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1 Introduction 

Currently, due to the lack of proven non-trivial lower bounds on NP problems, 
the theory of cryptography is primarily based on unproven assumptions such 
as the difficulty of particular computational problems such as integer factoriza- 
tion, or more generally the existence of one-way and trapdoor functions. It is 
thus naturally desirable to establish minimal complexity assumptions for basic 
cryptographic primitives, and to establish connections among these primitives. 
Indeed, it has been an active and in many cases successful area of research. For 
example, pseudo-random generators [BM] were shown to be equivalent to the 
existence of any one-way function [ILL, HI. On the other hand, several other 
primitives, such as secret-key exchange seem to require the trapdoor [IR] prop- 
erty. 

Digital signatures have been an especially interesting case in point. Originally 
introduced by Diffie and Hellman [DH], the first implementation was based on 
the RSX trapdoor function [RSX] which yields a deterministic signature scheme 
where each document has a unique valid signature. Later, the notion of digital 
signatures which are secure against chosen message attack3 was formally de- 
fined by [GoMiRi] and proved to exist under a sequence of decreasingly weaker 
assumptions: the existence of claw-free permutations [GoMiRi] (e.g. factoring) 
the existence of trapdoor permutations IBeMi], the existence of one-way permu- 
tations by [NY], and finally the existence of one-way functions by [Ro]. In all of 
these schemes, each document may have many valid signatures. 

The fact that digital signatures can be implemented if one-way functions 
exist without the need for a trapdoor [NY, Ro] is somewhat remarkable, as by 
definition a digital signature seems to posses the essential flavor of a trapdoor 
function; namely, it should be easy for everyone to verify the correctness of a 
signature, while it should be hard for everyone except a privileged user (with 
access to the private file) to sign. In this paper: we study which aspects of digtal 
signatures allows for this dichotomy and whether digital signatures can in some 
cases be used in cryptographic protocols instead of trapdoor functions. 

We show that the issue of having many different valid signatures of the same 
document plays a role in the above question. That is, on the positive side, we 

Note that RSA does not satisfy security against adaptive chosen message attack as 
there do exist messages for which the signature can be forged. 
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show that digital signatures can sometimes be used instead of trapdoor func- 
tions, provided that all valid signatures of the same document have an invariant 
property which is unpredictable from the document itself. On the negative side, 
we show that this invariant property for a signature scheme may require a trap- 
door for its implementation (unless non-interactive zero-knowledge proofs among 
polynomial-time participants can also be implemented without a trapdoor). 

Invariant signatures are interesting in their own right, as they capture the 
flavor of having a unique valid signature per document as in the case of RSA, 
and yet can be proven secure against adaptive chosen message attack as in the 
case of [GoMiRi, BeMi, NY, Ro]. Achieving these two aspects simultaneously 
may prove valuable in applications. 

1.1 Invariant Signatures 

Let us recall the definition of digital signatures as defined in [GoMiRi]. Infor- 
mally, the setting is as follows: in a network, every user can generate (using a 
polynomial-time algorithm) a pair of keys: the public key and the correspond- 
ing secret key. In addition to the generation algorithm, the signature scheme is 
provided with two probabilistic polynomial- time algorithms: one for signing and 
one for verifying. Given an arbitrary document, a user applies his signing algo- 
rithm to the document, his public key, and his secret key. Given a signature of 
a document, any other user can verify the validity of the signature by applying 
the polynomial time verification algorithm to the signature, document, and the 
public key of the signer. No adversary can forge a signature for a new document, 
even after asking for arbitrary signature samples in an adaptive fashion. 

The additional constraint we put on digital signatures so as to make them 
invariant, is (informally) that there exists a deterministic poly-time computable 
function g computed on signatures such that with high probability (1) for any 
document D and for any two legitimate signatures u1 (D) and 02 ( D ) ,  g(ul ( D ) )  = 
g(crz(D)) and (2) given D ,  g ( o ( D ) )  is pseudo-random. If the above conditions 
hold we say that the signature scheme is invariant under g .  

Although not the subject of this paper, we suggest that our definition of 
invariant signatures might serve as a good definition for what we may want 
from a finger print of a document: hard to predict for any document even in an 
adaptive setting, dependent perhaps on the time of inquiry, and yet unique. 
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1.2 

We investigate the comparative difficulty of non-interactive zero-knowledge proofs 
(NZZK) [BFM] and digital signatures (DS) [GoMiRi]. These seemingly differ- 
ent primitives were shown to be connected in a paper by Bellare and Goldwasser 
[BG], where it was shown that the existence of one-way functions and non- 
interactive zero-knowledge proofs implies the existence of digital signatures (se- 
cure against adaptive chosen-message attacks). We remark that the known con- 
structions of non-interactive zero-knowledge proofs with polynomial-time partic- 
ipants use the trapdoor permutations assumption [FLS], while digital signatures 
can be implemented based on any one-way function [Ro]. 

