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Abstract. A threshold scheme is a system that protects a secret (key) 
among a group of participants in such a way that it can only be recon- 
structed from the joint information held by some predetermined number 
of these participants. In this paper we extend this problem to one where 
there is more than one secret that participants can reconstruct using 
the information that they hold. In particular we consider the situation 
where there is a secret 8K associated with each k-subset K of partici- 
pants and BK can be reconstructed by any group oft participants in K 
(t 5 k). We establish bounds on the minimum amount of information 
that participants must hold in order to ensure that up to w participants 
(0 5 w 5 n - k + t - 1) cannot obtain any information about a secret 
with which they are not associated. We also discuss examples of systems 
that satisfy this bound. 

1 Introduction 

Secret sharing schemes have received much attention in the recent literature. The 
basic problem is to protect a secret by distributing information (shares) relating 
to  it among a group of n participants in such a way that only certain pre-specified 
groups of participants can reconstruct the secret from their pooled shares. The 
collection of sets of participants that can reconstruct the secret in this way is 
called the access structure. If there is an integer t such that the access structure 
consists of all the subsets of participants of size at least t then the access structure 
is called a (t,n)-threshold access structure, and the corresponding scheme is 
called a (t,n)-threshold scheme. The collection of sets of participants that are 
desired not t o  obtain any information about the secret is called the prohibited 
structure. The access and prohibited structures of the scheme together form the 
8tmctu~e of the scheme. 

Threshold schemes were proposed and constructed in the first papers on this 
subject (see Blakley [2], Sharnir [15]). Since then many authors have considered 
more general structures (see Ito et a1 [9] and Benaloh and Leichter [l]). 

Secret sharing schemes (and in particular threshold schemes) have many po- 
tential uses in the area of information security (see Simmons [16]). In particular, 
such a scheme can be used to  ensure the secure implementation of a crypto- 
graphic key in a multi-user network. It is a natural generalisation to extend 
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this concept to  a multi-user network in which many different keys need to  be 
protected among different sets of participants in the network. The problem of 
determining the minimum amount of information that each user must hold in 
order t o  be able to reconstruct the appropriate keys (the minimum size of the 
user's share) becomes increasingly important as the complexity of the network 
increases. 

We generalise the concept of a secret sharing scheme to allow a number 
of different secrets to  be reconstructed by the participants. We then consider 
the special case of this generalisation in which each subset of k participants is 
associated with a secret which is protected by a ( t ,  k)-threshold access structure. 
This paper is concerned with finding lower bounds on the size of a participant's 
share in this generalisation of a threshold scheme. This is also a generalisation 
of a problem previously considered by Blom [4], Matsumoto [13] and Blundo 
et  al [5 ] .  We call these schemes multisecret threshold schemes (or multithreshold 
schemes for short). 

The paper is structured as follows. In Section 2 we give a formal definition of 
a multithreshold scheme. In Section 3 we prove lower bounds on the size of each 
share of a participant (or a group of participants) in a multithreshold scheme 
and in Section 4 we discuss some schemes that achieve these bounds. 

2 Multithreshold Schemes 

We first define a multisecret sharing scheme. Let P be a set of n participants 
and X: = (91,. . . , s,.} be a set of secrets. For each i (1 5 i 5 r )  denote the 
access structure of secret si by ri and the prohibited structure of s; by Ai. 
Then we call l' = (I'I, . . . , I'T) the access structure of the multisecret sharing 
scheme and A = (AI, . , . , A,.) the prohibited structure of the multisecret sharing 
scheme. We make the natural restriction that for each i (1 5 i 5 r )  ri is 
monotone increasing and A, is monotone decreasing. In other words, for A E r; 
we have that  A' C P, A E A' implies A' E Ti, and for A E A, we have that 
A' G P, A 2 A' implies A' E Ai. The structure of the multisecret sharing 
scheme is the pair (I", A). If A, = 2p\I', (for each 1 5 i 5 r )  then we say that 
the structure (r, A )  is complete. 

The model we now present for a perfect multisecret sharing scheme is an 
extension of the model for secret sharing first proposed by Brickell and Davenport 
[7] and used in [8, 10, 12, 171. 

