
key € (0, l}", and CTL(D) and Q (D) are both valid signatures
of D with respect t o p b l i c - key and c. Then, for all such .4dv,
for all public- key E (0, l}n, for any negligible E , and for suf-
ficiently large n. the probability that g(ol(D)) # g(az(D)) is
less than ~ (n) .
(Here the probability is taken over c t {O, 1}"("), and the coin
tosses of A&.) (Note, that the definition implies that even the
honest signer who has access t o the secret key can not produce
two signatures of the same document for which g is not the
same with non-negligible probability.)

pseudo-randomness Let Adv be a probabilistic polynomial t ime algorithm which
operates in two stages on input strings I", c E (0 , l}'((n), and
public - key E G2(ln) . In the first stage Adu can request
and receive signatures with respect t o public - key and c of
polynomially-many (in n) adaptively chosen documents (Di}.

239

A t the end of the first stage, Adv outputs a polynomial length
string D not in {Di}. In the second stage, Adv is presented with
a string t on which it outputs 0 or 1 (we let Adu(t) denote the
output bit). Let Q! = Pr(Adv(t) = 1 : c t (0 , l}'(n); {secret-
key,public-key} t G(l", c); s t S(ln, D, {secret-key,pzLbZic-
key}, c); t t g(s)) and let f i = Pr(Adv(t) = 1 : t t (0, l}T(n)).
Then, for all Adv, for all negligible E , for all sufficiently large

We call g the invariant function of the signature scheme, and
I the length of the invariant function.

71, Icr - P I < +).

REMARK: We note that in the above definition the invariant property holds
for any public file public - k e y , and not just over Gz(ln). This requirement
ensures that invariant property holds for any public key, even a maliciously
chosen one, and avoids problem pointed out in [BY] of lack of certification in
[FLS].

The most important aspect of invariant signature scheme for our application is:

Lemma: If T = (G, S, \-,g) is an invariant signature scheme, then there exists a
polynomial time computable Boolean predicate P which on input ln and s, outputs
0 or 1 such that the following conditions hold:

1. "P is invariant for all signatures of a document " : Let .4dv be a probabilistic
polynomial-time algorithm which takes as input strings c E (0, l}*(n), and pro-
duces as output (pzlblic - key , D , o l (D) , 02(D)) where public - key E { O , l } % ,
01 (D), C T ~ (D) are valid signatures of D with respect t o public- key and c. Them
for all Adu, for all public - k e y , for all negligible E , for all sufficiently large n,
the probability that P (o l (D)) # P (o z (D) is less than ~(n). (The probability is
taken over c t (0, l}'(n) and coin-tosses of Adv.)

2. " P is unpredictable from D": Let Adw be a probabilistic polynomial time algo-
rithm which receives as input strings In, c E (0 , l } ' (n) , p b Z i c - k e y E G2(ln);
can request and receive signatures with respect to public-key and cof polynomially-
many (in n) adaptively chosen documents { D l } ; and finally outputs a polyno-
mially length string D not in (Da} and a bit b. Let a = Pr(b = P(t) : c t
{0,1}'(("); {secret - key,pubEic - k e y } t G (l " , c) ; s t S(l",D, {secret -
key ,pub l i c - k e y } , c) : t t g(s)). Then, for every Adw, for every negligible E,
and for all sufficiently large n, la: -

We refer t o the predicate P as, the invariant property of T.

5 ~(n).

240

This lemma follows immediately from the definition of invariant signature scheme.

REMARK: We must stress that digital signatures of [GoMiFti, BeMi, NY, Ro]
are not known to be invariant in the above sense. In fact, while honest signer can
sign in some predetermined (in fact, deterministic [GI) way, there exists many
valid signatures for the same document which bear no similarity to each other.
In contrast, invariant signatures require all valid signatures of a document to
be ”similar” according to some polynomial time computable function which is
unpredictable from the document itself.

3 Preliminaries

Before we show the equivalence between the existence of A T 2 K and LVV - DS,
we review necessary ingredients of [FLSj and [BG] scheme.

3.1 Where Feige-Lapidot-Shamir use Trapdoor?

The [FLS] solution for ib‘12K for A-P when the participants are polynomial-
time requires the assumption that trapdoor permutations exist. This assumption
is not necessary throughout, their construction. In fact. the only place where the
trapdocr property is used is to construct a “hidden random string”. In particular.
they show how to use a common random string in order to get a “hidden random
string” as follows :

- prover picks a trapdoor one-way permutation (f, f - l) and sends to the ver-
ifier the code of f. In addition, let B be a hard-core predicate associated
with f [GL].

