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Abstract. It was shown in [2] that under reasonable assumptions the 
general number f ie ld  sieve (GNFS) is the asymptotically fasteat known 
factoring algorithm. It is, however, not known how this algorithm be- 
haves in practice. In this report we describe practical experience with 
our implementation of the GNFS whose first version was completed in 
January 1993 at the Department of Computer Science at the Universitat 
des Saarlandes. 

1 Introduction 

Factoring rational integers into primes is one of the most important and most dif- 
ficult problems of computational number theory. It was shown in [Z] that  under 
reasonable assumptions the general number field sieve (GNFS) is the asymp- 
totically fastest known factoring algorithm. It is, however, not known how this 
algorithm behaves in practice. In this report we describe practical experience 
with the first version of our implementation of the GNFS. For our implemen- 
tation we used the methods described in [Z], [3], and [7]. In the course of the 
implementation we have found several improvements which we will describe in 
the full version of this paper. In this extendend abstract we restrict ourselves to  
the presentation of a brief sketch of the algorithm and the numerical results. 

2 TheGNFS 

Let n E IN. If one can find two integers x and y with 

x2 G y2 modulo n (1) 

and 5 f f y  modulo n, then gcd(z - y, n) is a non trivial divisor of n. Like many 
other factoring algorithms the GNFS factors n by producing such a pair z, y. This 
is done in the following way: Let f(z) = fo + fi- 2 -I-. . . -l- fd-1- xd-' + zd E E[z] 
be an irreducible polynomial for which there exits m E Z with f (m)  E 0 modulo 
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n. Let p be a zero of f(z). The algorithm determines a non-empty set s of pairs 
(a, b)  of relatively prime integers with the following properties 

X = (a  + bm) = z2 with x E 23 

n ( a - k b p )  = b2 with b E Z[p] 

(2) 

(3) 

€ S  

7 = 
(a ,b )ES  

The map 'p : Z[p] -, Z/nZ, p H m m o d n  is a ring homomorphism. Therefore 
we have xz E ( ~ ( 5 ~ )  'p(6)'modn. If we set y = p(6) then we have found a 
congruence of the form (1) which with high probability yields a factorization of 
n. 

The algorithm can thus be divided into three parts: determining the poly- 
nomial, finding the squares and extracting the square roots. In the remaining 
sections we describe our implementation of those parts and we give numerical 
examples. For background and details we refer to  [2], [3] and [7]. 

3 Determining the polynomial 

The first step of GNFS is to find an irreducible polynomial f(z) E Z[z] of de- 
gree d and a rational integer m, such that f(m) z Omodn. For n 5 1060 we 
use d = 3 and for 10'' < n < we use d = 5. We choose i E Z such that 
for m = 1.31 + i there is an expansion n = md + fd-lmd-' + . . . + h m  + fo 
with -m/2 5 fj < m/2. We determine that expansion and we set f(z) = 
xd + f d - 1 x d - l  + . . . + f l x  + f o .  There are various ways of modifying f. We can, 
for example, replace f by f + '$: c j ( d  - m d - l ) .  It is still an open question 
how an optimal polynomial f can be found. We intend to use our implementation 
of the GNFS to study this question in detail. A few remarkable experimental 
results can be found in section 6. 

4 Finding the squares 

To find the set S of coprime pairs ( q b )  E Z2 satisfying (2) and (3) we use the 
standard sieve which is described in [2] or the lattice sieve which was suggested 
in [7]. 

In both algorithms we must choose two factor bases. The rational factor base 
FR is the set of all rational primes below some bound SR E IR,'. The algebraic 
factor base is the set FA of all degree one prime ideals of Z[p] of norm below 
SA E R>o. The values for SR and SA are chosen according to  experimental 
experience. Each prime in FA is represented by a pair ( p , c p )  where cp is a zero 
of f modulo p .  We also need large prime bounds LR and L A  which are roughly 
100 * SR or 100 - SA, respectively. 
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To apply the standard sieve, we fix bounds A , B  E Z,o on a and b, re- 
spectively. Again those values are chosen according to experimental experience. 
For each b E {1,2,. . . , B }  we determine all a with - A  < a < A such that 
gcd(a,b) = 1, all of the prime factors of a + h except for at  most one factor 
iR(a, b)  belong to FR and all of the prime ideal factors of (a+bp)Z[p] except for 
at most two factors Z ~ , l ( u , b )  and l ~ , Z ( a ,  b)  belong to FA. Also, the extra ratio- 
nal prime factors are called large rational p r i m e s  and they must be below LR. 
Analogously, the extra algebraic prime factors are called large algebraic p r i m e s  
and their norms must be below La. Any such pair (a,  b )  is called a good pair. 
We say that a good pair without large primes is of type fl, if there is a large 
rational prime it is of t ype  p f f .  The definition of the types fpf, fpp ,  ppf and p p p  
is analogous. For a more detailed description of the sieve algorithm see [2]. 

