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Abstract. This paper presents a three-move interactive identification 
scheme and proves it to be as secure as t h e  discrete logarithm prob- 
lem. This  provably secure scheme is almost as efficient as t,he Schnorr 
identification scheme, while the  Schnorr scheme is not provably secure. 
This paper also presents another practical identification scheme which is 
proven to be as secure as the factoring problem arid is almost as efficient 
as the  Guillou-Quisquater identification scheme: the Guillou-Quisquater 
scheme is not provably secure. We &so propose practical digital signature 
schemes based on these identification schemes. T h e  signature schemes 
are almost as efficient as the Schnorr and Giiillou-Quisquater signa- 
ture schemes, while the securit.y assumptions of our  signature schemes 
are weaker than those of the Schnorr and Guillou-Quisquater.signature 
schemes. This  paper also gives a theoretically generalized result: a three- 
move identification scheme can be constructed which is as secure as the 
random-self-reducible problem. Moreover, this paper proposes a variant 
which is proven to be  a s  secure as the  difficulty of solving both the  
discrete logarithm problem and the specific factoring problem simulta- 
neously. Some other variants such as an identity-based variant and an 
elliptic curve variant are  also proposed. 

1 Introduction 

Public-key based idcntificatioii schemes and digi ta l  s i g n a t u r e  schemes a r e  very 
useful and fundamental tools in many applications such as electronic fund trans- 
fer and online syst,pms for preventing data access by  invalid users and proving  
the authenticity of messages. 

Identification schemes are typical applications of zero-knowledge interactive 
proofs [GMRa], and several practical zero-knowledge identification schemes have 
been proposed [Bet, FiS, FFS, OhOl].  However, the zero-knowledge identifica- 
tion schemes have the following shortcomings in practice, where we simply call 
%lack-box simulation zero-knowledge” “zero-knowledge” . since we do not know 
of any effective measure to prove zero-knowledgeness except the black-box sim- 
ulation technique, although “auxiliary-input zero-knowledge” is more general 
than “black-box s imula t ion  zero-knowledge” . 

E.F. Bnckell (Ed.): Advances in Cryptology - CRYPT0 ’92, LNCS 740, pp. 31-53, 1993. 
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- A zero-knowledge identificat,ion scheme requires more than three interac- 
tions (three-moves ’) from Goldreich et.al.’s result [GK] unless the language 
for the proof is trivial. A zero-knowledge protocol is less practical than the 
corresponding (three-move) parallel version since interaction over a network 
often requires more time than taken by the calculation in these identifica- 
tion schemes. Although four-move arid five-move zero-knowledge proofs have 
been proposed [Bh lOl~  FeS2] ~ thesc protocols impose fairly big additional 
comniunication and computation overheads compared to the threemove par- 
allel versions (especially Type 2 below). 
Note: Here? the “(three-move) parallel version” denotes two types of proto- 
cols. One (Type 1) is just the parallel execution of a zero-knowledge proto- 
col (e.g., the three-move version of the Fiat-Shamir scheme with k = 1 and 
t = PoIy(1nI) [FiS]). The  other (Type 2 )  is a protocol which can he converted 
to  zero-knowledge by executing the protocol repeatedly ma.ny times anti set- 
ting the security parameter of one repetit,ion to be constmt (e.g. ,  the three- 
move and higher-degree version of the Fiat-Shsmir scheme [GQ, OhOl]) .  
The communication complexity of t,he Type 1 protocol is the same as that  
of t,he original zero-knowledge prot.ocol. Csually, the comniuxication com- 
plexit’y of the Type 2 protocol is much less than that of the corresponding 
zero-knowledgc prot,ocol (or Type 1).  

- No zero-knowledge ident,ification can be converted into a signature scheme 
using Fiat-Sharnir’s technique [FiS], which is a truly practical way of con- 
verting an  identification scheme into a signature scheme with a one-way hash 
function. This is because: if the identification protocol is zereknowledge. the 
signature converted from this ident,ification protocol through Fiat-Shamir’s 
technique can be forged by using (,he same algorithm as the simulation 
for proving the zero-knowledgeness of t,he identification protocol. Therefore, 
for example, the above-mentioned four-rriove and five-move zero-knowledge 
proofs [BMOl, FeS2] cannot be used to construct a signature scheme. 

In contrast, the three-move identification schemes [Bet, BM1, FiS, FFS, GQ? 
Oh01,  Sch], which are the parallel vprsion (Type 2) of zero-knowledge proofs. 
have the following merits in practice. 

- The communication arid comput,at,ion overheads are smaller than those of 

- The three-move identification schemes can be converted into practical sig- 
the zerc-knowledge identification schemes. 

nature schemes by using Fiat-Shamir’s tcchniyue. 

How then can we prove the securit,y of the three-move identification schemes? 
As mentioned above, the zereknowledg notion seen= to be ineffective for this 
purpose. Feige, Fiat and Shamir [FFS] have developed an effective measure callcd 
“no-useful information transfer” to prove the security of their three-move iden- 
tification scheme. Ohta  and Okamoto [Oh011 have proposed a variant called 

A scheme is called “one-move” if prover -4 only sends one message to verifier B ,  and 
is called “two-move” if l.3 sends to A and then A sends to B. “j-move” is defined in 
the  obvious way. 
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“no transferable information with (sharp threshold) security level,” which char- 
acterizes the security level theoretically. Therefore, only “no-useful information 
transfer” [FFS] and its variant [Oh011 have been known to be effective to  prove 
the security of three-move identification schemes. 

Only three three-move identification schemes [FFS, O h 0 1 ,  BMI] have been 
proven t,o be secure assuming reasonable primitive problems, in the sense of [FFS, 
OhOI]. The Feige-Fiat-Shamir identification scheme [FFS], based on square root 
mod n ,  h a s  been proven to  be as secure as the factoring problem. The Ohta- 
Okamoto scheme [OhOl], which is the higher ( h e  L-th) degree modification 
of the Feige-Fiat-Shamir scheme, has been proven to be as secure (with sharp 
threshold security level 1/K) as factoring, where v1IL mod n. has at least K 
solutions (e.g., gcd(L,p - 1) = K ;  see [Oh011 for more detail conditions). The 
Brickell-McCurley scheme [BMI],  which is a modification of the Schnorr scheme 
[Sch], has been proven to  be secure assuming that it is intractable to find a factor, 
q ,  of p - 1, given additional information g whose order is q in Z i ,  although the 
security of their scheme also depends on the discrete logarithm. 

Therefore, there is no existing alternative that is “provably secure“ and 
“three-move’’ practical identification if factoring intractability fails in the fu- 
ture, since the security of all these provably secure schemes depends on the fac- 
toring assumption. In addition, although their schemes are efficient, they have 
some shortcomings in practice: the transmitt,ed information size and memory 
size cannot be small simultaneously [FFS], arid ii priori fixed value c ( e g . ,  2’ is 
the identity of a user) cannot be used as a public key [OhOl]! (or the identity 
based scheme [Sha] cannot be constructed on t.his scherne). In addi tbn ,  the secu- 
rity assumption of [BMl] is fairly shonger t,han the ordinary factoring problem 
(or the level of the provable security is lower than those of [FFS, OhOl]).  

