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Abstract. This paper presents a three-move interactive identification
scheme and proves it to be as secure as the discrete logarithm prob-
lem. This provably secure scheme is almost as efficient as the Schnorr
identification scheme, while the Schnorr scheme is not provably secure.
This paper also presents another practical identification scheme which is
proven to be as secure as the factoring problem and is almost as efficient
as the Guillou-Quisquater identification scheme: the Guillou-Quisquater
scheme is not provably secure. We also propose practical digital signature
schemes based on these identification schemes. The signature schemes
are almost as efficient as the Schnorr and Guillou-Quisquater signa-
ture schemes, while the security assumptions of our signature schemes
are weaker than those of the Schnorr and Guillou-Quisquater. signature
schemes. This paper also gives a theoretically generalized result: a three-
move identification scheme can be constructed which is as secure as the
random-self-reducible problem. Moreover, this paper proposes a variant
which is proven to be as secure as the difficulty of solving both the
discrete logarithm problem and the specific factoring problem simulta-
neously. Some other variants such as an identity-based variant and an
elliptic curve variant are also proposed.

1 Introduction

Public-key based identification schemes and digital signature schemes are very
useful and fundamental tools in many applications such as electronic fund trans-
fer and online systems for preventing data access by invalid users and proving
the authenticity of messages.

Identification schemes are typical applications of zero-knowledge interactive
proofs [GMRa], and several practical zero-knowledge identification schemes have
f{e.en proposed [Bet, FiS, FFS, OhO1]. However, the zero-knowledge identifica-
tion schemes have the following shortcomings in practice, where we simply call
*black-box simulation zero-knowledge” “zero-knowledge”, since we do not know
of any effective measure to prove zero-knowledgeness except the black-box sim-
ulation technique, although “auxiliary-input zero-knowledge” is more general
than “black box simulation zero-knowledge”:
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~ A gero-knowledge identification scheme requires more than three interac-

tions (three-moves ') from Goldreich et.al.’s result [GK] unless the Janguage
for the proof is trivial. A zero-knowledge protocol is less practical than the
corresponding (three-move) parallel version since interaction over a network
often requires more time than taken by the calculation in these identifica-
tion schemes. Although four-move and five-move zero-knowledge proofs have
been proposed [BMO1, FeS2], these protocols impose fairly big additional
communication and computation overheads compared to the three-move par-
allel versions (especially Type 2 below).
Note: Here, the “(three-move) parallel version” denotes two types of proto-
cols. One (Type 1) is just the parallel execution of a zerc-knowledge proto-
col (e.g., the three-move version of the Fiat-Shamir scheme with £ = 1 and
t = Poly(|n}) [FiS]). The other (Type 2) is a protocol which can be converted
to zero-knowledge by executing the protocol repeatedly many times and set-
ting the security parameter of one repetition to be constant (e.g., the three-
move and higher-degree version of the Fiat-Shamir scheme [GQ, OhO1]).
The communication complexity of the Type 1 protocol is the same as that
of the original zero-knowledge protocol. Usually, the communication com-
plexity of the Type 2 protocol is much less than that of the corresponding
zero-knowledge protocol (or Type 1).

— No zero-knowledge identification can be converted into a signature scheme
using Fiat-Shamir’s technique [FiS], which is a truly practical way of con-
verting an identification scheme into a signature scheme with a one-way hash
function. This is because: if the identification protocol is zero-knowledge, the
signature converted from this identification protocol through Fiat-Shamir’s
technique can be forged by using the same algorithm as the simulation
for proving the zero-knowledgeness of the identification protocol. Therefore,
for example, the above-mentioned four-move and five-move zero-knowledge
proofs [BMO1, FeS2] cannot be used to construct a signature scheme.

In contrast, the three-move identification schemes [Bet, BM1, FiS, FFS, GQ,
OhO1, Sch}, which are the parallel version (Type 2) of zero-knowledge proofs,
have the following merits in practice.

— The communication and computation overheads are smaller than those of
the zero-knowledge identification schemes.

~ The three-move identification schemes can be converted into practical sig-
nature schemes by using Fiat-Shamir's technique.

How then can we prove the security of the three-move identification schemes?
As mentioned above, the zero-knowledge notion seems to be ineffective for this
purpose. Feige, Fiat and Shamir [FFS) have developed an effective measure called
“no-useful information transfer” to prove the security of their three-move iden-
tification scheme. Ohta and Okamoto [OhO1] have proposed a variant called

! A scheme is called “one-move” if prover A only sends one message to verifier B, and

is called “two-move” if B sends to A and then A sends to B. “j-move” is defined in
the obvious way.



33

“no transferable information with (sharp threshold) security level,” which char-
acterizes the security level theoretically. Therefore, only “no-useful information
transfer” [FFS] and its variant [OhO1] have been known to be effective to prove
the security of three-move identification schemes.

Only three three-move identification schemes [FFS, OhO1, BM1] have been
proven to be secure assuming reasonable primitive problems, in the sense of [FFS,
OhO1]. The Feige-Fiat-Shamir identification scheme [FFS}, based on square root
mod n, has been proven to be as secure as the factoring problem. The Ohta-
Okamoto scheme [OhO1], which is the higher (the L-th) degree modification
of the Feige-Fiat-Shamir scheme, has been proven to be as secure (with sharp
threshold security level 1/K) as factoring, where v'/Z mod n has at least K
solutions (e.g., ged(L,p — 1) = K; see [OhO1] for more detail conditions). The
Brickell-McCurley scheme [BM1], which is a modification of the Schnorr scheme
[Sch], has been proven to be secure assuming that it is intractable to find a factor,
q, of p— 1, given additional information g whose order is ¢ in Z, although the
security of their scheme also depends on the discrete logarithm.

Therefore, there is no existing alternative that is “provably secure” and
“three-move” practical identification if factoring intractability fails in the fu-
ture, since the security of all these provably secure schemes depends on the fac-
toring assumption. In addition, although their schemes are efficient, they have
some shortcomings in practice: the transmitted information size and memory
size cannot be small simultaneously [FFS], and a priori fixed value v (e.g., v is
the identity of a user) cannot be used as a public key [OhO1], (or the identity
based scheme [Sha] cannot be constructed on this scheme). In addition, the secu-
rity assumption of [BM1] is fairly stronger than the ordinary factoring problem
(or the level of the provable security is lower than those of [FFS, OhO1]).