- A common random tape can be interpreted as a sequence of (91, yz, . . . , vm) .
with each lyzl of length n (a security parameter of f). Then hidden random
string is defined as: (~ (f - ’ (y ~)) , ~ (~ - ’ (y Z)) , . . . , B(f-l(ym))), where B(.)
is a hard-core bit [GL]. Notice that since f is a permutation, the hidden
random string is well-defined4. Notice that since f is a trapdoor permutation,
the polynomial time prover can compute f - l (gL).

* In [FLS] it is assumed that f is a verifiable permutation. That is, verifier can check
that it is a permutation by inspecting the code of f. In [BY], this is extended to
arbitrary trapdoor one-way permutations.

24 1

Using different f’s the prover can construct new hidden random bits (for each
new theorem). Thus: they show how assuming a common fixed (polynomial
length) random string and the existence of a trapdoor one-way permutations, a
iV?LZK: which is publically verifiable and Zero-Knowledge (in an adaptive set-
ting) can be constructed for NF.

3.2 Bellare-Goldwasser Signature Scheme

In [BG], it is shown how assuming publically verifiable non-interactive zero-
knowledge proofs and pseudo-random functions of [GGM] , a signature scheme
can be constructed. (-4s was shown by [GGM], pseudo-random functions can be
based on any one-way function.)

We outline their scheme below:

Stepl: The signer chooses at random a seed s for a pseudo random
function F,(.) and publishes an encryption E (s) along with the
public information necessary to verify :VZ2K proofs (i.e., the
random string etc.) as his public key, arid keeps s as his secret
key.
The signature of a document D is the value u = F,(D) together
with an A f 1 2 K proof that indeed II was computed correctly.

Step2:

We remark that in their construction the public-key contains the random
string which is necessary for the signer for producing .L’ZZK: proofs. Since the
signer serves here in the role of the prover, and it is to his advantage to chose
the random string truly with uniform probability (else the chance of a successful
forgery increases) the random string is made part of the signers public key rather
than part of the systems choice.

In what follows, we will use a similar scheme except that the random string
needed by the ,%‘*12iC proof system will be specified by the system as a common
random string.

4 The Equivalence of NIZK and IIC-V-DS

Recall that when we say that nontrivial h’12X: exist, we mean that NZ2K:
proof system exist for some hard to predict language L. First, we state our main
result:

MAIN THEOREM: L V V - DDS exist if and only if nontrivial A’1ZK exist.

232

Proof outline: We prove our main result in two parts: (1) 1h-V - DS imply
the existence of nontrivial .kr12Kc; (2) nontrivial N Z 2 X imply the existence of
ZNV - DS;

First, we prove (1). We claim that digital signatures (and, hence, ZJVV - D S)
already imply the existence of a one-way function [Ro]. Thus, it remains to show
that based on ZNV - VS and the existence of one-way functions we can con-
struct , 2 / z 2 K for some hard language. Assuming that one-way function f exist,
we can construct a hard language in a straight-forward fashion. For example,
let L f = {~1B(f -~ (s)) = l}, where B is hard core bit for f [GL]). We now
give intuition for the fact that Z,YV - VS imply iKl2lC in the common random
string model.

A

Let us first, consider the case of one theorem ,\iZZK, with the common
random string R = (y1, . . . , ym). To specify a hidden random string H =
(b l , . . . , bm)) instead of using a trapdoor function (Le, b, = B (f-'(y,)) where B
is a hard core bit as in section 3.1) the intuition is to use digital signatures (i.e,,
b, = P(c.(y,)) where P is some boolean function of the digital signature of yz) .
Clearly, this intuition is correct if indeed for every yz there exists a unique fixed
boolean value b, computable from any valid signature of y,. Unfortunately, this
is not the case for digital signatures in general [GoMiRi, Behli, NY, Ro]. We re-
mark that if it were true, then we could have implemented ,V"'ZK based on a n y
one-way function instead of one-way trapdoor permutations as currently known.
However, the above intuition is true for znvarzant digital signatures with high
probability. That is, for znvarzant signatures it is the case that for all yt there
exist some invariant function g defined over the signatures c&), and therefore
an invariant Boolean predicate P defined over the signatures ~ (3 %) .