In contrast. other previously proposed practical three-move identification 
schemes, the Schnorr [Sch] and Guillou-Quisquater [CQ] schemes, have some 
merits compared to  [FFS, Oh01,  Bhll]: The security of the Schnorr scheme de- 
pends on the discrete logarithm, which is a promising alternative if factoring be- 
comes tractable, since we have several different types of discrete logarithms such 
a~ elliptic curve logarithms which seem to be more int,ractable than factoring. 
Moreover, the transmitted information size and memory size with these schemes 
can be small simult,aneously, while it is impossible in [FFS]. The Schnorr scheme 
is more efficient than [BMl]. In addition, in the Guillou-Quisquater scheme, a 
priori fixed value v can be used as the public key. Unfortunately, the Schnorr and 
Guillou-Quisquater schemes are not provably secure. The difficulty of proving 
the security of these schemes resides in the fact that t.he discrete logarithm and 
RSA inversion have single solutions in restricted domains, that  is, log, 2 mod p 
has a single solution (2 is in the restricted domain. {0,1,  , ord(g) - 1 } ),  and 
Z1’e mod R has also a single solution (gcd(e, d(n) )  = 1, q5 the  Euler function). 

In this paper, we propose three-move identification schemes that  are proven 
to be as Secure as the discrete logarithm or M A  inversion. We also propose 
a variant which is proven to be as secure as the factoring problem. Our new 
schemes inherit almost all the merits of the Schnorr and Guillou-Quisquater 



34 

schemes even though they are provably secure. That  is, these schemes are al- 
most as efficient as the Schnorr and Guillou-Quisquater identification schemes 
from all practical viewpoints such as communication overhead, interaction num- 
ber, required memory size, and processing speed. In addition, the new schemes 
duplicate the other advantage of the Guillou-Quisquater scheme: the identity 
based schemes can be constructed on these schemes. 

This paper also develops new practical digital signature schemes from the pro- 
posed provably secure three-move identification schemes. The signature schemes 
are almost as efficient as the Schnorr and Guillou-Quisqnater signature schemes. 
while the security assumptions of our schemes are weaker than those of the 
Schnorr and Guillou-Quisquater signature schemes. That  is: the security (exis- 
tentially unforgeable against adaptive chosen message at8tacks [GMRi]) of our 
new signature schemes only depends on just one reasonable assumption about, 
the one-way hash function (or the existence of a “correlation-free one-way hash 
function”) as well as the primitive assumption (e.g.) the intractability assump- 
tion of the discrete logarithm). 

We also extend these specific and practical results to a more general and 
theoretical result. We show that any random-self-reducible problem [TW] can 
lead to a provably secure and three-move ident,ification scheme. 

We also construct some variants of our new idenlification and signature 
schemes. One is a variant of our identification scheme based on the discrete 
logarithm using the idea of the Brickell-McCurley scheme [BM 11. This variant 
is proven to be as secure as the difficult.y of solving both the discrete logarithm 
and the specific factoring problem (or  the finding order problem) simultaneously. 
while, as mentioned above, the Brickell-h’lcCurley scheme is proven t80 be secure 
assuming the intractability of the finding order problem. although the security 
of their scheme also depends on the discrete logarithm. Some other variants 
of our scheme, identity-based and certification-based versions, and an elliptic 
curve version, are also proposed. The elliptic curve variant has the significant 
property that it is proven to  be secure assuming the intractability of the (non- 
supersingular) elliptic curve logarithms against which only exponential-time at- 
tacks are known so far. 

2 Definition of Secure Identification 

2.1 Identification 

Definition 1. An idenlificalion scheme consists of two stages: 

1. Initialization: In this stage, each user (e.g. ,  -4) generates a secret key (e.g., 
SKA) and a public key (e.g., PI<t,) by using probabilistic polynomial-time 
generation algorit,hm G on input of the key size. A link between each user 
and its public key is established. Note that. in some schemes a part of the 
public key can be conirrionly shared among all users as a system parameter. 

2. Operation: In this stage any user (e.g., A) can demonstrate its identity to  a 
verifier by performing some ident ifica.tion protocol related to its public key 
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(e.g., P K A ) ,  where the input for the verifier is the public key (e.g.> PIi.4).  At 
the conclusion of this stage, the verifier either outputs “accept” or “reject” 

2.2 Security of Identification schemes 

We define a secure identification scheme based on the definition (the “no useful 
information transfer”) given by Feige et .  al. [FFS]. 

Definition2. A prover A (resp. verifier B )  is a “good” prover denoted by 3 
(resp. “good” verifier denoted by B), if it does not deviate from the protocols 
dictated by the scheme. Let 2 be a fraudulent prover who does not complete 
the Initialization stage of Definition 1 as -4 and may deviate from the protocols 
(so another person/machine can simulate A ) .  B is not a good B .  3 and fi are 
assumed to be polynomial time bounded machines, which may be nonuniform. 

- . . .  

An identification scheme (A ,  B )  is sec71~1” if 
_ -  

1. ( A ,  B )  succeeds with overwhelming probability. 
2. There is no coalition of A , B  with the property that,  after a polynomial 

number of executions of (A:  B )  and relaying a transcript of the communica- 
tion to 2, it is possible to  execute (ZIP) with nonnegligible probability of 
success. The probability is taken over the distribution of the public key and 
the secret key as well as the coin tosses of A ,  B ,  A ,  and B, up to the time 
of the attempt.ed impersonation. 

- -  
_ -  

_ - -  

Remark: When an identification scherrit: is “witness hiding” [FeSl] and an 
int,era.c.tive proof of “knowledge” [FFS], this scheme is secure in  the sense of Def- 
inition 2. This is roughly because if there exists (2, g) with nonnegligible prob- 
ability of success, we can construct a knowledge extractor (from the ”knowldge 
soundness”), which leads to contradiction with “witness hiding”. Thus there are 
two ways to  prove the security of Definition 2: One is to prove it directly as in 
[FFS, OhOl],  and the other way is to  prove that a scheme is “witness hiding” 
and an interactive proof of “knowledge”. Some schemes such as [OhOl] seem to 
be proven only in the former way! since the knowledge soundness is sometimes 
hard to  prove (e.g., [OhOl]). In this paper, we will prove our schemes in the for- 
mer way, since it is compatible with the way to  prove it by a variant of Definition 
2, [OhOI], t o  be described below, although we can prove them in the latter way. 

In the Appendix A, we introduce a variant of the “no useful information 
transfer” given by Ohta and Okamoto [OhOl], called “no transferable informa- 
tion with (sharp threshold) security level”. This notion does not guarantee the 
security guaranteed by [FFS] i.e., the success probability of cheating by any ad- 
versary (2, z) is negligible in an asymptotic sense. However, the notion sheds 
light on another aspect of the security of identification schemes, the security 
level in a non-asymptotic sense. In practice, the security parameter is fixed in a 

(e.g., the values of k and f of the Fiat-Shamir scheme [FiS]). Then we 
can assume a fixed security level for the system. The  definition [Oh011 guar- 
-tees that  such a fixed security level has  theoretical significance ’. Note that 
1 

*n asymptotic extension of the security level is recently studied in [CD] 
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this notion is defined essentially in an asymptotic manner although the security 
level is characterized in a non-asymptotic manner. The provable security of an 
identification scheme can be guaranteed by both these notions. 