Let the share held by participant p ( p  E P )  come from the set Sp and let 
the value of secret s (s E K) come from the set S, of size p. We call the sets 
S, share spaces and the sets S, secret spaces. We refer to  ISPI as the size of the 
share held by p and refer to q as the size of the secrets. A perfect multisecret 
sharing scheme with structure (T, A) (denoted PS(r, A, p)) is a collection 7 of 
(publically known) distribution rules where each f E 3 is a one to one mapping 
from P U  K to ( u p E p S p )  U (UaEKS8) with 

/ ( p )  E Sp [for all p E P) and /(s) E S, (for all s E K), 
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and such that for each i (1 5 i 5 T), 
1. if A E Ti and f,g E F are such that f(z) = g(3c) (for all 2 E A) then 

2. if A E A;, and f E 3 then there exists some integer X such that for each 
k E Ss, there are precisely X distribution rules g E 3 such that j ( z )  = g(x) 
(for all 5 E A )  and j ( s j )  = k. 

This is best represented by a matrix M whose rows are indexed by members 
of 3 and whose columns are indexed by members of P U Ic, The entry in row 
f and column z (x E P U Ic) is f (z). We assume that each distribution rule is 
equiprobable and implement the scheme by choosing a rule f at random and 
distributing share f(p) to participant p (for all p f P ) .  The secrets that these 
shares are protecting are the values f(s)  (for all s E K) (see [7] for more details). 

We assume that a set of participants will attempt to determine a secret a 
by looking at their collective shares and considering only the set g of distri- 
bution rules f under which they could have received these shares. If the set of 
participants is in r; then every f E 0 will have the same value at the secret 
si .  Otherwise, the structure of a perfect multisecret sharing scheme ensures that 
each value for the secret sj will occur equally often among the distribution rules 
in 8. Note that the security offered by this model is unconditional in the sense 
that  it is independent of the amount of computing time and resources that are 
available in any attempt to  obtain a secret by some unauthorised means. 

We note that the term “multisecret sharing scheme” has also been used in 
[6] to  refer t o  a special class of complete multisecret sharing schemes with the 
same access structure for each secret. 

We now introduce notation which we use for the remainder of the paper. Let 
1 5 t 5 k 5 n and T = ( z ) .  Let the collection of k-subsets of P be denoted by 
{XI,. . . ,Xr}. Let 0 5 w 5 n - k 4- t - 1. Then for each i, (1 5 i 5 T )  let 

f ( S i )  = g ( s i ) ;  

ri = ( A  c P I ( A  n xi[ 1 t } ,  

and 
Ai = { A  C P 5 w } \ r i  . 

Let r = (TI,. .. ,Tr) and let A = ( A I , . .  . ,A,.). Then for g > 1 we refer to a 
PS(F, A, p) as a w-secure ( t ,  k, n)-muMithreshold scheme with secret size q. 

Thus a w-secure ( t ,  k, n)-multithreshold scheme has one secret si for each 
k-subset Xj of the n participants in P .  Any set o f t  or more of the k participants 
in Xi is able to reconstruct s i .  Further, a set A of w or fewer participants in 
P is unable to obtain any information about si unless A contains at least t 
members of Xi. (If A = 8 then this is equivalent to l{f E T 1 f(q) = k}/ being 
independent of k E Ssi.) Note that if 0 5 w < t - 1 then it is possible that a 
subset of Xi of size p ,  (W < p < t )  is able to obtain some information about the 
value of the secret. 

It follows from the definition that a w-secure (t ,  k, n)-multithreshold scheme 
is also a d-secure (t‘, k,n)-multithreshold scheme for all 0 5 w’ 5 w and t 5 
t’ 5 k. 
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If w = n- I c +  t - 1 then the multithreshold scheme will be complete. It makes 
no sense to have w > n - k + t - 1 since any set of this size can by definition 
reconstruct all of the secrets in K. 

Examplel.  Let P = { a , b , c } ,  S = {SI ,SZ,SQ)  and XI = {a,b} ,  Xz = {a , c }  
and XJ = { b ,  c } .  The matrix in below represents a (complete) 1-secure (1,2,3)- 
multithreshold scheme with secret size 3. 

a b c s l  
0 0 0 0  
0 1 2 0  
0 2 1 0  
1 4 7 1  
1 5 6 1  
1 3 8 1  
2 8 5 2  I 2 6 4 2  
2 7 3 2  
3 3 3 1  
3 4 5 1  
3 5 4 1  
4 7 1 2  
4 8 0 2  
4 6 2 2  
5 2 8 0  
5 0 7 0  
5 1 6 0  
6 6 6 2  
6 7 8 2  
6 8 7 2  
7 1 4 0  
7 2 3 0  
7 0 5 0  
8 5 2 1  
8 3 1 1  