In contrast, other previously proposed practical three-move identification
schemes, the Schnorr [Sch] and Guillou-Quisquater [GQ] schemes, have some
merits compared to [FFS, OhO1, BM1]: The security of the Schnorr scheme de-
pends on the discrete logarithm, which is a promising alternative if factoring be-
comes tractable, since we have several different types of discrete logarithms such
as elliptic curve logarithms which seem to be more intractable than factoring.
Moreover, the transmitted information size and memory size with these schemes
can be small simultaneously, while it is impossible in [FFS]. The Schnorr scheme
1s more efficient than [BM1]. In addition, in the Guillou-Quisquater scheme, a
priori fixed value v can be used as the public key. Unfortunately, the Schnorr and
Guillou-Quisquater schemes are not provably secure. The difficulty of proving
the security of these schemes resides in the fact that the discrete logarithm and
RSA inversion have single solutions in restricted domains, that is, logg z mod p
has a single solution (z is in the restricted domain, {0,1,...,ord(¢g)—1}), and
z/¢ mod n has also a single solution {gcd(e, ¢(n)) = 1, ¢ is the Euler function).

In this paper, we propose three-move identification schemes that are proven
to be. as secure as the discrete logarithm or RSA inversion. We also propose
a variant which is proven to be as secure as the factoring problem. Our new
schemes inherit almost all the merits of the Schnorr and Guillou-Quisquater
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schemes even though they are provably secure. That is, these schemes are al-
most as efficient as the Schnorr and Guillou-Quisquater identification schemes
from all practical viewpoints such as communication overhead, interaction num-
ber, required memory size, and processing speed. In addition, the new schemes
duplicate the other advantage of the Guillou-Quisquater scheme: the identity
based schemes can be constructed on these schemes.

This paper also develops new practical digital signature schemes from the pro-
posed provably secure three-move identification schemes. The signature schemes
are almost as efficient as the Schnorr and Guillou-Quisquater signature schemes.
while the security assumptions of our schemes are weaker than those of the
Schnorr and Guillou-Quisquater signature schemes. That is, the security (exis-
tentially unforgeable against adaptive chosen message attacks [GMRI]) of our
new signature schemes only depends on just one reasonable assumption about
the one-way hash function (or the existence of a “correlation-free one-way hash
function”) as well as the primitive assumption (e.g., the intractability assump-
tion of the discrete logarithm).

We also extend these specific and practical results to a more general and
theoretical result. We show that any random-self-reducible problem [TW] can
lead to a provably secure and three-move identification scheme.

We also construct some variants of our new identification and signature
schemes. One is a variant of our identification scheme based on the discrete
logarithm using the idea of the Brickell-McCurley scheme [BM1]. This variant
is proven to be as secure as the difficulty of solving both the discrete logarithm
and the specific factoring problem (or the finding order problem) simultaneously,
while, as mentioned above, the Brickell-McCurley scheme is proven to be secure
assuming the intractability of the finding order problem, although the security
of their scheme also depends on the discrete logarithm. Some other variants
of our scheme, identity-based and certification-based versions, and an elliptic
curve version, are also proposed. The elliptic curve variant has the significant
property that it is proven to be secure assuming the intractability of the (non-
supersingular) elliptic curve logarithms against which only exponential-time at-
tacks are known so far.

2 Definition of Secure Identification

2.1 Identification

Definition 1. An idenlification scheme consists of two stages:

1. Initialization: In this stage, each user (e.g., A) generates a secret key (e.g.,
SK,4) and a public key (e.g., PX 4) by using probabilistic polynomial-time
generation algorithm G on input of the key size. A link between each user
and its public key is established. Note that in some schemes a part of the
public key can be commonly shared among all users as a system parameter.

2. Operation: In this stage any user (e.g., A) can demonstrate its 1dentity to a
verifier by performing some identification protocol related to its public key
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(e.g., PK 4), where the input for the verifier is the public key (e.g., PK 4). At
the conclusion of this stage, the verifier either outputs “accept” or “reject”.

2.2 Security of Identification schemes

We define a secure identification scheme based on the definition (the “no useful
information transfer”) given by Feige et. al. [FFS].

Definition 2. A prover A (resp. verifier B) is a “good” prover denoted by A

(resp. “good” verifier denoted by B), if it does not deviate from the protocols

dictated by the scheme. Let A be a fraudulent prover who does not complete

the Initialization stage of Definition 1 as A and may deviate from the protocols

(so another person/machine can simulate A). B is not a good B. A and B are

assumed to be polynomial time bounded machines, which may be nonuniform.
An identification scheme (A, B) is secure if

1. (A, B) succeeds with overwhelming probability.

2. There is no coalition of A, 5 with the property that, after a polynomial
number of executions of (A, B) and relaymg a transcript of the communica-
tion to A it is possible to execute (A B) with nonnegligible probability of
success. The probability is taken over the distribution of the public key and

the secret key as well as the coin tosses of 4. B, 4, and B, up to the time
of the attempted impersonation.

Remark: When an identification scheme is “witness hiding” [FeS1] and an
interactive proof of “knowledge” [FFS], this scheme is secure in the sense of Def-
inition 2. This is roughly because if there exists (A, E) with nonnegligible prob-
ability of success, we can construct a knowledge extractor (from the “knowldge
soundness” ), which leads to contradiction with “witness hiding”. Thus there are
two ways to prove the security of Definition 2: One is to prove it directly as in
[FFS, OhO1], and the other way is to prove that a scheme is “witness hiding”
and an interactive proof of “knowledge”. Some schemes such as [OhO1] seem to
be proven only in the former way, since the knowledge soundness is sometimes
hard to prove (e.g., [OhO1]). In this paper, we will prove our schemes in the for-
mer way, since it is compatible with the way to prove it by a variant of Definition
2, [OhO1], to be described below, although we can prove them in the latter way.

In the Appendix A, we introduce a variant of the “no useful information
transfer” given by Ohta and Okamoto [OhO1], called “no transferable informa-
tion with (sharp threshold) security level”. This notion does not guarantee the
security guaranteed by [FFS] ie., the success probability of cheating by any ad-
versary (A, ]§) 1s negligible in an asymptotic sense. However, the notion sheds
light on another aspect of the security of identification schemes, the security
levelin a non-asymptotic sense. In practice, the security parameter is fixed in a
system (e.g., the values of k and ¢ of the Fiat-Shamir scheme [FiS]). Then we
¢an assume a fixed security level for the system. The definition [OhO1] guar-
WUch a fixed security level has theoretical significance ?. Note that
? An asymptotic extension of the security level is recently studied in [CD]
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this notion is defined essentially in an asymptotic manner although the security
level is characterized in a non-asymptotic manner. The provable security of an
identification scheme can be guaranteed by both these notions.