3 Proposed Three-Move Identification Schemes 

3.1 Identification Scheme as Secure as the Discrete Logarithm 

In this subsection, we propose a new scheme which is almost as efficient as the 
Schnorr identification scheme [Sch], and prove that it is as secure as the discrete 
logarithm problem. 

A user generates a public key ( p , q , g l , g 2 , t , u )  and a secret key (s1,s2) and 
publishes the public key. Here, if g2 is calculated by g2 = gf mod pl 9 can be 
discarded after publishing g 2 .  

- primes p and q such that q ( p  - 1. (e.g., q >_ P 4 0 ,  and p 2 2512.) 
- ~ 1 ~ 9 2  of order q in the group Zi, and an integer t = O(lp1). (e.g., t 2 20.) 
- random numbers $ 1 ,  $2 in Z,, and u = g ~ " ' g ~ ' '  mod p. 

Remark: ( p , q , g 1 ,  g 2 , t )  can be published by a system manager and used com- 
monly by all system users as a system parameter. The system manager should 
then also publish some information to confirm to users that these parameters 
were selected honestly. For example, (s)he publishes some witness that no trap- 
door exists in p ,  91, gz, or that these values are generated honestly. Since the 
primality test for p and Q is fairly easy for users, they can confirm for them- 
selves that g1 and g2 are both of order q. When, as described above, the system 
parameter is generated and published by each user individually, (s)he does not 
need to publish such information. 

We now describe our new identification scheme (Identification scheme 1) by 
which party A (the prover) can prove its identity to B (the verifier). 

Protocol: Identification scheme 1 
Step 1 A picks random numbers r l ,  r2 E Z,, computes 

x = grlgf21 mod p ,  

and sends x to B. 
Step 2 B sends a random number e E Zzt to A. 
Step 3 A sends to B (yl, y2) such that 

yl = r1 + esl mod g, and 312 = 1-2 + es2 mod q. 

Step 4 B checks that 
z = g:lg;'ue mod p. 

If it holds, B accepts, otherwise rejects. 

Next, we prove the security of the above identification scheme. First, we show 
a definition and lemma in preparation. 
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Definition3. Let RA denote 2‘s random tape. and RB denote B’s random 
tape. The possible outcomes of executing (-x,Z) can be summarized in a large 
Boolean matrix H whose rows correspond to  all possible choices of RA. Its 
columns - correspond to all possible choices e of RB,  and its entries are 1 if B 
accepts A’s proof, and 0 if otherwise. 

When the success probability of -z is E (or the rate of 1-entries in H is E ) ,  we 
call a row heavy  if its ratio of 1’s is at  least ~ / 2 .  

Lemma4. I f ,  gaven A‘s  publzc key ( p r q , g l , g ~ , t , u ) ,  t h e  success  probabzlzty, E ,  

o f z  as greater  t h a n  2-‘+’, t h e n  there exzsts  a probabzlisdzc algorithm whzch r u n s  
zn expected t zme  V ( l l x I \ / ~ )  and  o u t p u t s  t h e  hastory of two accepted execu t ions  of 
(2, z), ( r ,  e .  y1 yz) and (2, e’, y; , ya), where e # e’. Here,  / l i ( l  d e n o t e s  the  tzme 
c o m p l f r a l y  of A. The success probabzlaty c zs i aken  over t h e  coin to s sps  of 2 a n d  
B 

- 
- 

Sketch of Proof: 

Assume that, at  least 1 /2  of the 1‘s in H are not located in  heavy rows. Then 
the fraction of non-heavy rows in  H, which we denote T ,  is estimated as follows: 
T 2 7’c/2-1 > 1. This is a contradiction. Therefore, at  least 1/2 of the 1‘s i n  H 
are located in heavy rows. Since E is greater than ‘2-‘f’ and the width of H is 
2*, a heavy row contains at least, two 1’s. To find two 1’s in the same row, we 
thus adopt the following strategy: 

2 ‘ E / 2  

1. Probe O(l /e)  random entries in Ff (or pick ( R A , e )  randomly and check i t ,  
and repeat this until successful). 

2. After the first 1 is found (or accepted ( x ,  e .  y1) ~ 2 )  with RA is found), probe 
O( 1 / ~ )  random entries along the same row (or probe ( r ,  e’, y\ ,  y;) with the 
same RA). 

Since at, least l / 2  of the 1’s in H are located in heavy rows, this strategy succeeds 
0 with constant probability in O( 1 / ~ )  probes. 

Definition 5. The discrete logarithm is (nonuniformly) intractable, if any fam- 
ily of boolean circuits, which, given properly chosen ( g l , g Z , p , q )  in the same 
distribution a s  the output of key generator G, can compute the discrete loga- 
rithm cy E 2, (g2 = gy mod p )  with nonnegligible probability, must grow a t  a 
rate faster than any polynomial in the size of the input, Ipl. 

Remark The discrete logarithm above might be less intractable than that when 
the order of g1 is greater than q (e.g., p - I ) ,  although no attack has yet been 
reported when q is appropriately large (considering a n  attack, [PHI). 

: Theorem6. Ident t f icutaon s c h e m e  1 zs secure tf and  on ly  zf t h e  dwcre te  h a -  
fithm ts zntractable.  



Sketch of Proof: 
(Only if) 

polynomial time machine can calculate (sit s/2) satisfying 
with nonnegligible probability. Thus Identification scheme 1 is not secure. 

Suppose that. the discrete logarithm is not intractable. Clearly a (nonuniform) 
= yl-31g2si mod p 

I 

( I€)  
To prove the “If” par t ,  we show that if Identification scheme 1 is not secure, 

then, given (gr I QZ, p ,  q )  with the same distribution as the output of key generator 
G, the discrete logarithm o E 2, (92 = gy modp)  can be computed by a 
polynomial time machine P with non-negligible probability. 

Assume that Identification scheme 1 is not secure. Then ( A ,  8) can be ac- 
cepted with nonnegligible probability E after ~ ( \ P I “ )  executions of ( A ,  B).  The 
complete history of the executions of (A ,  B) and ( A ,  B )  can be simulated by one 
polynomial time procedure P ,  which may be nonuniform, if P knows 3 ‘ s  secret 
key. 

To calculate the discrete logarithm rr E 2, ( ! j Z  = gp modp) ,  given ( 9 ; .  g ? ,  p .  

y ) ,  P firstly chooses ST, ss E 2, randomly, and calculates 21 = g1-”g2 - mod p .  
Then,  using (s; , s;) as A’s secret key. P simiilates (2. R) as well as (2 ,B) .  So, 

for ( v ,  g l ,  g 2 , p ,  q ) ,  after simulating 0(1pl‘) executions of (3, B), P tries to find 
two accepted interactionsof (>X!B), ( x . e , y l , y 2 )  and ( c , e ’ , g i , y ; )  (e  # e ‘ ) .  From 
Lemma 4, this is possible wit,h overwhelming probability, since E is nonnegligible 
i.e. greater than 2-‘+’. 