( 8 4 0 1  

Fig. 1. Matrix for Example 1. 

s2 

0 
0 
0 
2 
2 
2 
1 
1 
1 
1 
1 
1 
0 
0 
0 
2 
2 
2 
2 
2 
2 
1 
1 
1 
0 
0 
0 

3 3  

0 
2 
1 
0 
2 
1 
0 
2 
1 
1 
0 
2 
1 
0 
2 
1 
0 
2 
2 
1 
0 
2 
1 
0 
2 
1 
0 

Complete (t, k, k)-multithreshold schemes are just perfect threshold schemes 
as first studied in [2] and [15] (see Section 4). They can be used to show the ex- 
istence of complete ( t ,  k, n)-multithreshold schemes (and thus w-secure ( t ,  k, n)- 
multithreshold schemes for 0 5 w 5 n - k + t - 1) through the following result: 
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Theorem 1. Let 1 5 t 5 k 5 n. If there exists a complete (t, k, k)-rnvZtithreshold 
scheme with secret size q then there exists a complete ( t ,  k, n)-multithreshold 
scheme with secret size q.  

Proof. Let T and the sets X ;  be as defined earlier. For each i (1 5 i 5 r )  let Fi 
be the distribution rules of a complete ( t ,  k, k)-multithreshold scheme defined on 
participant set Xi with secret s i .  For each (!I,. . . , f,.) (fi E Fi), define a new 
rule f as follows: for each p E P, f ( p )  is the (:::)-tuple with entries f&) for 
each i with p E Xi, and for each s,, f ( s i )  = f i (q ) .  The collection of these rules 

Although Theorem 1 guarantees the existence of multithreshold schemes it 
produces schemes with the relatively large sharc size of q(iT:). We address this 
problem in the next section. 

The special case of w-secure (1,2,n)-multithreshold schemes was first dis- 
cussed in [4] and the generalisation to  (II k, n)-multithreshold schemes was stud- 
ied in [13] where the use of symmetric functions was considered. The special case 
of symmetric polynomials was analysed in [5]  for w-secure (1, k, n) schemes. The 
later paper also produced a lower bound on the size of share that each participant 
holds, and an example of a scheme that achieves this bound. We will generalise 
this bound to  the case of w-secure (t,  k, n)-multithreshold schemes and discuss 
examples of schemes that achieve this bound. 

We note that  the application of a w-secure ( t ,  k,n)-multithreshold scheme 
with t > 1 to  a multi-user network as mentioned in the introduction will in 
general be different from the scenario for t = 1 discussed in (4, 5, 131. The case 
t = 1 deals with the situation where any of the k participants can at any time 
non-inderactively establish a common key. If it is required that members of a k- 
set of participants should reach some threshold of consensus before establishing 
their common key, then it is necessary that  t > 1. 

f form a complete ( t ,  k, n)-multithreshold scheme with secret size q. 

3 Bounds on Share Size 

In the last section we showed that it is possible to  find a w-secure ( t , k ,n ) -  
multithreshold scheme with 1 5: t 5 k 5 n and 0 5 w 5 n - k + t - 1. 
Note however, that the construction in the proof of Theorem 1 is equivalent 
to  simply giving each participant one share from each of the (:I;) complete 
( t ,  k, k)-multithreshold schemes in which the participant is involved. We would 
like to  be able t o  construct multithreshold schemes in which each participant 
has a share which is much smaller than that which arises from the construction 
of Theorem 1. 

We will denote by M ( t ,  k ,n ,w ,q )  the minimum size of share that  a partic- 
ipant holds in any w-secure ( t ,  k, n)-multithreshold scheme with secret size 4 
taken over all schemes with these parameters. 

The following well known result can be found in [17]. 

Result 2. Let 1 _< t 5 k. Then M ( t ,  k,  k , t  - 1,q)  2 q. 
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Since complete (t, k, k)-multithreshold schemes with participant share size q 
can be found for all prime powers q 2 k (so M ( t ,  k, k , t  - 1,q)  = q in this case, 
see Section 4.4) we can combine Result 2 and Theorem 1 to obtain the following: 

Corollary3. Suppose 1 5 t < k 5 n and 0 5 w < n - k + t - 1.  Let q be a 
prime power (q 2 k).  Then M(t ,k ,n ,w,q)  5 & ~ ) ~  

We now recall a result from [5 ] .  