3 Proposed Three-Move Identification Schemes

3.1 Identification Scheme as Secure as the Discrete Logarithm

In this subsection, we propose a new scheme which is almost as efficient as the
Schnorr identification scheme [Sch], and prove that it is as secure as the discrete
logarithm problem.

A user generates a public key (»,4,91,92,t,v) and a secret key (s;, s2) and
publishes the public key. Here, if g3 is calculated by g2 = ¢{ mod p, « can be
discarded after publishing g-.

~ primes p and g such that glp — 1. (e.g., ¢ > 2*%°, and p > 2%12)
~ 91,92 of order g in the group Zg, and an integer ¢ = O({p). (e.g., t > 20.)
— random numbers 81,62 in Zy, and v = g; *'g;*? mod p.

Remark: (p,q,91,92,t) can be published by a system manager and used com-
monly by all system users as a system parameter. The system manager should
then also publish some information to confirm to users that these parameters
were selected honestly. For example, (s)he publishes some witness that no trap-
door exists in p, g1, g2, or that these values are generated honestly. Since the
primality test for p and ¢ is fairly easy for users, they can confirm for them-
selves that g; and g» are both of order g. When, as described above, the system
parameter is generated and published by each user individually, (s)he does not
need to publish such information.

We now describe our new identification scheme (Identification scheme 1) by
which party A (the prover) can prove its identity to B (the verifier).

Protocol: Identification scheme 1
Step 1 A picks random numbers ry,ry € Z,, computes
z = g1 g5* mod p,

and sends z to B.
Step 2 B sends a random number e € Z5¢ to A.
Step 3 A sends to B (y1,y») such that

yp=r1+esymodygq, and y; = ry+esy mod gq.

Step 4 B checks that
z = ¢!' g3 v® mod p.

If it holds, B accepts, otherwise rejects.

Next, we prove the security of the above identification scheme. First, we show
a definition and lemma in preparation.
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Definition 3. Let RA denote A’s random tape, and RB denote B’s random
tape. The possible outcomes of executing (A B) can be summarized in a large
Boolean matrix # whose rows correspond to all possible choices of RA. Its
columns correspond to all possible choices e of RB, and its entries are 1 1f B
accepts A’s proof, and 0 if otherwise.

When the success probability of Aise (or the rate of l-entries in H is c), we
call a row heavy if its ratio of 1's is at least /2.

Lemmad. If, given A’s public key (p,q,91,92,t,v), the success probability, €

ofzz is greater than 2:‘“, then there exisis a probabilistic algorithm which runs
i expected ime O(]|Al|/€) and outputs the history of two accepled executions of
(/I,E), (z,e,91.y2) and (z,¢',y{,y5), where e #¢e’'. Here, ||§|| denotes the time
complezity of A. The success probability = s taken over the coin tosses ofg and
B.

Sketch of Proof:

Assume that at least 1/2 of the 1’s in H are not located in heavy rows. Then
the fraction of non-heavy rows in H, which we denote 7. is estimated as follows:

ﬁfi > 1. This is a contradiction. Therefore, at least 1/2 of the I's in H

are located in heavy rows. Since ¢ is greater than 27! and the width of H is

2!, a heavy row contains at least two 1's. To find two 1's in the same row, we
thus adopt the following strategy:

1. Probe O(1/<) random entries in A (or pick (RA, e) randomly and check it,
and repeat this until successful).
2. After the first 1 is found (or accepted (z,€e,y1,y2) with RA is found), probe

O(1/¢) random entries along the same row (or probe (z,¢’,y], y5) with the
same RA).

Since at least 1/2 of the 1'sin A are located in heavy rows, this strategy succeeds
with constant probability in O(1/¢) probes. -

Definition 5. The discrete logarithm is (nonuniformly) intractable, if any fam-
lly of boolean circuits, which, given properly chosen (g1,¢2,p,¢) in the same
distribution as the output of key generator G, can compute the discrete loga-
rithm o € Z, (g2 = ¢% mod p) with nonnegligible probability, must grow at a
rate faster than any polynomial in the size of the input, |p|.

Remark The discrete logarithm above might be less intractable than that when
the order of g; is greater than ¢ (e.g., p — 1), although no attack has yet been
reported when g is appropriately large (considering an attack, [PH]).

T‘heorem 6. Identification scheme I 1s secure if and only if the discrete loga-
rithm is intractable.
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Sketch of Proof:
(Only ift)

Suppose that the discrete logarithm is not intractable. Clearly a (nonumform)
polynomial time machine can calculate (s/,s%) satisfying v = g; "¢, > mod p
with nonnegligible probability. Thus Identification scheme 1 is not secure.

(If)

To prove the “If” part, we show that if Identification scheme 1 is not secure,
then, given (g;1, g2, p, g) with the same distribution as the output of key generator
G, the discrete logarithm a € Z; (g2 = g¢¢ mod p) can be computed by a
polynomial time machine P with non-negligible probability.

Assume that Identification scheme 1 is not secure. Then (/I B) can be ac-
cepted with nonnegligible probability = after O |p|°) executions of (A, B) The
complete history of the executions of (A, B) and (A, B) can be simulated by one
polynomial time procedure P, which may be nonuniform, if P knows A’s secret
key.

To calculate the discrete logarithm o € Z, (g2 = g% modp), given (g:. g2, p.

-

q), P firstly chooses s, s5 € Z, randomly, and calculates v = gl_sxggs'-‘ mod p.

Then, using (s7,53) as A’s secret key. P simulates (A, é) as well as (E, B). So,
for (v,91,42,p,9), after simulating O(|p{®) executions of (E 1§) P tries to find
two accepted interactions of(‘:f,ﬁ), {z.ey1,y2) and (z, €', ¥}, ¥ _,) (e £¢'). From
Lemma 4, this is possible with overwhelming probability, since ¢ is nonnegligible
i.e. greater than 27 '+!,

P can then calculate (s1,52) = ((y1 — y})/(e — ¢’) mod q, (y2 — ¥3)/(e —
¢’) mod ¢) by

yi =ry+esymodyg, y» =7y +esy mody,

Yy =r +e'symodyq, yh=ry+e's, modq.