To use the lattice sieve we divide the factor bases into two parts. The set 
F,.,s of smal l  ra t ional  p r i m e s  contains all elements of FR no larger than sR/t  
where t may be chosen between 2 and 10. The set Fr,m of m e d i u m  p r i m e s  is the 
complement of F,.+ in FR. For q . E  Fr,m the set LR, = { (a ,b )  : qla+bm} is a two 
dimensional lattice in Z2. If ( 1 4 , ~ )  is a basis of LR, then one can find good pairs 
(a,  b )  whose small primes are bounded by q by inspecting the vectors cg+ dx for 
c ,d  E Z, -C < c < C ,  0 < d < D where C E and D E R,o are chosen 
according to experimental experience. For any fked d this can be done by a 
sieving procedure which is described in [7]. In this procedure we take advantage 
of the following fact: For p 2 2C and d E (1,. . . , D} there is exactly one c d  

such that p is a divisor of a + brn for ( a ,  b )  = C d g  + dg and -p/2 5 Cd < p / 2 .  
Since c d  = c d - 1  + c1 modp those numbers can be very easily computed. It is 
even possible to determine the interesting values of Cd for which -c < c d  < c 
immediately. This leads to  a significant speed up of the lattice sieve. A similiar 
trick can be applied to  find a + bp which factors up to large primes over FA. 

Once sufficiently many good pairs are found, we determine for each good pair 
(a ,  b)  the decompositions a + bm = l ~ ( a ,  b) - &,EFnpe~(n~b) and ( a  + bp)Z [p ]  = 
IA, l (a ,  b) ' IA,2(a, b )  . n p c p A  where lR (a ,  b ) ,  l a , i ( U ,  b)  and l A J ( a ?  b) also 
may be 1. We also determine a small set FQ of degree one prime ideals of Z/p] 
of norms bigger than L A  and for each Q E FQ we set eQ(a, b )  = 0 if a + bp is a 
square in Z[p]/Q and eg(a, b )  = 1 otherwise. The large primes are handled by 
constructing cycles as discribed in [l] and [S]. By calculating a non trivial lin- 
ear dependency among the vectors ((ep(a, b))p~~R(ep(a,b))~~~A(e~(a, ~ ) ) Q E F ~ )  
over IF2 we determine the subset S of the set of all pairs (a ,  b)  that we are look- 
ing for. As noted in [2] it may be necessary to replace 7 in (3) by ( f ' ( ~ ) ) ~ 7  t o  
guarantee that the square belongs to Zb] rather than to the maximal order of 
the field Q [ p ] .  

5 Finding the square roots 

Suppose we have found the set S of coprime pairs (a, b)  E Z2 satisfying (2) and 
(3). Let x = n(u,a)Es a + h  and let 7 = ( f ' ( ~ ) ) ~  n(a,a)Es a+bp. Extracting the 
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#((a + 6~)’) 
Is’ reduced 

25022 0 
25022 7398 

square root x of X is very simple since we know the prime factorization of X. 
Computing the square root 6 of 7 is, however, quite difficult since the coefficients 
in the representation S = I50 + 61 . p + . . . + I5d-l . pd-l may be very large. In our 
implementation we use the method of Couveignes [3]. He suggests to  determine 
a set I of prime numbers which are inert in Z[p] and for each p E I t o  compute 
6, such that 6; G r rnodp .  This can easily be effected by applying a variant of 
Shanks’ RESSOL algorithm [8]. Since we want to  apply Chinese remaindering 
we must determine the image of the same square root for every p E I. Using 
Newton iteration one can lift any 15, to  a number I!ipgk such that 7 G 6’ modp” 
where the exponent k is chosen according to experimental experience. Chinese 
remaindering yields y = ( ~ ( 6 ) .  
The square 7 can be reduced in size by dividing it by some (a+ 6 p ) 2 ,  where (a, b) 
is a good pair without large primes on the algebraic side. Whether 7 is divisible 
by such a square can be easily checked by inspecting the vectors ( (ep(a ,  € J ) ) P , c F ~ )  
and ( ( e p ( 7 ) ) p e ~ ~ ) .  The following table shows the effect of this reduction when 
used in the factorization of the third number number in section 7. 