We show that the existence of invariant digital signatures is equivalent to the 
existence of non-interactive zero-knowledge proofs. That is, we show that while 
a signature scheme in which a document can be signed in an unconstrained plu- 
rality of ways requires the existence of any one-way function, a signature scheme 
in which each document has unique or at least “similar signatures” (according 
to any “nontrivial” poly-time computable function - this is the invariant prop- 
erty!) requires the same assumptions as non-interactive zero-knowledge proofs 
(i.e. currently the trapdoor assumption is necessary). 

More precisely, we consider non-interactive zero-knowledge proofs in the ran- 
dom string model, where users in the system can read a pre-existing common 
(polynomial size) random string set up by the system (a model defined by 
[BFM]). We prove that in this common random string model, the existence 
of invariant digital signatures is equivalent to the existence of non-interactive 
zero-knowledge proofs for any hard to  predict N P  language (see definition in 
2.2). To prove this theorem we must define invariant signatures in the common 
random string model. 

Non-Interactive Zero-Knowledge Proofs and Digital Signatures 

1.3 
asymmetry 

Suppose two probabilistic polynomial-time players (Alice and Bob) wish to agree 
on a boolean predicate I?(.), so that when later given a randomly chosen z as 
a common input, Bob can not predict B ( z )  with probability (over z and Bob’s 
coin tosses) bounded away from half, but Alice can compute B ( z )  and convince 
Bob of the value of B ( s ) .  Under what assumptions can we implement such a 
protocol? 

A simple example: using digital signatures to  achieve 

Before we examine the above question, let us recall definitions of a one-way 
function and a trapdoor function. Informally, a poly-time computable function 
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f is one-way if when we pick x uniformly at random and compute y t f(z), 
it is infeasible for any polynomial time machine to find 2' in f - l (y )  for a non- 
negligible fraction of the instances. Again informally, a trapdoor function, is a 

one-way function with an additional secret key, the knowledge of which makes 
inversion easy. 

Assuming the existence of one-way trapdoor permutations, Alice and Bob 
can achieve the above task. In particular, they can agree on a trapdoor one-way 
permutation (f,f- '),  so that Alice knows ( f : f - ' )  and Bob knows only f. In 
addition, they agree on a hard-core [GL] bit B(-) for f. (Notice that Alice and 
Bob must make sure that f is really a permutation for B(.)  to be well defined.) 
Subsequently, when z is given, Alice can invert f and compute a hard-core bit, 
while Bob can not. 

Can we achieve the above task using one-way functions which are not trap- 
door? Let us examine if digital signatures (which do not need trapdoor in their 
implementation) might be useful. 

At first glance, to implement a simple protocol specified above could be done 
using digital signatures as follows: Alice prepares a public and a secret key (of a 
signature scheme), gives her public key to Bob and convinces him that her public 
key is produced using an appropriate key-generation algorithm. Moreover , they 
agree on a hard-core hit B of a signature for any document 2'. Notice that given 
2 and a public key of Alice, the signature of z is hard to find for any polynomial- 
time player, and thus Bob can not predict the hard-core bit of a signature of x, 
while Alice can easily compute it. Since we can implement signatures based on 
one-way functions (without the trapdoor) it seems that we can implement the 
above protocol without the trapdoor ... What is wrong in this argument? 

The problem, is that this bit is not well defined. That is, the specification of 
digital signatures allows for many legal signatures of 5 .  However, if we put an 
additional constraint on the digital signature scheme, then the above argument 
will go through. The additional constraint is to have an invariant signature 
scheme (as above). Then, to implement the above game, Alice can use a hard- 
core bit of g(a (D) )  (where all signatures of D are invariant under g) and the bit 
is well-defined. Thus, notice that invariant digital signatures can be used in the 
above setting instead of a trapdoor function. 
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2 Model and Definitions 