There are q solutions of (s,,s2) which satisfy v = g7 " g5 ** mod p, given
(v,91,92,p,9). Even an infinitely powerful B cannot determine from z's, y;’s,
and y»’s sent by A4 during the execution of (4, B) which (51,s2) satisfying v =

g1 *g5** mod p actually uses. To prove t.his, for two different solutions, {s;,s2)

2 =gy g;’; (mod p), we show that even

an mnfinitely powerful B cannot determine which solution was used from z’s,
y1’s, and ya’s. When r] = r{ +e(sy — ) mod q and 7} = rp + e(s2 — s3) mod ¢,
the following three equations hold.

and (s}, s3) satisfying v = g7 "'g;

z=g1'¢* =gi'gs* (mod p),

1

yr =7y +esy =r] +es] (mod g),
Y2 =re+ess =1y +esy (mod q).

In addition, the distributions of (ry, ) and (r},r}) are exactly equivalent even
if they satisfy the above relation. Hence, although P knows (s7,s3), (s1,s2),
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which is calculated by P by simulating the operations of (4, B) and (A4, B), is
independent from (s}, s3).

Therefore, (s7,55) which was randomly chosen by P at first is different with
probability (¢ — 1)/q from (s{,s2). Thus, & can be calculated with probability
(g - 1)/q from (sy, s2) and (s7, s3) such that o = (s; - 51) /(s — 85) mod ¢. The
total success probability of P is nonnegligible.

This contradicts the intractability assumption of the discrete logarithm. O

Theorem 7. Lett = O(1). Identification scheme 1 is secure with sharp threshold
security level 1/2° if and only if the discrete logarithm is intractable.

The proof of Theorem 7 is similar to that of Theorem 6. It is shown in the
final version.

3.2 Identification Scheme as Secure as RSA Inversion

This subsection proposes another practical identification scherue which is almost
as efficient as the Guillou-Quisquater identification scheme [GQJ, and proves that
it 1s as secure as RSA inversion.

A user generates a public key (a, &, n, v) and a secret key {5y, s2) and publishes
the public key. Here, p,q can be discarded after publishing n. Note that (a, k)
can be common among users as the system parameter.

— primes p,q, n = pq, and prime k such that ged(k, (n)) = 1 and tk{ = O(|n[),
where ¢(n) = lem(p— 1,90 - 1). (e.g., k> 2% n > 2512
— random number s; € Z, and random numbers a,s. € Z~

n, and v o=
a~* s5* mod n.

We now describe our new identification scheme (Identification scherne 2) by
which party A (the prover) can prove its identity to B {the verifier).

Protocol: Identification scheme 2
Step 1 A picks random numbers r, € Z, and r, € Z7., computes

z=a"rf mod n,

and sends z to B.
Step 2 B sends a random number ¢ € Z; to A.
Step 3 A sends to B (y,y2) such that

yp=rit+esymodk, y,= glirites)/k) ross mod n.

Step 4 B checks that r = a¥ y5v° mod n.

Definition 8. RSA inversion is (nonuniformly) intractable, if any family of
boolean circuits, which, given properly chosen (a, k, n) in the same distribution
as the output of key generator G, can compute a'/* mod n with nonnegligible
probability, must grow at a rate faster than any polynomial in the size of the
input, |n{.



40

Theorem 9. Identification scheme 2 is secure if and only if RSA inversion is
intractable.

Sketch of Proof:
(Only ift)

Suppose that the RSA inversion is not intractable. Clearly a (nonuniform)
polynomial time machine can calculate (s}, s%) satisfying v = a"‘;sg—k mod n
with nonnegligible probability. Thus Identification scheme 2 is not secure.

(1f:)

To prove the “If” part, we can prove this in a manner similar to the “if” part
proof of Theorem 6. So we only sketch the different points here.

First, P chooses s] € Zj, and s; € Z), randomly. and calculates v =
a™*1537% mod n.

Then, for (a,k,n,v), P finds (z.e,y;,y2) and (z,¢', 4}, u4) (e # ') by the
technique of Lemma 4.

Next P calculates sy = (y, — y{)/(e —¢') mod k, and r; = y; — es; mod k.
P then calculates X, Y as follows:

yz/aL(rl+551)/k_]
- yé/a“"l‘\‘e"l)/kj

( mod 1 (= s27¢ mod n ,
2

Y = 1/(va®) mod n (= s% mod n).

Since ged(k,e — €’} = | {as k is prime}, P can compute «, 3 satisfying a(e —
e’) + Bk = 1 by the extended Euclidean algorithm. Hence P calculates s, =
X*Y# mod n.

There are k& solutions of (s, s,) which satisfy v = a"lsz”C

mod n, given
(v.n,a, k). Even an infinitely powerful B cannot determine from z’s, y1’s, and
y2's which (81, s2) was actually used.

P then obtains (s1, s2), (s},83) (s; # s7) such that v = a*ts¥ = atisy®
(mod n), so alt/F)si=s7) = s3/s52  (mod n). After repeating the above proce-
dure, P obtains another (s}, s5), (s7",s5) {5, # s/*) such that a(1/&)Ci=s") =
s% /s% (mod n) with nonnegligible probability. If ged(s; — 57,5} —s1*) = 1, then
P can calculate a'/¥ mod n. The probability that ged(sy — 57,87 —s7) = 11s
more than a constant, since s7, 57" is selected randomly and s,, s/ is independent
from s%, s7*. Thus, the total success probability of P is nonnegligible.

This contradicts the intractability assumption of RSA inversion. g

Theorem 10. Let |k] = O(1). Identification scheme 2 is secure with sharp
threshold security level 1/k if and only if RSA inversion is intractable.

3.3 Identification Scheme as Secure as Factoring

In this subsection, we show a slight variant of the previous identification scheme
(Identification scheme 2), which is as secure as factoring, while Identification
scheme 2 1s as secure as the inversion of the RSA function. The protocol of this
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variant (Identification scheme 3) is exactly same as Identification scheme 2. The
only difference is that the value of & is selected so that ged(k, #(n)) = 2 and &/2
is prime, while ged(k, ¢(n)) = 1 and k is prime in Identification scheme 2.

Definition 11. Factoring is (nonuniformly) intractable, if any family of boolean
circuits, which, given properly chosen (n) in the same distribution as the output
of key generator G, can factor n with nonnegligible probability, must grow in a
rate faster than any polynomial in the size of the input, |n].