P can then calculate (s1,s.) = ( ( y l  - yf)/(e - e’) mod q , (yz  - y.$)/(e - 
e‘) mod 4 )  by 

- _  
_ -  

_ -  - -  

. .  - s,, 
- 

y1 = r1 + esl mod q .  yz = r 2  + es2  mod y ,  

yi = r l  + e‘sl mod /I, yb = r 2  + e’s2 mod q .  

There are q soliitions of ( s i ,  s 2 )  which  satisfy u = g;”’g~sz mod p ,  giveii 
( v ,  q 1 , 9 2 , p ,  4 ) .  Even an infinitely powerful B cannot determine from L‘S,  yl’s, 
and y2’s sent by 3 during the  execut,ion of ( A )  B )  which (sl, s2) satisfying 21 = 
gi31g2s2 mod p actually uses. To prove this, for two different solut,ions. (s1, s2) 
and ( s T , s H )  satisfying li = gT3’g2 = g1 y, (mod p ) ,  we show that even 
an infinitely powerful B cannot determine which solution was used from z‘s, 
yl’s, and ~ 2 ’ s .  When rT = T I  + e(s1 - s;) mod Q and T ;  = 7-2 + e(s2 - s;) mod q ,  
the following three equations hold. 

z 

_ -  

-s2 - -3; -3; - 

r l  P,, - 7; r i  
z = g1 g2- = gl  y, (mod p ) .  

yl = T I  + e s l  e r . ;  + es; 

y2 = r? + e s z  G 7.; + es; 

(mod q ) ,  

(mod q )  

In addition, the distributions of ( r l .  r?)  and (r;. ra) are exactly equivalent even 
if they satisfy the above relation. Hence, although P knows ( s i l  s ; ) ,  ( ~ 1 ,  s.), 
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- -  - -  
which is calculated by P by simulating the operations of (A ,  B )  and ( A ,  a), is 
independent from (sy ~ sa). 

Therefore, ( s ; ,  s;) which was randomly chosen by P at first is different with 
probability ( q  - 1)/q from (~1,s.). Thus, a can be calculated with probability 
( q  - 1) /q  from (SL. s2) and (s;,~;) such that  a = (sl - s;)/(s; - sz}  mod q .  The 
total S U C C ~ S S  probability of P is nonnegligible 

This contradicts the intractability assumption of the discrete logarithm. 0 

Theorem?. Let 1 = O(1). ?dentzficaizon vcht=me I as spcvre wzih sharp ihreshold 
secanty  level 1/2' af a n d  only if the dzscrete logamlhnt zs znlrnclable 

The proof of Theorem 7 is similar t o  that of Theorem 6. It is shown in the 
final version. 

3.2 Identification Scheme a s  Secure as RSA Inversion 

This subsection proposes another practical identification scheme which is almost 
as efficient as the Guilloii-Quisquater identification scheme [GQ], and proves that 
it is as secure as RSX inversion. 

A user generates a public key (a: k ,  n ,  7!) and a secret key (,s1. s ? )  and publishes 
the public key. Here, p : q  can be discarded after publishing n.  rjote that  ( a , k )  
can be common among users as the system parameter. 

- primes y ,  q ,  n = p q ,  and prime C such that gcdjk ,  Q( n ) )  = 1 and Ik 

- random number SI E zk! and random numbers a ,s?  E Z;, 
where # ( n )  = lcm(p - 1, Q - 1). (e.g , k 2 2 " ,  n > 2"'" - )  

s g k  mod n.  

We now describe our new identification schetix (Identlfication scl 
which party A (the prover) can prove its identity to B (the verifier). 

Protocol: Identification scheme 2 
Step 1 A picks random numbers rl E Zk arld r2 E Zrz, cornputes 

x = U ' I T ~  mod n. 

and sends 3: to 3. 
Step 2 B sends a random number e E Zk to A 
Step 3 A sends to B ( g l r y 2 )  such that 

= O(Inl), 

and zi = 

:me 2) by 

Definition 8. RSA inversion is (nonuniformly) intractable, if any family of 
boolean circuits, which, given properly chosen ( a ,  k, n )  in the same distriblition 
as the  output of key generator G, can compute a l l k  mod n with nonnegligible 
probability, must grow at a rate faster than any polynomial in the size of the 
input, In/. 
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Theorem9. Identzficatzori rcheme 2 1s secure i f  and only if RSA znverszon IS 

intractable. 

Sketch of Proof: 
(Only if:) 

polynomial time machine can calculate ( s ; .  si) satisfying v = 
with nonnegligible probability. Thus Identification scheme 2 is not secure. 

Suppose that  the RSA inversion is not intractable. Clearly a (nonuniform) 
mod n 

( I f )  
To prove the "If" part,, we can prove this in a manner similar to the "if" part 

First, P chooses si E 21;: and s: E 2: randomly, and calculates L; = 

Then, for ( a , k , n , , u ) ,  P finds ( . z . e , y l , y ? )  and ( x , e ' > y ; , & )  ( e  # e') by the 

Next P calculates s1 = (y1 - y i ) / ( e  - e') mod k ,  and r ;  = y1 - e s l  mod k. 

proof of Theorem ti. So we only sketjch the different points here. 

a - ~ ; S + - k  mod n .  

technique of Lemma 4. 

P then calculates X , Y  as follows: 

Y = 1/( L I ~ " )  mod n (= sf mod 72) 

Since gcd( t ,e  - e') = 1 (as k is prime), P can compute a ,$  satisfying cr(e - 
e l )  + P k  = 1 by t,he extended Euclidean algorithm. Hence P calculates s? = 
X " Y 0  mod n. 

There are k solutions of (s1: s2) w-hich satisfy u = a - s l s ; k  mod n., given 
( u ,  n ,a ,  k). Even an infinitely powerfiil B cannot determine from z's, ~ 1 ' s .  and 
~ 2 ' s  which (s1, s 2 )  was actually used. 

P then obtains (s1,s2), ( s ; . s ; )  ( s ,  # s;) such that  'u = us's! j  E a3;sak 
(mod n)?  SO a ( l / k ) ( S 1 - s ; )  (mod n j .  After repeating the above proce- 
dure,  P obtains another ( S ; , S ~ ) ~  ( s l ; , .~?)  ( s :  # s:") such that a ~ l / k ) ( y ~ - s ~ ~  = - 
sT/sa (mod n )  with nonnegligible probability. If gcd(sl -srls', - s y )  = 1. then 
P can calculate a l l k  mod n. The protjability that gcd(sl - si) - s y )  = 1 is 
more than a constant, since s;, s y  is selected randomly and s i  ! si is independent 
from s; ,  s y .  Thus. the total success probability of P is nonnegligible. 

0 

- 

s;/s? 

This contradicts the intractability assumption of RSA inversion. 

Theoremlo. L e t  IkI = O(1) Idrnlzficatzon scheme 2 2s secure wzth sharp 
threshold securzty level l / k  tf and only  if RSA tnverszon 2s intractable. 