2.1 

We use the usual 0 , o  and l / o ( l )  (asymptotically tending to co) notation. We 
fix some function s(n)  = nl/o(l) and call it infeasible. We call r(n) = 1/so(l)(n) 
negligible and 6(n) = l /O(nc),c > 0 noticeable. In this case, n is a security 
parameter, which we omit when clear from the context. We use standard defini- 
tions of one-way functions and computationally indistinguishable distributions 
(see, for example,[GL, ILL, HI). If S is a probability space then 2 t S denotes 
the algorithm which assigns to x an element randomly selected according to S. 
For probability spaces S, T ,  . . ., the notation Prlp(z, 9,. . .) : z t S ;  y t T ;  . .) 
denotes the probability that the predicate p ( z ,  y, . . .) is true after the (ordered) 
execution of the algorithms 5 c S,  y t T ,  etc. The notation {f(z, y ,  . . .) : z t 
S; y t T ;  . . .} denotes the probability space which to the string 0 assigns the 
probability Pr(u = f(s, 3:.  . .) : x t S; y t- 7’;. .), f being some function. If S 
is a finite set we will identify it with the probability space which assigns to each 
element of S the uniform probability &. (Then 5 t S denotes the operation of 
selecting an element of S uniformly at random). 

Negligible, noticeable and infeasible functions 

2.2 
Common Random String Model  

Yon-interactive zero-knowledge proofs were introduced in [BFM]. We note that 
this is where the “common random string model” was introduced as well. 

Non-Interactive Zero-Knowledge ( n / Z Z K )  Proofs in the 

Common random str ing model: at  the time of the system set-up a string 
of a fixed [polynomial in the security parameter) length is chosen uniformly at  
random and published by a trusted center for everyone in the system (provers] 
verifiers, users etc.) such that it can be read but not modified. 

Informally, a ,v12K proof of an A’P statement in a common random string 
model is a way for any polynomial-time user to convince other users that some 
statement is true without revealing anything else. That is, given a common 
random string, and a witness to an JVP statement, there should be a probabilistic 
poly-time algorithm (for the prover) which constructs a proof of that statement, 
and a probabilistic poly-time algorithm (for the verifiers) to check that the proof 
is correct. Moreover, such proof should not reveal anything about the witness. 

Formally, the following definition is essentially taken from [BDMP]. 



234 

Definition 1. We fix an N'P language L (with poly-time relation p ( - ,  -) and con- 
stant d such that  5 E L ifF 3w, Iw] < ]xid,  p(z,  w) = 1.) We say that two probabilis- 
t ic polynomial-time algorithms (prover(., ., -), verifier(., -, .)) constitute bounded 
hfZ2K: for language L if the following conditions are satisfied: there exist a poly- 
nomial I such that 

Completeness: 

Soundness: 

Zero-Knowledge: 

For all 5 E L ,  1x1 = n, sufkiently large n, and E negligi- 
ble, where w is such that ]w( < nd and p(z.w) = 1, the 
Pr( werzfier(z, w, c )  = accept : c t {0,  ~ } l ( ~ ) ;  y t prower(x, w, c)) 
> 1 - e(n). 
(Here, c is the "common random string", w is the NP wit- 
ness, and y is the  output of the prover which is computed non- 

interactively. The probability is taken over the choice of c and 
the prover's coin tosses). 
For all probabilistic polynomial-time players prmer',  z 6 L ,  
15) = n, for sufficiently large n, and negligible E, the 
Pr(werzfier(z, w, c )  = accept : c c {o. I } ' ( ~ ) ;  y t prower'(z, c)) 
< c(n). 
(Here, the probability is taken over the choice of  c and prover's 
coin tosses). 
There exists a probabilistic expected polynomial-time algorithm 
S( . ,  .) such that for al l  1: E L ,  1x1 = n, and w such that (w( < nd 
and p(z, w) = 1, for all probabilistic polynomial time algorithms 
D ,  for all sufficiently large n,  the 

1 Pr(D(c ,  2, y) = 1 : c t (0, I ) ' ( ~ ) ;  y c prover(%, w, c ) ) -  

Pr(D(c, 5 ,  S(Z, c>> - 1 : c t (0, ~ } ' ( ~ ) ) l  < e ( n )  

In the above c is called the "common random string", and 1 the length of the 
common random string. 

REMARKS: 

- One difference from above definition to [BDMP] is that we impose the 
soundness condition only on probabilistic polynomial-time prover's. This 
is not actually necessary as known constructions achieve soundness against 
all prover's. However, as in the context of this paper we show equivalence to  
a digital signatures in which a reasonable forger to consider is probabilistic 
polynomial time, we relax the soundness requirement here as well. 
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- The above definition is specified for a single theorem of a fixed polynomial 
size. This bounded NT2K definition can be extended to polynomially- 
many theorems each of polynomial length and to many users in the roles 
of both provers and verifier. This is the notion of N L Z K  we adopt here. 
To modify the above definition to accommodate this extension, we must 
require (as in [BDMP]) the existence of many pairs of prover, ,  verifieri for 
which completeness and soundness are true, and change the zero-knowledge 
condition as follows. 