Theorem 12. Identification scheme 2 is secure if and only if factoring 1s -
tractable.

Theorem 13. Let |k| = O(1). Identification scheme 3 is secure with sharp
threshold securtty level 1/k if and only if factoring is intractable.

4 Generalization to Random-Self-Reducible Problems

This section shows that any random self-reducible problem [TW] leads to prov-
ably secure and three-move identification.

Definition 14. Let A be a countable infinite set. For any N € A/ let | V] denote
the length of a suitable representation of N, and denote the problem size. For
any N € N, let X, Yy be finite sets, and Ry C Xy x Yn be a relation. Let

domRy = {z € Xy | (z,y) € Ry for some y € Yy}

denote the domain of Ry,

Ry(z)={v|(z.y) € Ry}

the 1mage of z € Xn.

R is random self-reducible (RSR) if and only if there is a polynomial time al-
gorithm A that, given any inputs N € A, z € domRy, and a source r € {0,1}*,
outputs ' = A(N,xz,r) € domRy satisfying the following seven properties.

1. If r is randomly and uniformly chosen on {0,1}*, then #’ is uniformly dis-
tributed over dom Ry .

2. There 1s a polynomial time algorithm that, given N,z,r, and any ¥’ €
Rn(z'), outputs y € Ry(z). ‘

3. There is a polynomial time algorithm that, given N, z,r, and any y € Rn(z),
outputs some y’ € Rx(z’). If, in addition, the bits of r is random, uniform,
and independent, then y' is uniformly distributed over Ry(z’).

4. There is an expected polynomial time algorithm that, given N,2’, and ¥/,
determines whether (z',y') € Ry

5. There is an expected polynomial time algorithm that, given N, outputs
random pairs (2’,y’) € Ry with 2’ uniformly distributed over domRy and
' uniformly distributed over Ry (z').
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6. There is an expected polynomial time algorithm that, given N, g, 1, T2,
ry, 7o satisfying z; = A(N.zo,m;) (i = 1,2), outputs r™ satisfying z» =
A(N,zq,r).

7. There is an expected polynomial time algorithm that, given N, xq, 22, 41,42
satisfying (z;, %) € Ry (i = 1,2), outputs r* satisfying zo = A(N,z,,7*).

Next we construct a three-move identification scheme based on random self-
reducible problem R (Identification scheme 4).

A user generates a public key (V,a,t,v) and a secret key (s;) (i = 0 or 1)
and publishes the public key.

— A random bit i € {0,1}, N € N, a € domRx, and an integer t = O(|N
~ When ¢ = 0, random bits sg € {0,1}*, and v = A(N, qa, s0).
—~ When ¢ = 1, a random pair {v,s,) € Ry.

).

Protocol: Identification scheme 4
Step 1 A generates random bits y;o € {0,1}*, and z;5 = A(N,a,y50), (J =

1,...,t). A also generates random pairs (z;,,y5:1) € Ry, {(J = 1....,1).
A sets x; = (xjp,,x;(1-5,)) With a random bit b; € {0.1}, and sends
{(z1,22,...,2¢) t0 B.

Step 2 B sends random bits (e1,....¢e;) to 4.

Step 3 Asends (z3,22,....2) to B. Here, if ¢; =0, z; = (yjo,y51). lfe; =11

and ¢ = 0, then z; = ry such that z;o0 = A(N.v,ry) (7o can be
computed from property 6). If e; = 1 and i = 1, then z; = r; such
that z;; = A(N,v,ry) (r; can be computed from property 7).

Step 4 B checks the validity of the messages received from A.

Definition 15.  The random self-reducible problem R is (nonuniformly) in-
tractable, if any family of boolean circuits, which, given properly chosen (N, a)
in the same distribution as the output of key generator G, can compute o sat-
isfying (a,a) € Ry with nonnegligible probability, must grow at a rate faster
than any polynomial in the size of the input, |p|.

Theorem 16. [dentification scheme § is secure if and only if the random self-
reducible problem R is intractable.

The basic techniques to prove this theorem are similar to those shown in
Section 3. Scheme 4 is much less efficient than the schemes in Section 3, since
the schemes in Section 3 are Type 2 of the parallel versions (see Section 1), while
this scheme is Type 1.

Because of space limitations, we omit the proof of this theorem in this ex-
tended abstract.
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5 Variants of the Proposed Identification Schemes

5.1 Identification Scheme as Secure as the Discrete Logarithm and
Factoring Simultaneously

This subsection introduces a variant of Identification scheme 1 (Identification
scheme 5) using the idea of the Brickell-McCurley scheme [BM1]. This variant is
proven to be as secure as the difficulty of solving both the discrete logarithm and
the specific factoring problem (or the finding order problem) simultaneously.
In this identification scheme, a user generates a public key (p,¢1,92,v) and
secret key (s, s3) and publishes the public key. (g, w) can be discarded after pub-

lishing the public key. (p, g1, 92) can be a system parameter, which is commonly
used by all users.

— primes p, ¢ and w such that quwlp—1 (e.g., ¢ > 21%°, p > 2512 and qw > 2°1%).
g1 and g3 of order ¢ in the group Z.

random numbers 5,82 In Z,_ .

— v = gl—”gz—’2 mod p.

We now describe our new identification scheme (Identification scheme 5).

Protocol: Identification scheme 5
Step 1 A picks random numbers r;, 7 € Z,_;, computes

2

z = g'g5” mod p,

and sends r to B.

Step 2 B sends random numbers e € Z, to A.
Step 3 A sends to B (y1,y2) such that

y1 =ry+exymod p—1, and ys = ry +exg mod p— 1.

Step 4 B checks that

= g7 95 v* mod p.
Definition 17. The finding order problem is (nonuniformly) intractable, if any
family of boolean circuits, which, given properly chosen (p, g;) in the same dis-
tribution as the output of key generator G, can compute the order of g; in the
group Z7 with nonnegligible probability, must grow at a rate faster than any
polynomial in the size of the input, |p|.

Remark This problem is more tractable than the factoring problem (Definition
11), since if there exists an polynomial time algorithm to solve the factoring
problem, then the finding order problem can be solved by factoring p— 1. So, the
finding order problem can be considered a subproblem of the factoring problem.