Now, let us consider the case for many theorems. In this case, we need differ-
ent hidden random strings far each new theorem. Thus, how do we extend the
above intuition to obtain many hidden random strings for different theorems?
(Recall that the solution of [FLS] was to pick a new trapdoor 1-way permutation
f for each new proof so that a common random string (yl,y2,. . . , ym) , defines a
hidden random string (B(f-'(yl)),B(f-l(yz)), . . . , B(f-I(ym))). The solution
here is simple: when proving the i'th theorem T, we use as a common hidden
random string the sequence: (P(a(yyl + i)) , P(a(y2 + i)), . , . , P(a(y, + i))). By
adding a new i when proving each new theorem, we note that each new hidden
random string is unpredictable even when given proofs of all the previous the-
orems. This is so, since the definition of L V V - VS requires that the hard bit

243

P(.(y + 2)) be unpredictable in the adaptive setting (i.e., even if for all j < i,
P (a (y + j)) is given.)

We are now ready to outline how to use an ZAfV - DS to construct a AfZZlC
for an NP language. Let n be a security parameter and nm is a length of a com-
mon random string (where m is as specified in [FLS]). (1) Run key-generation
algorithm for ZNV - DS m times and publish all m public keys as a “com-
mon” public key; (2) Keep a counter i (initialized to 0) of the number of the-
orems proven so far. (3) t o prove theorem T, utilize (P (c (y l + i)) ,P (o (yz +
i)), . . . , P(.(y, -I- i))) as a hidden random sequence of the [FLS] construction.

Note that the completeness follows from that fact that both P and r are
efficiently computable, and the rest of the protocol is analogous to [FLS]. The
soundness holds since the signature scheme we are using is invariant, and hence
any particular choice of i with high probability specifies uniquely a hidden ran-
dom string. Thus, for a sufficiently long random string, even if prover picks an
arbitrary (but polynomially-bounded) i the conditions that at least one “block”
has a property required by [FLS] proof do hold with very high probability (over
common random string chosen with uniform distribution). The Zero-Knowledge
property holds due to the fact that if the adversary can distinguish the iL‘Z2K:
and the simulator then [FLS] show that such a distinguisher can be turned into
a good predictor of a hidden random bit. (The idea there is to use witness-
indistinguishable proof that either the graph is Hamiltonian or that the first 2n
random bits of the common random string a pseudo-random and are produced
from a seed of length n. Exploring properties of witness-indistinguishability [FLS]
show that the distinguisher of the simulator can be turned into a distinguisher for
a pseudo-random generator or into a predictor of a hidden random bits.) In our
construction, predicting a hidden random bit provides us with predictor of the
invariant propel-ty, which by definition enables us to to forge a Z,UV - DS for
some new D’. Since our signature scheme is secure against existential adaptive
chosen-message attacks, we get a contradiction.

In order to show (2), we first note that ,l‘ZZK for hard to predict L imply
the existence of one-way functions [OW]. Hence, we must show that assuming
one-way functions and ,VIZK: proofs is sufficient to construct ZNV - D S . This,
however, is essentialIy established for us by [BG] with the following modification
of their construction. The idea is to make sure that E(s) (of [BG] Step 1) uniquely
specifies s, i.e., is a commitment to s. If this is the case, then for any document
D, F,(D) (of [BG] Step 2) is uniquely defined, and the invariant function will be
simply F,(D). Any bit of F,(D) can be used as a hard-core bit for the invariant

244

predicate P (as discussed in the section on the definition of invariant signatures).
Now, we specify how to perform step 1 of [BG], based on any one-way func-

tion. In order to commit to a seed s , consisting of bits s1 , s 2 , . . . , sn, the player
commits to each bit s, separately using a modification of Naor’s scheme [N].
(The scheme of [N] is interactive, in which the player who receives committed
bits (called Bob) chooses a random string during the conversation). In our pro-
tocol, the challenges of Bob are substitut,ed by a (dedicated for this purpose)
portion of the common random string. Following through an argument analo-
gous to [N] shows that this scheme uniquely determines s with overwhelming
probability (over uniformly distributed common random string) and hence we
can use the proof of security presented in [BG] here as well. Hence we are done
with (2). 0

References

Blum M., and S. Micali “How to Generate Cryptographically Strong Se-
quences Of Pseudo-Random Bits” S I A M J . on Computing, Vol 13, 1984, pp.