[Zero-Knowledge':] There exists a probabilistic expected polynomial time 
algorithm S such that for allzl ,x2, .  . . E Ln(0 ,  l}", where IwlJ, 12021, ... < nd 
and p ( z ~ , w l )  = 1, p(z2,wz) = 1,. . ., for all probabilistic polynomial time 
algorithm D ,  for all sufficiently large n. for all negligible 6, 

IPr(D(c,(zl,yl),(s2,yz),...) = 1 : c+- { 0 , 1 } Q n ) ; y 1  + p r m e r l ( z l , w , c ) ;  
y2 +- prmm(z2, WZ, c); . . .) - 
Pr(D(c, ( 5 1 ,  S ( z l j c ) ) ,  (22,S(22, c)),  . . .) = 1 : c t (0, I } ' [ ~ ) ) I  < ~ ( n ) .  

- Another aspect of JV'ZZK is a preservance of zero-knowledge in an adaptive 
setting, which means that even after requesting polynomially-many proofs 
one by one, the probability for polynomial-time ildv (over its coin-flips) of 
being able to distinguish an NIZK proof of a new theorem from the run of the 
simulator is negligible. Notice that if .i\i'ZZIc proofs remains Zero-Knowledge 
even in an adaptive setting, then the statements may be dependent on the 
previous proofs and on the common random string. From now on, when we 
refer to .b'TZK, we refer to ,V'ZZK which is secure in an adaptive setting. 
To modify the above definition to accommodate this extension we further 
refine the zero knowledge condition as follows. 

[Zero-Knowledge":] There exists a probabilistic expected polynomial time 
algorithm 5 such that for all polynomial time Adu ,  for all probabilistic poly- 
nomial time D, for all sufficiently large n, for all negligible E ,  

[ Pr(D(c, ( z ~ , y ~ ) ,  ( z2 ,y2 ) ,  . . .) = 1 : c t (0 ,  l}L(n);zl t Adv(c); 

Pr(D(c, ( 5 1 ,  ~ ( q ,  c)),  (22, s ( s2 , c ) ) ,  . . .) = 1 : c t (0, ~ } l ( ~ ) ; q  t ~ d v ( c ) ;  
YI + (51, ~ 1 ,  c); 5 2  +- Adu(c, 2 1 ,  y i ) ;  ~2 + prmm ( 2 2 , ~ ~ ~  c)i . . - 

YI +S(zcl,c);x2 t A d v ( c , s i , S ( z i , ~ ) ) ; y ; !  t s ( ~ 2 , ~ ) ; . . . ) I  < ~ ( n ) .  

- We note that in our setting, provers are polynomial-time machines. 

- An additional property of iVZ2rC that we must stress is of being publically 
veri,fiable ,VX.ZK proof system, which means that the proof can be verified by 
any polynomial-time machine which has access to a common random string. 
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In [BFM? DMP1, BDMP] it was shown how N Z 2 K  could be implemented, 
based on algebraic assumptions. In [DMP2, KMO] the N Z 2 K  was implemented 
based on the general complexity assumptions and without a common random 
string, but at a price of a small pre-processing stage, which was interactive. 
Finally, in [FLS] it was shown how N12K could be implemented without pre- 
processing, based on (verifiable) trapdoor one-way permutations. (In [BY] , they 
show how verifiability requirement could be implemented based on trapdoor 
one-way permutations). Moreover, in [FLS] it was shown how to convert N Z 2 K  
into publically-verifiable and adaptively secure (see remarks above) h/zzlc proof 
system. Again, we mention that it is not known how the assumptions (of one-way 
trapdoor permutations) could be reduced further. 

Definition 2. We say that a Language L is hard to predict if there exist a proba- 
bilistic polynomial time algorithm S(1”) (which samples X E (0, l}n) such that 
for every probabilistic polynomial-time algorithm Adv, for all sufficiently large 
n and for all negligible E ,  the probability (over S and Adv coin tosses) that Adv 
can correctly decide if X E L is less then 3 + ~ ( n ) .  

REMARK: The above definition can be modified as follows: we say that a 
language L is sometimes hard to  predict if there exist a probabilistic polynomial 
time algorithm S(ln) (which samples X E { O , l J n )  such that on a noticeable 
fraction H of S(ln), for every probabilistic polynomial-time algorithm Adv,  for 
all sufficiently large n and for all negligible E, the probability (over S and Adv 
coin tosses) that Adv on X in H can correctly decide if X E L is less then 

+ c(n). 