Theorem 18. Identification scheme 35 is secure if and only if the problem to

f‘olve both the discrete logarithm and the finding order problem simultaneously is
miraciable.
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5.2 Identity-Based and Certification-Based Variants

There are two methods of eliminating the public key directory from the conven-
tional public key schemes: one is the identity-based method and the other is the
certification-based method.

In the certification-based method, a trusted center (key authentication center,
or certification authority) publishes its public key and gives a user A its signature
S for the pair of identity Id, and public key PK4 of A. The user A sends
(fda,PK4,S) to the verifier, who checks the validity of PR 4 by verifying the
trusted center’s signature S for (Id4, PK 4) in place of retrieving PK 4 through
Id s from the public key directory.

In the identity-based method, proposed by Shamir [Sha] and independently
by Okamoto [Oka], the public key is replaced by the identity related value of a
user.

The difference between the certification-based method and identity-based
method 1s as follows:

— Any public-key system can be converted into the certification-based vari-
ant by the same technique, while each public-key system needs a peculiar
technique to convert to the identity-based variant.

— The trusted center of the certification-based method does not know each
user’s secret key, while the trusted center of the identity-based method gen-
erates and knows each user’s secret key.

— The size of the public key that a user keeps and sends to the verifier in the
certification-based method is longer than that in the identity-based method.

In this extended abstract, only two examples, identity-based variants of Iden-
tification schemes 1 and 2, are introduced briefly. In particular, we show a new
construction technique to realize the identity-based variant of a scheme which
is based on the discrete logarithm (e.g., Identification scheme 1), although the
identity-based scheme based on the discrete logarithm is usually difficult to con-
struct. Our technique is similar to Beth’s idea [Bet], but, ours seems to be more
natural, since we use the digital signature corresponding to the identification
(Section 6), while the ElGamal scheme is used in [Bet]. (Our technique can be
also applied to the Schnorr scheme: See Appendix B.)

Identity-Based Variant of Identification scheme 1 A trusted center 7 (or
key authentication center) generates a public key (p, q, 91, g2, ¢, vr) and its secret
key (sr1,872), and publishes the public key as a system parameter. T generates
T’s digital signature, (e, ya1,ya2), of A’s identity, Id,, by using its secret key.
So, e4 = h((g7* ¢5**v* mod p), Id ) (see Section 6). T gives A A’s secret key
(541,542) and ey, where (541,542) = (¢ — ¥a1,9 — yaz2). Then A generates A’s
public key v4 = g7 °*' g5 '4? mod p from the secrete key given by T

In this identity-based identification protocol, A first sends ({da, v, e4) O
verifier B along with ¢ (same as r in the first step of Identification scheme 1).
B checks the validity of Id, and »4 by checking whether e4 = A((v4v}* mod
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p),Id4) holds or not. If the check passes, the remainig protocol is the same
as Identification scheme 1 {or B sends A e, A sends B (y1,%2), and B checks
it). So, B does noi need to retrieve v, from the public-key directory. Here, the
communication overhead except ({d4, v4) is just e 4, whose size is much smaller
than those of v4 and z.

Identity-Based Variant of Identification scheme 2 A trusted center (or
key authentication center) generates a public key (e, k,n) and gives user A its
secret key (sa1,542), where [dy = a™ 7 s;]:f mod n. (First s 41 € Z; is randomly
determined, then 5,44 = (IdAa’Al)‘llk mod n is calculated. Id,4 can be replaced
by h(Id) with a one-way function.)

In this identity-based identification protocol, 7ds is used in place of v in
Identification scheme 2. In a manner similar to the above-mentioned identity-
based protocol, Id, is sent to B along with x in the first step and the remaining
part is the same as Identification scheme 2. So, B does not need to retrieve v
from the public-key directory.

5.3 Elliptic Curve Version

Some techniques to construct cryptosystems based on the elliptic curve logarithm
over a finite field [HMV, Kobl. Kob2, Mil, Miy] can be straightfowardly applied
to our Identification scheme 1.

The elliptic curve variant of Identification scheme 1 has the significant prop-
erty that three-move practical identification is proven to be secure assuming the
intractability of the (non-supersingular) elliptic curve logarithms against which
only exponential-time attacks have been reported so far [MOV, Kob2].

6 Signature Schemes

This section describes digital signature schemes converted from the identification
schemes given in the previous sections. We also prove the security (existentially
unforgeable against adaptive chosen message attacks [GMRI]) of our new sig-
nature schemes assuming one reasonable assumption about the one-way hash
function (correlation-free one-way hash function) as well as a primitive assumnp-
tion.

Since this conversion [FiS] is very simple, in this extended abstract, we only
show one example (Signature scheme 1) based on Identification scheme 1. Other
signature schemes (Signature schemes 2 to 5, and others) can be realized in the

same way based on Identification schemes 2 to 5, and the variants described in
subsections 5.2 and 5.3.

6.1 Signature Scheme Based on Identification Scheme 1

Signature scheme 1 is almost as efficient as the Schnorr signature scheme and
DSA (see Section 7}, while the security [GMRi] assumption of our scheme is
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weaker and more reasonable than those of the Schnorr signature scheme and
DSA.

A public key (p.q,91,92.t,v) and secret key (s;,s2) of each user are de-
termined in the same manner as Identification scheme 1. A is a one-way hash
function.

We now describe our new signature scheme (Signature scheme 1) by which
party A (the signer) generates a signature (e, y;,ys) of a message m, and sends
(m,e,¥1,y2) to B (the verifier).

Protocol: Signature scheme 1

Step 1 A (signer) picks random numbers r;,ry € Z,, computes z = g1t s’
modp. A computes e = h(z,m) € Z4e and (y;, ya) such that y1 =
r1 + esy mod ¢, and yo = ry + s, mod ¢.

Step 2 A sends to B (e, y1,y2) along with message m.

Step 3 B computes ¢ = ¢¥'g5?v® mod p, and checks that e = h(z, m).

6.2 Security of Signature Schemes

In this subsection, we discuss the security of our signature schemes in the sense of
“existentially unforgeable against adaptive chosen message attacks” defined by
[GMRI]. Fiat and Shamir [FiS] have shown that the existence of an “ideal random
function” as well as factoring assumption is sufficient to prove the security of the
Fiat-Shamir signature scheme. However, their assumption, the existence of an
ideal random function, can never be realized in the real world, and to realize the
“pseudo-random function” [(GGM] as a common function requires a tamper-free
device.