Result4. L e t O s w s n - 1  a n d k s n .  Then 

The main result of this paper is a generalisation of Result 4 to w-secure 
(t, k, n)-multithreshold schemes for any t (1 5 t 5 k) and w 2 t - 1 (see Theo- 
rem 5). For w < t - 1 the situation is slightly different; here we obtain a bound 
for the share size of a group o f t  - w participants (see Corollary 8). 

We first discuss two operations that can be performed on a multithreshold 
scheme. 

Let 3- be the set of distribution rules of a w-secure ( t ,  k,n)-multithreshold 
scheme with secret size q. Let M be the representation of 3 as a matrix and 
let X E P U K. The restriction of M at X is the matrix that is obtained from 
M by deleting the columns in X. Now let f E F. The contraction of M at X 
with respect to f is the matrix obtained from M by selecting only the rows of 
M that agree with f on the columns of X and then taking the restriction of 
the resulting matrix at X. Note that these are extensions of the definitions of 
restrictions and contractions of a perfect secret sharing scheme that were given 
in [12]. 

Theorem 5. Let 1 5 t 5 k and t - 1 5 w 5 n - k + t - 1. Then 

Proof. If t = 1 then the theorem follows from Result 4. Let t 2 2 and let M 
be a w-secure ( t ,  k,n)-multithreshold scheme with secret size q with a set T of 
distribution rules. Let X be a subset of t - 1 participants and let Wx = (8 ,  I 
X If Xi, 1 5 i 5 r }  (with r ,  X; as described earlier). Let f E F. Construct the 
matrix M' formed from M by taking the contraction of M at X with respect to  
f and then taking the restriction of the resulting matrix at Wx. The rows of M' 
correspond to the distribution rules of a (w - t + 1)-secure (1, Ic - t + 1, n - t+  1)- 
multithreshold scheme defined on the participants of P\X. M' also has secret 
size q since X lies in the prohibited structure of each secret in M. Applying 
Result 4 we see that 

1, 
w-- t+ l )+ ( t - - t+ l ) - l  w + k - 2 t + l  M ( t ,  k, n, w, q )  2 q((  ( b - t + l ) - i  = q( k - t  

as required. 0 
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Note that  putting w = n - k + t - 1 in Theorem 5 gives us the bound on each 
participant’s share for the case of complete rnultithreshold schemes. 

Corollary6. Let M be a complete ( t ,  k, n)-multithreshold scheme with secret 
size q. Then each participant must have a share of size at least q(iIi). 

We finish this section by considering the remaining case of w-secure (t,  k,n)- 
multithreshold schemes with w 5 t - 1. As mentioned earlier, in this case we do 
not get a bound on an individual participant’s share; instead we get a bound for 
a group of t - w participants. 

Let F be a set of distribution rules for a multisecret sharing scheme de- 
fined on participant set P and let X = (XI,. . . ,xu} E: P U K. Let Sx = 
{(f (XI), . - .  , f (L)) I f E +} and let #(XI.. .%,) = 18x1. 

Result 7 [6]. Let 1 5 t 5 k ,  0 5 w 5 t - 1 and let M be a matrix for a w-secure 
( t ,  k, k)-multithreshold scheme with secret s of size q and participant set P. Let 
X 

Corollary8. Let 1 5 t 5 k 5 n and 0 5 w 5 t - 1. Let M be a matrix for a 
w-secure ( t ,  k, n)-multithreshold scheme with secret site q and participant set F’. 
Let X C P such that 1x1 = t - w. Then npEx IS,l 2 q.  

Proof. Let X C_ P with (XI = t -  w. Let Xi be such that X Xi. The restriction 
of M at (P\Xi) U (K\si) is a w-secure ( t , k , k )  multithreshold scheme and the 

0 

P such that 1x1 = t - w. Then &,EX ISPI 2 q. 

corollary now follows from Result 7. 

Note that when w = t - 1, Theorem 5 and Corollary 8 both give the same 
lower bound q for the participant share size. 

4 Optimal Multithreshold Scheme Constructions 

In this section we discuss some constructions for multithreshold schemes. Let 
1 5 t 5 k 5 n and let 0 5 20 5 n - k + t - 1. We will call a w-secure ( t ,  k ,n) -  
multithreshold scheme with secret size q optimal if one of the following holds: 

1. The size of each participant’s share meets the bound for M(t, k, n, w, q )  given 

2. The share size of each set of t - w participants meets the bound given in 
in Theorem 5 (for t - 1 5 w 5 n - k + t - 1); 

Corollary 8 (for 0 5 w < t - 1). 