Definition 3. We say that nontrivial ,b‘ZZK exists, if there exists a (sometimes) 
hard to predict L E .k’P which possesses an A T Z K  proof system. 

We note that the existence of NZZK proofs for (sometimes) hard to predict 
L implies the existence of one-way functions [OW]. 

2.3 Invariant Digital Signatures (ZNV - D S )  

The formulation of the digital signatures of [GoMiRi] allows any document to 
have many valid signatures (i.e. accepted by the signature verification algorithm 
as valid) of the same document. For invariant signatures we make the additional 
requirement that all valid signatures of the same document be “similar”, that 
is, there exists an easy to compute function defined on signatures which yields 
the same value for all signatures of the same document. This function should 



237 

be hard to compute from the document itself with access to the public key (but 
without access to the secret key). 

In the following definition we incorporate the possibility that a common 
random string c was published by a trusted center at the time of a system set 
up for everyone in the system (signers and verifiers) to read but not to modify. 
This is similar to the set up of NIZK (see previous section). The definition of an 
invariant digital signature scheme can be made in the standard model as well 
(without the presumption of the existence of c ) ,  but as in this paper we show 
the equivalence of invariant signatures and NIZK in the common random string 
model, we present the definition of invariant digital signatures in this model. 
The polynomial E(n) will denote the length of the common random string with 
security parameter n. 

Definition 4. An invariant signature scheme K is a quadruple (G, S! V,  g)  

such t h a t  the following conditions hold: le t  I be a polynomial function 

G: is a probabilistic poly-time computable algorithm ( the  "key gen- 

eration" algorithm) which on input In (the security parameter), 

c E {0, l}'(n) ( the common random string) outputs a pair of strings 

(secret-key, public-key). We let the random variables GI ( In) de- 

note the  first output and G2( ln )  the second output. (Wlog we let 

IG1(1")I = lGa(l")l = n The probability is over c t {O, l} ' (*)  
and G's coin tosses.) 

is a probabilistic poly-time computable algorithm (the "signing" al- 
gorithm) which on input strings l", c E {O,l}"") ( the common 

random string), D E {O,l.}* of length polynomial in n (the docu- 

ment), and a pair of strings {secret-key,pubEic-key} in the range 

of G(1", c )  outputs a string. The output is referred t o  as t h e  "signa- 

ture" of D (with respect t o  public- keg and c ) .  When the context 

is clear we let a ( D )  denote an output of  S(ln, D, G(l", c ) ,  c ) .  

is a probabilistic poly-time computable algorithm (the "verification" 

algorithm) which receives as inputs the strings In (the security 

parameter), D E (0, l}' of length polynomial in n (the document), 

s (the presumed signature of D), c E (0, l}f(n) and public - key E 
Gz(l"), and outputs either true or false. We require t h a t  for all D 
in n, the Pr(V(l", D! s,pbEic - k e y ,  c )  = true : c t ( 0 ,  l}'("); 
{secret - k e y , p b l i c -  k e y }  c G(l",c);s t S ( l n , D ,  {secret - 
k e y ,  public - k e y } ,  c ) )  = 1 

S: 

V :  
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(Namely, signatures produced by the signing algorithm S are 
always accepted by the verifying algorithm V for any pair of public 
and private keys produced by key generation algorithm G). 
If V ( l n ,  D ,  s ,  public-key, c )  = t r u e  then we say that s is a "valid" 
signature of  D (with respect t o  public - key and c) .  

Let F be a probabilistic poly time forging algorithm which receives 
as input the strings l", c E (0, l}'(n), and pzLbEic- key E Gz(1"); 
can request and receive signatures with respect t o  public - key 
and c of polynomially-many adaptively chosen documents { D z }  and 
finally outputs a pair of  strings ( D , s ) .  Then, for all such F ,  for all 
sufficien.tly large n, for all negligible functions c ,  the probability that  
F outputs (D, s )  where L, $ {Di}, and s is a valid signature of D 
with respect t o  public - key and c is less than e(n). 