In this paper, we clarify a reasonable assumption to prove the security of the
Fiat-Shamir type signature schemes. We introduce a new class of one-way hash
functions, correlation-free one-way hash functions, and show that the existence
of a “correlation-free one-way hash function”, as well as a primitive assumption,
is sufficient to prove the security of our schemes. Although the existence of a
correlation-free one-way hash function seems to be a stronger assumption than
those of universal one-way hash function, claw-free pair of functions and collision-
free hash function, we highly believe that carefully designed practical one-way
hash functions such as MD5 and SHA are correlation-free one-way hash functions
with any number theoretic predicate.

Definition 19. A family of correlation-free one-way hash functions with F is a

set of hash functions, H = {H,,} (H, is a subset of H with security parameter
n), with the following properties:

— Poly-time indexing: Each function in H, has a unique n bit index, oy,
associated with it: H,, = {h,_|on € {0,1}", A, : {0,1}7(*) x {0,1p") —
{0,1}1™)} where p(n), s(n), and ¢(n) are polynomial in n. There is a proba-
bilistic polynomial time algorithm, which, on input n, selects uniformly and
randomly oy, in {0,}.
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— Poly-time evaluation: There exists a polynomial time algorithm that (for
all n > 1), upon input of an index oy, and an argument (z,m) € {0, 1}7(m) x
{0, 1}°0*), computes h,_(z,m).

— Correlation-freeness: Let F = {F, | F, = {fs;_}} be a poly-time index-
ing (8,) and poly-time evaluation predicate family such that fs_: {0, 1}p()
x {0,1}9™ x {0, 177 — {0, 1}, where r(n) is polynomial in n. Suppose that
any family of boolean circuits, which, given é,, can compute z and (e;, yi)
(i=1,...,t(n)) (t(n) is polynomial in n) with nonnegligible probability such
that fs (z,e;,%) = 1, must grow at a rate faster than any polynomial in
n. Then, any family of boolean circuits, which, given ¢,, and é,, can com-
pute (z,e, y,m) with nonnegligible probability such that h,_ (z,m) = e and
fs.(z,e,y) = 1, must grow at a rate faster than any polynomial in n.

— One-wayness: Any family of boolean circuits, which, given (z, m), can com-
pute m’ (m’ # m) with nonnegligible probability such that h, (z,m') =
hy, (x,m), must grow at a rate faster than any polynomial in n.

Theorem 20. Signature scheme 1 is existentially unforgeable against any adap-
tive chosen message attacks if the discrete logarithm problem is intractable and
h is a correlation-free one-way hash function with F = {fi,, 4,00}, where
fior 900 (%€, (1, ¥2)) =1 1f and only if 2 = g} ¢3?v* mod p holds.

Sketch of Proof:

Assume that there exists an adaptive chosen message attacker, P, to Signa-
ture scheme 1. We also assume that the discrete logarithm problem is intractable.
Then we will show a contradiction with the assumption that A is a correlation-
free one-way hash function with F = {f,, ...}

First, assume that P can find (z,e,y1,y2,¢', ¥}, ¥5) (e # ¢’) with nonnegli-

gible probability such that z = ¢g¥*¢¥*v®* mod p and z = gf‘gglzve' mod p, after
adaptive chosen message attacks. Since, given (g1, g»,p). P can exactly simulate
the valid signer by generating his/her secret key (s,.s») and following signer’s
valid procedure, P can calculate the discrete logarithm o (g2 = ¢ mod p) by
the technique described in the proof of Theorem 6. This contradicts the in-
tractability assumption of the discrete logarithm problem. Therefore, P can find
(z,e,y1,¥2, ¢, y1,¥5) (e # €') with negligible probability.

On the other hand, from the assumption that P is an adaptive chosen message
attacker, P can find (z,e,y;,y», m) with nonnegligible probability such that
h(z,m) = e and = = g{"g%*v® mod p. This contradicts the assumption that A is
a correlation-free hash function with F = {f(y, 4, 5.1)}-

Thus, any attacker P cannot find a valid signature message (z,e,y1,y2,m)
with nonnegligible probability after adaptive chosen message attacks. a

6.3 Two-Move and One-Move Identification Schemes

In this subsection, we briefly introduce two-move and one-move identification
schemes by using secure signature schemes above, which are almost as efficient
as the proposed three-move identification schemes.
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Two-move secure 1dentification scheme can be trivially constructed using a
secure (existentially unforgeable against any adaptive chosen message attacks)
signature scheme as follows: First, verifier B sends a random message z 10 prover
A, then A generates and sends A's signature of message z to B, finally B checks
the validity of A’s signature.

We can easily convert a two-move identification scheme into a one-move
identification by changing challenge message r into time-stamp ¢, which both
A and B share. That 1s, first A sends A’s signature of message t to B, then B
checks it.

6.4 Multi-Signature and Blind Signature

The multi-signature and blind signature schemes of our proposed signature
schemes (Signature schemes 1 to 3 and the variants) can be constructed. The
multi-signature schemes are constructed in a manner similar to [OhO2], and the
blind signature schemes are constructed based on the idea shown in [OkO].

Blind Signature for Signature Scheme 1 Here, we present only one example
of the blind signature schemes, based on Signature scheme 1. The other blind
signature schemes are constructed in the same way using the idea shown in
[OkO]. (The blind signature scheme based on the Schnorr scheme is shown in
Appendix B.)

In the blind signature scheme, which was originally proposed by Chaum {Cha]
based on the RSA scheme, a client, Bob, generates a blinded message b(m) from
a message m, and sends b(m) to a blind signer, Alice. She generates her signature
s4(b(m)) of b(m), and sends it to Bob. He calculates Alice’s signature s 4{m) of
message m from s(b(m)). Here, Alice has no information of m, and Bob has no
information of Alice’s secret key.

We now describe our blind signature scheme based on Signature scheme 1.
Alice’s public key is {p.q,g:.92.t,v) and her secret key is (sq,s2), which are
those of Signature scheme 1.

Protocol: Blind signature based on Signature scheme 1

Step 1 Alice (blind signer) picks random numbers r), 7, € Z,, computes = =
g1'92° mod p, and sends z to Bob {client).

Step 2 Bob picks random numbers o, u;, uy € Z,, and computes

' =gty v s mod p. e =h(z",m), e=e" +dmodg.

Bob sends e to Alice. Here, m is a message to be signed.