P= 

111 = # of max. exp. maximal # of running time 
inert primes * Zk digits of 6, in mips h 

115 256 133777 62.82 
60 I 256 69120 41.01 

6 Quality of the polynomials 

The least well understood part in the GNFS is how to find the best polynomial 
f. In this section we illustrate that the algorithm behaves quite differently for 
different choices of polynomials. Let n = 6809 47738 35969 19453 31142 12277. 
Except for m all the parameters were chosen identically as described in the next 
section. The next two tables show how different polynomials yield a different 
number of good pairs. For the first table we used the m-adic expansion as de- 
scribed in section 3 to  find the polynomial, where m = [n1/3J + i .  From a bigger 
experiment we present the most interesting results. 

* all inert primes about 3 - lo4 
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FA = size of the 
algebraic factor base 

i # good pairs # good pairs of # cycles among 
of type f f f types pf f . . . ppp large primes 

I 

-43467 2514 3240 18966 
-27142 2454 3181 18552 
+27138 2533 2797 16307 

For the second table we modified the polynomial f(z) obtained with m = 
by adding g(x). 

7499 
6998 
5407 

r # good pairs # good pairs of # cycles among 
lFA' of type fff types pff . . .ppp large primes dz) 

- X Z  fmz 2535 6014 33224 20213 
0 2493 4390 24533 11931 

-2' + (m + 1)z - m 2522 3245 18657 7204 
x - m  2533 3080 16856 5620 

- 2 ( 2  - (m - 1 ) ~  - m) 2348 1780 11312 2339 

7 Some full factorizations 

The first numbers we factored with GNFS were 

1. n = 6809 47738 35969 19453 31142 12277 
using f(z) = x3 + x2 - 5524 507992 + 2195 69758, m = 40835 50467 

2. n = 82935 75851 23433 22909 99689 74960 03250 42327 
using f(s) = x3+301 13501 579132+5946118091613,rn = 2024 17135 03301 

3. n = 3488 17079 74401 66635 06963 23211 22160 51028 26088 93989 
using f(z) = z3 + 2x2 + 5 13769 39621 457332 + 2 78963 78107 83197, 
m = 15 16582 05880 38497 

4. n = 9 - 436 22325 30202 01660 81169 50834 54211 2097947919 09269 39307 
24927 93753 70109 41445 21495 39140 12056 5249995711 63723 68586 
19995 36219 76543 09529 71290 

using f(x) = x5 + 9, m = 358 
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All relations were found by Pollard’s lattice sieve algorithm [7]. The most im- 
portant datas of these factorizations are summarized in the following table. 

# digits of n 1 29 I 40 I 49 134 

I factor bases 

5279 22307 

700 2500 

lo5 6 .  lo5 

22291 104729 

2493 9794 

biggest prime of 
the rational factor base 

size of the rational factor base 
bound for the large primes 

on the rational side 
biggest prime p of the pairs (p,cp) 

of the algebraic factor base 

30559 

3300 

lo6 

224737 

19944 I size of the algebraic factor base 

max. exponent for lifting 
# digits of coefficients of the root 

running time in mim hours 

p bigger than large prime bound 

I 

16 64 64 256 - 8000 - 51000 N 69120 ** - 135500 * 
7.5 36 41 484.5 

951161 

75000 

108 

95 1109 

74952 

los 

25 

finding the squares with the lattice sieve 

extracting the square root 

# inert primes [ 150 1 175 I 240 I 105 
size of inert mimes about I 3 - lo4 I 3 - lo4 I 3 .  lo4 I 1 . 1 . 1 0 5  

only one large prime on each side 
with square reduction ** 



165 

The factorizations are 

1. 6809 47738 35969 19453 31142 12277 

2. 82935 75851 23433 22909 99689 74960 03250 42327 

3. 3488 17079 74401 66635 06963 23211 22160 51028 26088 93989 
= 22036 72182 80384 7412085111 * 15828 90061 715978295788099 

4. 436 22325 30202 01660 81169 50834 54211 20979 47919 09269 39307 24927 
93753 70109 41445 21495 39140 12056 52499 95711 6372368586 19995 36219 
765430952971290 

= 1785 89908 07069 * 3 81291 27547 91033 

= 1301 67526 01273 98757.63 71463 07169 01048 08011 

= 2 . 5  * 557 - 11 07553 * 8 20739 81221 45081- 
1 38579 05391 45329 24856 0623663377 62045 74597. 
62 17073 56762 16461 88942 98788 28272 8772085730 54231 32773 87634 
13782 17457 
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