(The probability is taken over the outcome of G, signatures of 
D,, and the coin tosses of  F ) .  

security: 

invariant function g( . ,  .): is a polynomial time computable function which 
takes as input strings 1" and s (when clear we use notation g ( s )  

for g(l", s)) and produces as output a string t E {0, l}'(n) where 
T is a fixed polynomial, such that: 

invariance Let ildv be a probabilistic polynomial-time algorithm which re- 
ceives as input strings In ,  c E (0, l}L(n), and produces as out- 
put the tuple (public - key,D,ol(D),02(D)) where public- 
key € (0, l}", and CTL(D)  and Q ( D )  are both valid signatures 
of  D with respect t o  p b l i c -  key and c. Then, for all such .4dv, 
for all public- key E (0, l}n, for any negligible E ,  and for suf- 
ficiently large n. the probability that g(ol(D)) # g(az(D)) is 
less than ~ ( n ) .  
(Here the probability is taken over c t {O, 1}"("), and the coin 
tosses of A&. ) (Note, that the definition implies that even the 
honest signer who has access t o  the secret key can not produce 
two signatures of the same document for which g is not the 
same with non-negligible probability. ) 

pseudo-randomness Let Adv be a probabilistic polynomial t ime algorithm which 
operates in two stages on input strings I", c E (0 ,  l}'((n), and 
public - key E G2(ln) .  In the first stage Adu can request 
and receive signatures with respect t o  public - key and c of 
polynomially-many (in n) adaptively chosen documents (Di}. 
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A t  the end of the first stage, Adv outputs a polynomial length 
string D not in {Di}. In the second stage, Adv is presented with 
a string t on which it outputs 0 or 1 (we let Adu(t) denote the 
output bit). Let Q! = Pr(Adv(t) = 1 : c t (0 ,  l}'(n); {secret-  
key,public-key} t G(l", c);  s t S(ln, D, {secret-key,pzLbZic- 
key}, c);  t t g(s ) )  and let f i  = Pr(Adv(t) = 1 : t t (0, l}T(n)). 
Then, for all Adv, for all negligible E ,  for all sufficiently large 

We call g the invariant function of the signature scheme, and 
I the length of the invariant function. 

71, Icr - P I  < +). 

REMARK: We note that in the above definition the invariant property holds 
for any public file public - k e y ,  and not just over Gz(ln). This requirement 
ensures that invariant property holds for any public key, even a maliciously 
chosen one, and avoids problem pointed out in [BY] of lack of certification in 
[FLS]. 

The most important aspect of invariant signature scheme for our application is: 

Lemma: If T = (G, S, \-,g) is an invariant signature scheme, then there exists a 
polynomial time computable Boolean predicate P which on input ln and s, outputs 
0 or 1 such that the following conditions hold: 

1. "P is invariant for all signatures of a document " :  Let .4dv be a probabilistic 
polynomial-time algorithm which takes as input strings c E (0, l}*(n), and pro- 
duces as output (pzlblic - key ,  D ,  o l ( D ) ,  02(D)) where public - key  E { O , l } % ,  
01 (D), C T ~  (D) are valid signatures of D with respect t o  public- key and c. Them 
for all Adu, for all public - k e y ,  for all negligible E ,  for all sufficiently large n, 
the probability that P ( o l ( D ) )  # P ( o z ( D )  is less than ~(n). (The probability is 
taken over c t (0, l}'(n) and coin-tosses of  Adv.) 

2.  " P  is unpredictable from D": Let Adw be a probabilistic polynomial time algo- 
rithm which receives as input strings In, c E ( 0 ,  l } ' ( n ) , p b Z i c  - k e y  E G2(ln);  
can request and receive signatures with respect to public-key and cof  polynomially- 
many (in n) adaptively chosen documents { D l }  ; and finally outputs a polyno- 
mially length string D not in (Da} and a bit b. Let a = Pr(b = P( t )  : c t 
{0,1}'(("); {secret - key,pubEic - k e y }  t G ( l " , c ) ;  s t S(l",D, {secret - 
key ,pub l i c -  k e y } , c ) : t  t g(s)). Then, for every Adw, for every negligible E, 
and for all sufficiently large n,  la: - 

We refer t o  the predicate P as, the invariant property of T. 

5 ~(n). 
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This lemma follows immediately from the definition of invariant signature scheme. 

REMARK: We must stress that digital signatures of [GoMiFti, BeMi, NY, Ro] 
are not known to be invariant in the above sense. In fact, while honest signer can 
sign in some predetermined (in fact, deterministic [GI) way, there exists many 
valid signatures for the same document which bear no similarity to each other. 
In contrast, invariant signatures require all valid signatures of a document to 
be ”similar” according to some polynomial time computable function which is 
unpredictable from the document itself. 

3 Preliminaries 

Before we show the equivalence between the existence of A T 2 K  and LVV - DS, 
we review necessary ingredients of [FLSj and [BG] scheme. 