3.3 

In this subsection, we show a slight, variant of the previous identification scheme 
(Identification scheme 2), which is as secure as factoring, while Identification 
scheme 2 is as secure as the inversion of the  RSA function. The protocol of this 

Identification Scheme as Secure as Factoring 
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variant (Identification scheme 3)  is exactly same as Identification scheme 2. The 
only difference is that  the value of k is selected so that gcd(k, &n))  = 2 and k/2 
is prime, while gcd(k, $(n)) = 1 and k is prime in Identification scheme 2. 

Definition 11. Factoring is (nonuniformly) intractable, if any family of boolean 
circuits, which, given properly chosen (n) in the same distribution as the output 
of key generator G, can factor n with nonnegligible probability, must grow in a 
rate faster than any polynomial in the size of the input, In]. 

Theorem12. Identificatzon scheme 3 zs secure zf and only if factonng zs zn- 
tractable. 

Theorem13. Let ) I t )  = O(1). Identzficatzon scheme 3 zs secure wzlh sharp 
threshold secunty level 1/k zf and only zf f a c l o n n g  zs zntractable. 

4 Generalization to  Random-Self-Reducible Problems 

This section shows that any random self-reducible problem [TIV] leads to prov- 
ably secure and three-move identification. 

Definition 14. Let A’ be a countable infinite set,. For any .Ir E -)V‘, let, 1:VI denote 
the length of a suitable representation of ?V, and denote the problem size. For 
any h’ E *u, let X N ,  YN be finite sets, and RN C x ’ , ~  x Y N  be a relation. Let 

domRN = {.r E X,y I (z,r/) E RN for some y E Y,v} 

denote the domain of R,v, 

RN(Z’) = {?/ I (z .y )  E R N }  

the image of x E S N .  
R is random self-reduczble (RSR) if and only if there is a polynomial time al- 

gorithm A that ,  given any inputs i’V E JV, 2 E domR,v, and a source r E (0, l}”, 
outputs XI = -4( N ,  x, r )  E d o r n R ~  satisfying the following seven properties. 

1. If r is randomly and uniformly chosen on (0,  then d is uniformly dis- 
tributed over dom R,v. 

2. There is a polynomial time algorithm that,  given N , t , r ,  and any y‘ E 
RN(z’),  outputs y E R N ( ; ~ ) .  

3. There is a polynomial time algorithm that,  given N, z, r ,  and any y E RN(E), 
outputs some y‘ E RN(x’). If, in addition, the bits of T is random, uniform, 
and independent, then y’ is uniformly distributed over RN(x’) .  

4. There is an expected polynomial time algorithm that,  given N . d ,  and Y’> 
determines whether (z’, y‘) E R N .  

5. There is an expected polynomial time algorithm tha t ,  given N ,  outputs 
random pairs (x’,y’) E RN with z’ uniformly distributed over domRn; and 
3’ uniformly distributed over R , ~ ( z ’ ) .  
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6. There is an expected polynomial time algorithm that ,  given N. 2 0 ~  1 1 :  1 2 ,  

T I ,  r2 satisfying x; = A(!’V,zo,~i) ( i  = 1,2),  outputs TI satisfying X Q  = 

7 .  There is an expected polynomial time algorithm that,  given N ,  2 1 .  2 2 ,  ~ 1 ,  ~2 

satisfying (xi, !I<) E R,v (i = 1: 2) .  outputs P* satisfying 22 = A ( N ,  21:  r*). 

A ( N ,  21 , F).  

Next we construct a three-move identifcation scheme based on random self- 

A user generates a public key ( l V ,  a.  t ,  zi) and a secret key (8%) (1 = 0 or 1) 
reducible problem R (Identification .;theme 4) 

and publishes the public key. 

- A random bit i E (0, l), 1%’ E ,Lf, a E domRv, and an integw f = O( ~ J ’ J I )  
- When i = 0, random bits 50 E (0, l}d, and zi = A(N,  a,  SO). 
- When i = 1, a random pair ( 7 1 , s I )  E R,v. 

Protocol: Identification scheme 4 
Step 1 A generates random bits gjo 6 ( 0 ,  I}”,  and z ~ O  = A ( N , a , y j o ) ,  ( j  = 

I ,  . . . , t ) .  A also generates random pairs (zJ1, y, 1) E R,,, , (j = 1. . . . , t ) .  
A sets xj = (xjb,! x j , l - b 7 j )  with a random bit bj  E (0. l}, and sends 
(21,22,. . . . z t )  to 8. 

Step 2 B sends random bits ( e l , .  . . , r t )  t,o A .  
Step 3 A sends (zl, z?, . . . ~ z t )  to B. Here: if e3 = 0, zj = ( y j j ~ , y j l ) .  If e, = 1 

and i = 0, then zj  = rO such that  x~jo = A ( N ,  u , ~ )  (TO can be 
computed from property 6 ) .  If e j  = 1 and i = 1, then z j  = 71 such 
that zjl = A(~V!I I ,TI )  (1‘1 can be computed from propert,y 7 ) .  

Step 4 B checks the validit,y of the messages received from A .  

Definition 15. The random self-reducible problem R is (nonuniformly) in- 
tractable, if any family of boolean circuits. which,  given properly chosen (!Vq a) 
in the same distribution as the  output  of key generator G,  can compute CY sat- 
isfying ( c L , ~ )  € R,y with nonnegligible probability. must grow at a rale faster 
than any polynomial in the  size of the input ,  Ipl. 

Theorcm16. Idenfzficatzon scheme r /  2s secure zf and only zf t h e  random self- 
reducible problem R as m t m c t a h l e .  

The basic techniques to  prove this theorem are similar to those shown in 
Section 3. Scheme 4 is much less efficient than the schemes in Section 3,  since 
the schemes in Section 3 are Type 2 of the parallel versions (see Section 1). while 
th i s  scheme is Type 1. 

Because of space limitations, we omit the proof of this theorem in this es- 
tended abstract 



43 

5 Variants of the Proposed Identification Schemes 

5.1 
Factoring Simultaneously 

This subsection introduces a variant of Identification scheme 1 (Identification 
scheme 5 )  using the idea of the Brickell-McCurley scheme [BMl]. This variant is 
proven to  be as secure as the difficulty of solving both the discrete logarithm and 
the specific factoring problem (or the finding order problem) simultaneously. 

In this identification scheme, a user generates a public key ( p !  g1 92, u) and 
secret key (5-1, s2) and publishes the public key. (9,  w) can be discarded after pub- 
lishing the public key. ( p l  g1,g2) can be a system parameter, which is commonly 
used by all users. 

Identification Scheme as Secure as the Discrete Logarithm and 

- primes p ,  4 and w such that qwlp-1 (e.g. ,  q 2 2140, p 2 2512, and qw 2 2 ” ’ ) .  
- gl and g2 of order q in the group 2;. 
- random numbers sl ,s? in Z,-k. 
- 71 I= g;”gTs2 mod p .  

We now describe our  new identification scheme (Identification scheme 5 ) .  