Bellare, M., and S. Micali “How to Sign Given Any Trapdoor Function”
STOC 88.
Blum M., P. Feldman, and S. Micali, “Kon-interactive zero-knowledge proofs
and their applications,” Proceedings of the 20th STOC, ACM, 1988.
Blum M., A. DeSantis, S. Micali and G. Persiano, “Ton-Interactive Zero-
Knowledge” SIAM J. Comp. 91

M. Bellare, S. Goldwasser “New Paradigms for digital signatures and Mes-
sage Authentication based on Non-Interactive Zero Knowledge Proofs”
Crypto 89 proceedings, pp. 194 -211
Bellare5 Yung, “Certifying Cryptographic Tools: The Case of Trapdoor Per-
mutations” CRYPTO-92 proceedings.
De Santis, ,4., S. Micali and G. Persiano, “Non-Interactive Zero Knowledge
Proof Systems ,” CR YP TO- 8 7
De Santis, A., S. Micali and G. Persiano, “Bounded-Interaction Zero-
Knowledge proofs,” CRYPTO-88.
W. Diffie, M. Hellman, ”Kew directions in cryptography“, IEEE Runs . on
In. Theo y, IT-22, pp. 644-654, 19’76.
Even S., 0. Goldreich and S. Micali “On-line/Off-line Digital Signatures”
CRYPT0 89.
Feige, U., D. Lapidot and A. Shamir, “Multiple Xon-Interactive Zero-
Knowledge Proofs Based on a Single Random String”, Proc. IEEE Symp. on
Foundations of Computer Science, 1990.

850-864, FOCS 1982.

245

[GI

[GGM]

[GL]

[GMR]

Goldreich O., “TWO remarks Concerning the GMR Signature Scheme” MIT
Tech. Report 715, 1986.
Goldreich O., S. Goldwasser and S. Micali “How to Construct Random Func-
tions” JASM V. 33 No 4. (October 1986) pp. 792-807.
Goldreich, O., and L. Levin .‘A Hard-core Predicate for all One-way Func-
tions” Proc. 21st STOC, 1989, pp.25-32.
S. Goldwasser, S. Micali and C. Rackoff, “The Knowledge Complexity of
Interactive Proof-Systems”, SIAM J . Gomput. 18 (1989), pp. 186-208; (also
in STOC 85, pp. 291-304.)

[GoMiRi] Goldwasser, S., S. MiCali and R. Rivest “A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks” SIAM Journal of Computing
vol 17, No 2, (April 1988), pp. 281-308.
Goldwasser S., S. Micali and A. Yao, “Strong Signature Schemes“ STOG 83,

Hastad, J.: “Pseudo-Random Generators under Uniform Assumptions” ‘i
STOC 90.
R. Impagliazzo and hl. Luby. “One-way Functions are Essential for
Complexity-Based Cryptography“ FOCS 89.
R. Impagliazzo and S. Rudich, “On the Limitations of certain One-Way
Permutations”, Proc. ACM Symp. on Theory of Computing, pp 44-61, 1989.
R. Impagliazzo, R., L. Levin, and M. Luby “Pseudo-Random Generation
from One-way Functions.” STOC 89.
J. Kilian, S. Micali, R. Ostrovsky “Minimum Resource Zero-Knowledge
Proofs”, FOCS-89.
M. Naor “Bit Commitment Csing Pseudo-Randomness” , Crypto-89.
M. Naor and M. Yung, “Universal One-Way Hash Functions and their Cryp-
tographic Applications” , STOC 89.
R. Ostrovsky, .4. Wigdeson, “One-Way Functions are Essential for Non-
Trivial Zero-Knowledge” , preliminary draft.
Rivest, R.L., Shamir, -4. and Adleman, L., “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems” Comm: .4CM, Vol21, No 2! 1978.
J. Rompei “One-way Functions are Necessary and Sufficient for Secure Sig-
natures” STOC 90.

pp.431-439.

	Invariant Signatures andNon-Interactive Zero-Knowledge Proofsare Equivalent(EXTENDED ABSTRACT)
	1 Introduction
	1.1 Invariant Signatures
	1.2 Non-Interactive Zero-Knowledge Proofs and Digital Signatures

	1.3 A simple example: using digital signatures to achieve asymmetry

	2 Model and Definitions
	2.1 Negligible, noticeable and infeasible functions

	2.2 Non-Interactive Zero-Knowledge (n/ZZK) Proofs in the Common Random String Model

	2.3 Invariant Digital Signatures (ZNV - DS)

	3 Preliminaries
	3.1 Where Feige-Lapidot-Shamir use Trapdoor?
	3.2 Bellare-Goldwasser Signature Scheme

	4 The Equivalence of NIZK and IIC-V-DS
	References