3.1 Where Feige-Lapidot-Shamir use Trapdoor? 

The [FLS] solution for ib‘12K for A-P when the participants are polynomial- 
time requires the assumption that trapdoor permutations exist. This assumption 
is not necessary throughout, their construction. In fact. the only place where the 
trapdocr property is used is to construct a “hidden random string”. In particular. 
they show how to use a common random string in order to get a “hidden random 
string” as follows : 

- prover picks a trapdoor one-way permutation (f, f - l )  and sends to the ver- 
ifier the code of f. In addition, let B be a hard-core predicate associated 
with f [GL]. 

- A common random tape can be interpreted as a sequence of (91, yz, . . . , vm) .  
with each lyzl of length n (a security parameter of f). Then hidden random 
string is defined as: ( ~ ( f - ’ ( y ~ ) ) , ~ ( ~ - ’ ( y Z ) ) ,  . . . , B(f-l(ym))), where B(.)  
is a hard-core bit [GL]. Notice that since f is a permutation, the hidden 
random string is well-defined4. Notice that since f is a trapdoor permutation, 
the polynomial time prover can compute f - l  (gL). 

* In [FLS] it is assumed that f is a verifiable permutation. That is, verifier can check 
that it is a permutation by inspecting the code of f. In [BY], this is extended to 
arbitrary trapdoor one-way permutations. 
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Using different f’s the prover can construct new hidden random bits (for each 
new theorem). Thus: they show how assuming a common fixed (polynomial 
length) random string and the existence of a trapdoor one-way permutations, a 
iV?LZK: which is publically verifiable and Zero-Knowledge (in an adaptive set- 
ting) can be constructed for NF. 

3.2 Bellare-Goldwasser Signature Scheme 

In [BG], it is shown how assuming publically verifiable non-interactive zero- 
knowledge proofs and pseudo-random functions of [GGM] , a signature scheme 
can be constructed. (-4s was shown by [GGM], pseudo-random functions can be 
based on any one-way function.) 

We outline their scheme below: 

Stepl: The signer chooses at random a seed s for a pseudo random 
function F,(.) and publishes an encryption E ( s )  along with the 
public information necessary to verify :VZ2K proofs (i.e., the 
random string etc.) as his public key, arid keeps s as his secret 
key. 
The signature of a document D is the value u = F,(D) together 
with an A f 1 2 K  proof that indeed II was computed correctly. 

Step2: 

We remark that in their construction the public-key contains the random 
string which is necessary for the signer for producing .L’ZZK: proofs. Since the 
signer serves here in the role of the prover, and it is to his advantage to chose 
the random string truly with uniform probability (else the chance of a successful 
forgery increases) the random string is made part of the signers public key rather 
than part of the systems choice. 

In what follows, we will use a similar scheme except that the random string 
needed by the ,%‘*12iC proof system will be specified by the system as a common 
random string. 

4 The Equivalence of NIZK and IIC-V-DS 

Recall that when we say that nontrivial h’12X: exist, we mean that NZ2K: 
proof system exist for some hard to predict language L. First, we state our main 
result: 

MAIN THEOREM: L V V  - DDS exist if and only if nontrivial A’1ZK exist. 
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Proof outline: We prove our main result in two parts: (1) 1h-V - DS imply 
the existence of nontrivial .kr12Kc; (2) nontrivial N Z 2 X  imply the existence of 
ZNV - DS; 

First, we prove (1). We claim that digital signatures (and, hence, ZJVV - D S )  
already imply the existence of a one-way function [Ro]. Thus, it remains to show 
that based on ZNV - VS and the existence of one-way functions we can con- 
struct , 2 / z 2 K  for some hard language. Assuming that one-way function f exist, 
we can construct a hard language in a straight-forward fashion. For example, 
let L f  = {~1B( f -~ ( s ) )  = l}, where B is hard core bit for f [GL]). We now 
give intuition for the fact that Z,YV - VS imply iKl2lC in the common random 
string model. 

A 

Let us first, consider the case of one theorem ,\iZZK, with the common 
random string R = (y1, . . . , ym). To specify a hidden random string H = 
( b l ,  . . . , bm))  instead of using a trapdoor function (Le, b, = B (f-'(y,)) where B 
is a hard core bit as in section 3.1) the intuition is to use digital signatures (i.e,, 
b, = P(c.(y,)) where P is some boolean function of the digital signature of yz) .  
Clearly, this intuition is correct if indeed for every yz there exists a unique fixed 
boolean value b, computable from any valid signature of y,. Unfortunately, this 
is not the case for digital signatures in general [GoMiRi, Behli, NY, Ro]. We re- 
mark that if it were true, then we could have implemented ,V"'ZK based on a n y  
one-way function instead of one-way trapdoor permutations as currently known. 
However, the above intuition is true for znvarzant digital signatures with high 
probability. That is, for znvarzant signatures it is the case that for all yt there 
exist some invariant function g defined over the signatures c&), and therefore 
an invariant Boolean predicate P defined over the signatures ~ ( 3 % ) .  