Protocol: Identification scheme 5 
Step 1 A picks random numbers r l ,  r2 E Z,-lI computes 

and sends z t o  B 
Step 2 B sends random numbers e E 2 2 ,  to A 
Step 3 A sends to B (y1,yz) such that 

yl = r1 + ex1 mod p - 1. and y:! = r2 + ex2 mod p - 1. 

Step 4 B checks that  
c = gY1g; ’ue mod p .  

Definition 17. The finding order problem is (nonuniformly) intractable, if any 
family of boolean circuits, which, given properly chosen ( p , g l )  in the same dis- 
tribution as the output of key generator G,  can compute the order of g1 in the 
group 2; with nonnegligible probability. must grow at a rate faster than any 
polynomial in the size of the input, ( p ( .  

Remark This problem is more tractable than the factoring problem (Definition 
11), since if there exists an polynomial time algorithm to solve the factoring 
problem, then the finding order problem can be solved by factoring p -  1. SO, the 
finding order problem can be considered a subproblem of the factoring problem. 

Theoreml8. Identzficatzon scheme 5 ts secure if and only af the problem -lo 
solve both the dzscreie loganthm and the finding order problem samultaneously as 
infmclable. 

I 

r. 
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5.2 Identity-Based and Certification-Based Variants 

There are two methods of eliminating the public key directory from the conven- 
tional public key schemes: one is the identity-based method and the other is the 
certification- based met hod. 

In the certification-based method, a trusted center (key authentication center, 
or certification authority) publishes it,s public key and gives a user A its signature 
S for the  pair of identity I d A  and public key P K A  of A. The user A sends 
( Id~ ,P l i ‘ . q ,S )  to  the verifier, w h o  checks the validity of PICA by verifying the 
trusted center‘?s signature S for ( I ~ A ,  Ph’A) in place of retrieving PK.4 through 
I d A  from the public key directory. 

In the ident,ity-based method, proposed by Shamir [Sha] and independently 
by Okamoto [Oka], the public key is replaced by the identity related value of a 
user. 

The difference between the certification-bascd method and identity-based 
method is a5 follows: 

- Any public-key system can be converted into the certification-based varj- 
ant by the same technique, while each public-key system needs a peculiar 
technique to convert to the identity-based variant. 

- The trusted center of the certification-based method does not know each 
user’s secret key, while the trusted center of the identity-based method gen- 
erates and knows each user’s secret key. 

- The size of the public key that a user keeps and sends to thc verifier in  the 
certificatiori-bnscd method is longer than that, in the identity-based method. 

In this extended abstract. only t,wo examples. identity-based variants of Iden- 
tification schemes 1 and 2. are introduced briefly. in particular: we show a new 
construction technique to realize the identity-based variant of a scheme which 
is based on the discrete logarithm (e.g.. Jdentification scheme 1): although the 
identity-based scheme based on the discrete logarithm i s  usually difficult to con- 
struct. Our technique is similar to Beth’s idea [Bet], but:  ours seems to  be more 
natural, since we use the digital signature corresponding to the identification 
(Section 6),  while the ElGamal scheme is used in  [Bet]. (Our tcchnique can be 
also applied to the Schnorr scheme: See Appendix B . )  

Identity-Based Variant of Ideiitification scheme 1 A trusted center 7- (or 
key authentication center) generates a public key ( p ,  q ,  91, gz, t ,  ZIT) and its secret 
key   ST^, ST?), and publishes the public key as a system parameter. T generates 
T’s digital signature, ( e A ,  y.41. y ~ z ) ,  of A’s identity, I d A ,  by using its secret key. 
So, e 4  = h ( ( g f A 1 g g A z v p  mod p ) ,  I d A )  (see Section 6). T gives A A’s secret key 
( S A I , S A ? )  and e A ,  where ( S A ~ ~ S A ~ )  = ( q  - yJI1,q - y ~ 2 ) .  Then A generates A’s 
public key ZIA = g;3A1gi5A2 mod p from the secrete key given by T 

In this identity-based identification protocol, A first sends ( I d A ,  u q ,  e,i) LO 
verifier B along with E (same as 3: in the first step of Identification scheme 1) 
B checks the validity of ld,A and c A  by rhecking whether = h ( ( 7 ~ ~ 7 ~ y  mod 



p ) , I d ~ )  holds or not. If the check passes, the remainig protocol is the same 
as Identification scheme 1 (or B sends A e ,  A sends B (yI,yz), and B checks 
it). So, B does not need to retrieve v A  from the public-key directory. Here, the 
communication overhead except ( Id , i  ~ u A )  is just e-4, whose size is much smaller 
than those of U A  and c. 

Identity-Based Variant of Identification scheme 2 A trusted center (or 
key authentication center) generates a public key ( u ,  k,n)  and gives user A its 
secret key ( S A ~ ,  S A ~ ) ,  where I d A  = u- 'A 's ; ;  mod n. (First s ~ l  E Zk is randomly 
determined, then s A ~  = (IdAaJA1)-lIk mod n is calculated. I d A  can be replaced 
by h ( l d A )  with a one-way function.) 

In this identity-based identification protocol, I d A  is used in place of 2' in 
Identification scheme 2 .  In a manner similar to  the above-mentioned identity- 
based protocol, IdJ% is sent to B along with s in the first step and the remaining 
part is the same as Identification scheme 2 .  So. B does not need to retrieve u 
from the public-key directory 

5.3 Elliptic Curve Version 

Some techniques to construct cryptosystems b;tsed on the ellipt,ic curve logarithm 
over a finite field [HMV, Kohl .  Kob2. Mil ,  Miy] can be straightfowardly applied 
to  our Identification scheme 1. 

The elliptic curve variant, of Identification scheme 1 has the significant prop- 
erty that three-move practical ident,ification is proven to  be secure assuming the 
intractability of the (non-supersingular) elliptic curve logarithms against which 
only exponential-time attacks have been reported so far [MOV, Kob21. 

6 Signature Schemes 

This section describes digital signature schemes converted from the identlficatlon 
schemes given in the previous sections. We also prove the security (existentially 
unforgeable against adapt,ive chosen message attacks [GMRi]) of our new sig- 
nature schemes assuming one reasonable assumption about the one-way hash 
function (correlation-free one-way hash function) as well as  a primitive assump- 
tion. 

Since this conversion [FiS] is very simple, i n  this extended abstract, we only 
show one example (Signature scheme 1) based on Identification scheme 1. Other 
signature schemes (Signature schemes 2 to  5, and others) can be realized in the 
Same way based on Identification schemes 2 to  5 ,  and the variants described in 
subsections 5 . 2  and 5.3.  

6-1 Signature Scheme Based on Identification Scheme 1 

signature scheme 1 is almost as efficient as  the Schnorr signature scheme and 
DSA (see Section 71, while the security [GMRi] assumption of our scheme is 
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weaker and more reasonable than those of the Schnorr signature scheme arid 
DSA. 

A public key ( p . 9 ,  gl,ga,t. 1 ) )  and spcret key (s1, s ? )  of each user are de- 
termined in the same manner as Identification scheme 1. h is a one-way hash 
function. 

We now describe our new signature scheme (Signature scheme 1) by which 
party A (the signer) generates a signature ( e ,  y1, yz) of a message m ,  and sends 
( m , e , y l , y ~ )  to B (the verifier). 