Step 3 Alice computes (y1,y») such that y; = r; + es; mod g, and y, =
ry + esq mod ¢, and sends (1, y2) to Bob.

Step 4 Bob computes y7 = y; +u; mod q, 35 = y2 + us mod g.
(e*,y},y5) is Alice’s signature of message m.

Note: e is distributed on Z,. while ¢ is distributed on Z,:. The difference is
no problem in the blind signature scheme, since even an infinite power attacker
cannot find any linkage between e and e*.
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7 Performance

This section compares the computation amount of our schemes against those of
the previous practical schemes in the light of the required number of modular
multiplications, and also compare the key and signature lengths.

We assume that moduli p and ¢ for our scheme 1, Schnorr are 512 bits and
140 bits respectively, p and ¢ for DSA are 512 bits and 160 bits, and the modulus
n for our scheme 3, Guillou-Quisquater (GQ), Ohta-Okamoto (OO) and Feige-
Fiat-Shamir (FFS) is 512 bits. The security parameter for the identification
schemes 1s assumed to be 20, or e (the challenge from the verifier) is 20 bits.
The security parameter for the signature schemes is assumed to be 128, or e (the
output of the hash function of z and a message) is 128 bits, since the output size
of many typical hash functions such as MD5 is 128 bits. We also assume that
the parameters for Feige-Fiat-Shamir are &£ = |e] and t = L.

Here, we estimate the performance of unsophisticated implementations, since
the purpose of this comparison is to relatively compare some schemes with the
same primitive problem (e.g., our scheme 1 and Schnorr), and many sophisticated
techniques (e.g., [Mon, BGMW]) can be fairly evenly applied to the schemes with
the same primitive problem. We assume the standard binary method and the
extended binary method {4.6.3 ¢x.27 in [Kun]) for the modular exponentiation.

Table 1. Comparison of [dentification Schemes

L Proposed| Schnorr|| Proposed| GG | OO | FES
Scheme | Scheme 3

Provably secure? Yes No Yes No Yes | Yes
Primitive problem Disc.log. [Disc.log.|[| Fact. RSA |Fact.| Fact.
ID-based variant Possible | Possible || Possible |Possible| Hard|Possible
&stem parameter size {bits) 1676 1164 532 20 20 0
Public key size (bits) 512 512 1024 1024 |1024| 10240
Eret key size (bits) 280 140 532 512 512 ] 10240
[Communication amount (bits)lj 812 672 1064 1044 {1044) 1044
Preprocessing (Prover)
(# of 512-bit modular 245 210 35 30 | 30 1
_H_I_llltiplica.tions)
On-line processing (Prover)
{# of 512-bit modular almost 0 jalmost 0 32 31 31 10

: _mllt_iglic_ations)

On-line Processing (Verifier)

. |(# of 512-bit modular 248 210 38 35 | 35 ] 1l
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Table 2. Comparison of Signature Schemes

Proposed| Schnorr) DSA || Proposed| GQ o0 FFS

Scheme 1 Scheme 3
rAssumption Weak | Strong | Strong || Weak | Strong | Weak | Weak
Primitive problem|} Disc.log. |Disc.log.|Disc.log.|| Fact. RSA | Fact. | Fact.
ID-based variant || Possible | Possible | Possible || Possible |Possible] Hard (Possible
Multi-signature Possible {Possible| Hard || Possible |Possible|Possible|Possible
Blind signature Possible | Possible| Hard || Possible |Possible!Possible{Possible
System parameter 1676 1164 1164 640 128 128 0
size (bits)
Public key size 512 512 512 1024 1024 1024 66048
{bits)
Secret key size 280 140 160 640 512 512 65536
{bits)
Signature size 408 268 320 768 640 640 640
(bits)
Preprocessing
for signing
(# of 512-bit 245 210 237 224 192 192 1
modular
multiplications)
Signing
{# of 512-bit almost 0 {almost Olalmost 0ff 194 193 193 63
modular
multiplications)
Verifying
(# of 512-bit 261 242 277 240 224 224 66
modular
multiplications)
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Appendix A

In this appendix, we introduce a variant of “no useful information transfer”
[FFS] given by Ohta and Okamoto [OhO1], called “no transferable information
with (sharp threshold) security level”.

Definition 21. An identification scheme (A, B) is secure with securiy level p if
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1. (A, B) succeeds with overwhelming probability.

2. There is no coalition oileﬁ with the property that, after a polynomial num-
ber of executions of (A, B) and relaying a transcript of the communication
to A, it is possible to execute (‘;1‘, B) with ¢ - p probabhility of success, where
¢ = (14 1/|n|?) and d is an arbitrary constant. The probability is taken
over the distribution of the public key and the secret key as well as the coin
tosses of A, B, A, and B, up to the time of the attempted impersonation.

Definition 22. An identification scheme (A, B) is secure with sharp threshold
security level p if

1. (A, B) is secure with security level p.

2. There exists A such that it is possible to execute (Z,E) with p probability
of success.

Appendix B

In this appendix, we introduce the identity-based variant and blind signature
sceheme of the Schnorr scheme.

B.1 Identity-Based Variant of the Schnorr scheme

A trusted center 7T (or key authentication center) generates a public key
(p,q,9,t,vr) and its secret key sr, and publishes the public key as a system
parameter. T generates T’s digital signature, {e4,y4), of A’s identity, Idsa. T
gives A A’s secret key s4 and ey, where sy, = g — y4. Then A generates A’s
public key vq4 = ¢7** mod p from the secrete key given by T'.

In this identity-based identification protocol, A first sends (Id4, va, e4) to
verifier B along with £ B checks the validity of Id4 and v4 by checking whether
ea = h((vavy* mod p),Id4) holds or not. If the check passes, the remainig
protocol is the same as the Schnorr scheme.

B.2 Blind Signature of the Schnorr scheme

Alice’s public key is (p, q,g,t,v) and her secret key Is s.

Protocol: Blind signature based on the Schnorr scheme

Step 1 Alice (blind signer) picks random number r € Z,, computes z =
¢” mod p, and sends z to Bob {chient).

Step 2 Bob picks random numbers d, u € Z,, computes

" =g*v %z modp, " = h(z*,m), e=¢e"+dmodygq.
Bob sends e to Alice. Here, m 1s a message to be signed.

Step 3 Alice computes y such that y = r + es mod ¢, and sends y to Bob.
Step 4 Bob computes y* = y + u mod q.

(e*,y*") is Alice’s signature of message m.
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