4.1 Case t = 1 

Optimal w-secure (1, k, n)-multithreshold schemes with secret size q were con- 
structed in [5] using symmetric polynomials (0 < w < n - k). Such a scheme can 
be found for each prime power q ( q  2 n). In fact, Example 1 was constructed 
using this method. 
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4.2 C a s e t = 2  

We have the following result for the case t = 2: 

Theorem 9 [ll]. Let 2 5 k 5 n and q be a prime power such that q > (:I;) +l. 
Then there exists an optimal complete ( 2 ,  k, n)-multithreshold scheme with secret 
size q. 

4.3 C a s e t = k  

From Theorem 5 it follows that in any optimal w-secure (k, k, n)-multithreshold 
scheme with secret size q each participant holds a share of size q. Since the share 
size is independent of w it is of greatest interest to construct optimal complete 
(1, k, n)-multithreshold schemes. This can be done as follows: 

Theorem 10. Let 1 5 k 5 n and q 2 k .  Then there exists an optimal complete 
( k ,  k, n)-rnultithreshold scheme with secret size q .  

Proof. To construct an optimal complete (k, k,n)-multithreshold scheme with 
secret size q (q 2 k) proceed as follows. Let P = {PI,. . . ,pn}. Let the q" distri- 
bution rules F of the scheme be such that the set F(P)  = { (f(pl), . . . , f(pn)) I 
f E F} is equal to the set { (21,. . . , zn)  I zi E Zq}. Label the k-subsets of P by 
Xi (1 5 i 5 (r)) and let Xi be associated with secret si (1 5 i 5 (3). Then for 
any f E F and i (1 5 i 5 (9) let  f ( s ; )  = CpEXi f(p) (mod g). The rules in 3 
form an optimal complete (k,k,n)-multithreshold scheme with secret size q. 0 

4.4 C a s e k = n  

Optimal complete (t, k, k)-multithreshold schemes with secret size g have been 
studied extensively in the literature (originally in [2, 151). In such a scheme there 
is only one secret and every participant receives a share of size q. These schemes 
are normally referred to as ideal ( t ,  k)-threshold schemes (see [7] or [lo]). In [lo] 
they were shown to be equivalent to a certain class of transversal designs. It is 
known that ideal (t, k)-threshold schemes with secret size q can be constructed 
for all prime powers q 2 k (see for example [2, 151). The case w 5 t - 1 is 
considered in the next subsection. 

4.5 C a s e w s t - 1  

Optimal w-secure ( t ,  k ,  k )  multithreshold schemes with 1 5 w 5 t - 1 have been 
given in [3, 141. These schemes are examples of linear ramp schemes. 

In an optimal w-secure (t, k, n)-multithreshold scheme with k 5 n and w 5 
t - 1, it is not inconsistent with the definition that every set X of t participants 
can reconstruct not just the secrets that correspond to sets Y of size k such that 
X & Y, but in fact a21 of the ( i )  secrets in K. (However, from a more practical 
point of view it would seem unlikely that such a property would be desirable.) 
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Hence, a w-secure ( t ,  n, n)-multithreshold scheme with secret s can be thought 
of as a w-secure (t, k,n)-multithreshold scheme where s is the secret associated 
with every k-set of participants. Thus we can obtain optimal w-secure ( t ,  k ,  n)- 
multithreshold schemes from optimal w-secure ( t ,  n, n)-multithreshold schemes. 
(In fact, a reverse correspondence can also be shown.) 

5 Conclusions 

We have introduced the general concept of a w-secure ( t ,  k ,  n)-multithreshold 
scheme and given a lower bound on the size of share tha t  a participant (or a 
group of participants) in such a scheme must hold. We have exhibited examples 
of optimal multithreshold schemes, tha t  is, schemes which meet this lower bound. 
We note tha t  some authors (for example [5 ,  61) prefer to  define secret sharing 
schemes in information theoretic terms. We have chosen to  use a combinatorial 
model but  we remark tha t  all the  results in this paper can be translated into 
equivalent information theoretic statements, 

The  authors acknowledge their useful discussions with Peter Wild regarding 
some of the  ideas in this paper. 
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