Protocol: Signature scheme 1 
Step 1 A (signer) picks random numbers q , r 2  E Z,,  computes 2 = g;’gi’ 

modp. A computes e = h ( c , r n )  6 Z2i and ( g l ,  yz) such that yl = 
T I  + esl  mod q ,  and y? = r2 + es2 mod q .  

Step 2 A sends to B (e ,  y1, y2j along with message rn 
Step 3 B computes z = gy ’g ;2ue mod p .  and checks that e = h ( z ,  m). 

6.2 Security of Signature Schemes 

In this subsection, we discuss the securit,y of our signature schemes in the sense of 
“existentially unforgeable against adaptive chosen message attacks” defined by 
[GXIRi]. Fiat and Shamir [FiS] have shown that, the existence of an “ideal random 
function” a s  well as factoring assumption is sufficient, to prove the securit.y of the 
Fiat-Shamir signature scheme. However, their assumption, the existence of an 
ideal random function, can never be realized in the real world, and to  realize the 
“pseudo-random function” [GGM] as a common function requires a tamper-free 
device. 

In this paper, we clarify a reasonable assumption to prove the security of the 
Fiat-Shamir type signature schemes. We introduce a new class of one-way hash 
functions, conelalion-free o m - w a y  hush functzons, and show that  the existence 
of a “correlation-free one-way hash function”. as well as a primitive assumption, 
is sufficient t o  prove the security of our schemes. -4lthough the existence of a 
correlation-free one-way hash function seems to  be a stronger assumption than 
those of universal one-way hash function, claw-free pair of €unctions and collision- 
free hash function, we highly believe that, carefully designed practical one-way 
hash functions such as MD5 and SHA are correlation-free one-way hash functions 
with any number theoretic predicate. 

Definition 19. A family of correlalzon-free one-way hush f i inchons  with F is a 
set of hash functions, H = {H,} (H,% is a subset of H with security parameter 
n), with the following properties: 

- Poly-time indexing: Each function in H, h a s  a unique n bit index, nn, 
associated with it: H,, = {h,, 1 rra E (0, I>” ,  hOn : {0,1}p(”)  x (0, l}S(n! - 
(0, l}q(nj}, where p(n) ,  s (n) ,  and q(n) are polynomial in ‘n. There is a proba- 
bilistic polynomial time algorithm, which, on input n, selects uniformly and 
randomly un in {u,,}. 
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- Poly-time evaluation: There exists a polynomial time algorithm that (for 
all n 2 I ) ,  upon input of an index g,, and an argument (2, m) E (0,  l}p(”) x 
(0, I ) ~ ( ~ ) ,  computes ho,(z, m). 

- Correlation-freeness: Let F = {F,  I F, = (fJ.}} be a poly-time index- 
ing (5,) and poly-time evaluation predicate family such that fb, : (0, l}p(n) 
x (0, I}q(,) x (0, l}r(n) --+ (0, I}, where ~ ( n )  is polynomial in n. Suppose that 
any family of boolean circuits, which, given b,, can compute c and ( e i , y i )  
(i = 1,. . . , t (n ) )  ( t (n)  is polynomial in n )  with nonnegligible probability such 
that fd,(z,e;,y;) = 1, must grow at a rate faster than any polynomid in 
n. Then, any family of boolean circuits, which, given u,, and 6,, can com- 
pute (2, e ,  y, m) with nonnegligible probability such that ho7,(x,  m) = e and 
f a , ( ~ , e , y )  = 1, must grow at a rate faster than any polynomial in n. 

- One-wayness: Any family of boolean circuits, which, given (2, m),  can com- 
pute m’ (ml # rn) with nonnegligible probability such that h6,(z,m’) = 
hon (z, m),  must grow a t  a rate faster than any polynomial in n. 

Theorem 20. Signature scheme 1 is existentially unforgeable against a n y  adap- 
t ive chosen message attacks if the discrete logarithm problem is intractable and 
h is a correlation-free one-way hash function w i fh  F = {f~gl,gz,p,u)}, where 
f ( S 1 , g z , p , V ) ( x , e ,  (yl, y2)) = 1 if and only $3: = gylgY’ue mod p holds. 

Sketch of Proof: 
Assume that there exists an adaptive chosen message attacker, P ,  to Signa- 

ture scheme l. We also assume that the discrete logarithm problem is intractable. 
Then we will show a contradiction with the assumption that h is a correlation- 
free one-way hash function with F = {f~g,,g2,p,u)}. 

First, assume that  P can find (z, e, yl, y 2 ,  el ,  yi, pi) (e # e’) with nonnegli- 
gible probability such that z = gY1g2Y2ve mod p and z = gylg;Zve’ mod p ,  after 
adaptive chosen message attacks. Since, given (gl ,  g 2 , p ) .  P can exactly simulate 
the valid signer by generating his/her secret key (sl. s2) and following signer’s 
valid procedure, P can calculate the discrete logarithm CY (92 = gf m o d p )  by 
the technique described in the proof of Theorem 6. This contradicts the in- 
tractability assumption of the discrete logarithm problem. Therefore, P can find 
( z , e ,  ~ 1 , ~ 2 , e ’ ,  y’1.d)  ( e  # e l )  with negligible probability. 

On the other hand, from the assumption that P is an adaptive chosen message 
attacker, P can find (2, e l  y1, 9 2 ,  m) with nonnegligible probability such that 
h(z ,  m) = e and 2 = qY1g;’ve mod p. This contradicts the assumption tha t  h is 
a correlation-free hash function with F = {f~g1r92,P,V)}. 

Thus, any attacker P cannot find a valid signature message (2, e l  y1, y2, m) 

I f  

with nonnegligible probability after ada.ptive chosen message attacks. 0 

6.3 

In this subsection, we briefly introduce two-move and one-move identification 
schemes by using secure signature schemes above, which are almost as efficient 
as the proposed three-move identification schemes. 

Two-Move and One-Move Identification Schemes 
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Two-move secure identification scheme can he trivially constructed using a 
secure (existentially unforgeable against any adaptive chosen message attacks) 
signatcure scheme as follows: First,, verifier B sends a random message 2 to  prover 
A ,  then A generates and sends A's signat.ure of message 3: to  B, finally B checks 
the  validity of A's signature. 

We can easily convert a two-move identification scheme into a one-move 
identification by changing challenge message x into time-stamp t ,  which both 
A and B share. That  is, first A sends A ' s  signature of message t t,o B, then B 
checks it. 

6.4 Multi-Signature and Blind Signature 

The multi-signature and blind signature schemes of our proposed signature 
schemes (Signature schemes 1 to 3 and the  variants) can be constructed. Thc 
multi-signature scliemps are constructed in a manner similar to  [011023, and the 
blind signatmure schemes are constructed b a w d  on the idea shown in [OkO]. 

Blind Signatlire for Signature Scheme 1 Here, we present only one example 
of the blind signa.t,ure schemes, based on Signature schpme 1. The  other blind 
signature schemes are constructed in the same way using the idea showii in 
[OkO]. (The blind signature schcme based on the  Schnorr  scheme i s  shown in 
Appendix B.) 