Now, let us consider the case for many theorems. In this case, we need differ- 
ent hidden random strings far each new theorem. Thus, how do we extend the 
above intuition to obtain many hidden random strings for different theorems? 
(Recall that the solution of [FLS] was to pick a new trapdoor 1-way permutation 
f for each new proof so that a common random string (yl,y2,. . . , ym) ,  defines a 
hidden random string (B(f-'(yl)),B(f-l(yz)), . . . , B(f-I(ym))).  The solution 
here is simple: when proving the i'th theorem T, we use as a common hidden 
random string the sequence: (P(a(yyl + i ) ) ,  P(a(y2 + i)), . , . , P(a(y,  + i))). By 
adding a new i when proving each new theorem, we note that each new hidden 
random string is unpredictable even when given proofs of all the previous the- 
orems. This is so, since the definition of L V V  - VS requires that the hard bit 
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P(.(y + 2 ) )  be unpredictable in the adaptive setting (i.e., even if for all j < i, 
P ( a ( y  + j ) )  is given.) 

We are now ready to outline how to use an ZAfV - DS to construct a AfZZlC 
for an NP language. Let n be a security parameter and nm is a length of a com- 
mon random string (where m is as specified in [FLS]). (1) Run key-generation 
algorithm for ZNV - DS m times and publish all m public keys as a “com- 
mon” public key; (2) Keep a counter i (initialized to 0) of the number of the- 
orems proven so far. (3) t o  prove theorem T, utilize (P (c (y l  + i ) ) ,P (o (yz  + 
i)), . . . , P(.(y, -I- i))) as a hidden random sequence of the [FLS] construction. 

Note that the completeness follows from that fact that both P and r are 
efficiently computable, and the rest of the protocol is analogous to [FLS]. The 
soundness holds since the signature scheme we are using is invariant, and hence 
any particular choice of i with high probability specifies uniquely a hidden ran- 
dom string. Thus, for a sufficiently long random string, even if prover picks an 
arbitrary (but polynomially-bounded) i the conditions that at least one “block” 
has a property required by [FLS] proof do hold with very high probability (over 
common random string chosen with uniform distribution). The Zero-Knowledge 
property holds due to the fact that if the adversary can distinguish the iL‘Z2K: 
and the simulator then [FLS] show that such a distinguisher can be turned into 
a good predictor of a hidden random bit. (The idea there is to use witness- 
indistinguishable proof that either the graph is Hamiltonian or that the first 2n 
random bits of the common random string a pseudo-random and are produced 
from a seed of length n. Exploring properties of witness-indistinguishability [FLS] 
show that the distinguisher of the simulator can be turned into a distinguisher for 
a pseudo-random generator or into a predictor of a hidden random bits.) In our 
construction, predicting a hidden random bit provides us with predictor of the 
invariant propel-ty, which by definition enables us to to forge a Z,UV - DS for 
some new D’. Since our signature scheme is secure against existential adaptive 
chosen-message attacks, we get a contradiction. 

In order to show (2), we first note that ,l‘ZZK for hard to  predict L imply 
the existence of one-way functions [OW]. Hence, we must show that assuming 
one-way functions and ,VIZK: proofs is sufficient to construct ZNV - D S .  This, 
however, is essentialIy established for us by [BG] with the following modification 
of their construction. The idea is to make sure that E(s )  (of [BG] Step 1) uniquely 
specifies s, i.e., is a commitment to s. If this is the case, then for any document 
D, F,(D) (of [BG] Step 2 )  is uniquely defined, and the invariant function will be 
simply F,(D).  Any bit of F,(D) can be used as a hard-core bit for the invariant 
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predicate P (as discussed in the section on the definition of invariant signatures). 
Now, we specify how to perform step 1 of [BG], based on any one-way func- 

tion. In order to commit to a seed s ,  consisting of bits s1 , s 2 , .  . . , sn, the  player 
commits to each bit s, separately using a modification of Naor’s scheme [N]. 
(The scheme of [N] is interactive, in which the player who receives committed 
bits (called Bob) chooses a random string during the conversation). In our pro- 
tocol, the challenges of Bob are substitut,ed by a (dedicated for this purpose) 
portion of the common random string. Following through an argument analo- 
gous to [N] shows that this scheme uniquely determines s with overwhelming 
probability (over uniformly distributed common random string) and hence we 
can use the proof of security presented in [BG] here as well. Hence we are done 
with (2). 0 
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