In the blind signature scheme, w h i c h  was originally proposed by Chaum [Cha] 
based on the RSA scheme, a client, Boh, generates a blinded message b(m) from 
a message rn, and sends h(m) to a blind signer. Mice. She generates her signature 
s ~ ( b ( m ) )  of b(m), and sends it to Boh. He calculates Mice's signature sdfrn) of 
message m from s ( b ( r n ) ) .  Here: Alice has 110 information of rn. and Bob has no 
information of Alice's secret. key. 

We now describe our blind signature scheme b a e d  on Signature scheme 1. 
Alice's public key is (p,q,gl,y?,t, u )  and her secret key is (.s1,sz), which are 
those of Signature scheme 1. 

Protocol: Blind signature based on Signature scheme 1 
Step 1 Aiice (blind signer) picks raridorn numbers r l ,  r? E Z, ,  computes x = 

Step 2 Bob picks random numbers d ,  t L 1 ,  u: E Z, ,  and computes 
g r l g i z  mod p ,  and sends .z t,o Bob (client). 

Z*  = gy1g;2v-dz mod p .  e -  = h ( z * ,  m),  e = e' + d mod q 

Bob sends e to  Alice. Here, m is a message to be signed. 

1'2 + es:! mod (1, and sends (.I/*, y2) t,o Bob. 

( e * ,  y i ,  $) is Alice's sigmture of message rn. 

Step 3 Alice computes ( y l .  y?) such that yl = r1 + esl  mod q >  and y2 = 

Step 4 Bob computes y; = y1 + u1 mod q ,  yz = g? + u-, mod q .  

Note: e is distributed on 2,. while e" is distributed on Z 2 i .  The difference is 
no problem in the blind signature scheme, since even an  infinite power attacker 
cannot find any linkage bet,wcen e and e ' .  



7 Performance 

Proposed Schnorr  Proposed 
Scheme 1 Scheme .? 

This section compares the computation amount of our schemes against those of 
the previous practical schemes in the light of the required number of modular 
multiplications, and also compare the key and signature lengths. 

We assume that moduli p and q for our scheme 1, Schnorr are 512 bits and 
140 bits respectively, p and q for DSA are 512 bits and 160 bits, and the modulus 
n for our scheme 3,  Guillou-Quisquater ( C Q ) ,  Ohta-Okamoto (00) and Feige- 
Fiat-Shamir (FFS) is 512 bits. The security pa.rameter for the identific a t '  ion 
schemes is assumed to be 20, or e ( the challenge from the verifier) is 20 bits. 
The security parameter €or the signature schemes is assumed to  be 128. or e (the 
output of the hash function of 5 and a message) is 128 bits, since the output size 
of many typical hash functions such a s  MD5 is 128 bits. We also assume that  
the parameters for Feige-Fiat-Shamir are k = / e /  arid t = 1. 

Here, we estimate the performance of unsophist,icated implementations, since 
the purpose of this comparison is to relatively cornpare some schemes with the 
same primitive problem (e.g.. our scheme 1 and Schnorr), and many sophisticated 
techniques (e.g., [Mon, BGMW]) can be fairly evenly applied to the schemes with 
the same primitive problem. LVe assiinie t,he standard binary niettiod and the 
extended binary method (4.6.3 ex.27 i n  [Kun]) for the modular exponentiation. 

I 
GQ 00 i F F S  

Table 1. Comparison of Itientification Schemrs 

On-line Processing (Verifier) 
(# of 512-bit modular 
multiplications) 

248 210 35 33 1 1  38 
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Table 2. Comparison of Signature Schemes 

Scheme 

\multiplications) ]I 
[riiying 11 261 ~ 

(# of 512-bit 
modular 
mu1 tiplications) 

Schnorr DSA Proposed GQ 00 FFS 
Scheme 3 

Strong Strong Weak Strong Weak I Weak 
Disc.log.lDisc.log. I Fact. RSA Fact. Fact. 
Possible I Possible I Possible Possible Hard Possiblr 
Possible 1 Hard 11 Possible IPossiblelPossiblelPossibh 

I I 1  I I I 

Possible 1 Hard 11 Possible IPossible(Possihle1Possiblc 
1164 I 1164 11 640 1 128 128 1 0 
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Appendix A 
In this appendix, we in t roduce  a var iant  of “no useful informat ion  t ransfer”  

[FFS] given by Ohta and Okamoto [OIiO1], called “no transferable  information 
w i t h  (sharp threshold) security level“ 

Definition 21. A n  identification srhcmc ( A ,  R )  IS wriiw WZth securzty level p if 
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- -  
1. ( A ,  B )  succeeds with overwhelniing probability. 
2. There is no coalition of A,B with the property that,  after a polynomial num- 

ber of executions of (A, 8) and relaying a transcript of the communication 
to 2, it is possible t o  execute (2 ,B)  with c .  p probability of success, where 
c = (1 + l/lnld) and d is an arbitrary constant. The probability is taken 
over the distribution of the public key and the secret key as well as the coin 
tosses of A ,  B, A ,  and B, up to the time of the attempted impersonation. 

- -  

_ - -  

Definition 22. .4n identification scheme ( A ,  B )  is secure wzth sharp threshold 
secun fy  level p if 

1. ( A ,  B) is secure with security level p .  
2 .  There exists .x such that it is possible to execute (2)z) with p probability 

of success. 

Appendix B 

sceheme of the Schnorr scheme. 
B . l  Identity-Based Variant of the Sclinorr scheme 

A trusted center T (or key authentication center) generates a public key 
( p ,  q ,  g , t ,  LIT)  and its secret key S T ,  and publishes the public key as a system 
parameter. T generates 7”s digital signature. (e,t, ya),  of A’s identity, Ida.  T 
gives A A’s  secret key sA and e A ,  where s , ~  = q - yA.  Then il generates A’S 
public key U A  = g - ’ A  mod p from the secrete key given by T. 

In this identity-based identification protocol, A first sends (Id.4: v,q, e A )  to  
verifier B along with x 3 checks the validity of I d a  and u.4 by checking whether 
eA = h ( ( v ~ u p  mod p ) ,  I ~ A )  holds or not,. If the check passes, t,he remainig 
protocol is the same as the Schnorr scheme. 
B.2 Blind Signature of the Schnorr scheme 

In this appendix, we introduce the identity-based variant and blind signature 

Alice’s public key is ( p , q , g , t , v )  and her secret key is s. 

Protocol: Blind signature based on the Schnorr scheme 
Step 1 Alice (blind signer) picks random number r E Z,, computes 3: = 

g r  mod p :  and sends z to Bob (client). 
Step 2 Bob picks random numbers d: u E Z , ,  computes 

z* = gUvpd3: mod p ,  e.’ = hjz.’, m ) ,  e = e* + d mod q .  

Bob sends e to  Alice. Here, m is a message to be signed. 
Step 3 Alice computes y such that y = T + es  mod q ,  and sends y to  Bob. 
Step 4 Bob computes y* = y + u mod q .  

( e * ,  y*) is Alice’s signature of message m. 
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