
Comparison of three modular reduction
functions

Antoon Bosselaers, f i n 6 Govaerts and J o a Vandewalle

Katholieke Universiteit Leuven, Laboratorium ESAT,
Kardinaal Meraerlaan 94, B-3001 Heverlee, Belgium.

antoon.bosaelaersQesat.kuleuvan.ac.be

Abstract. Three modular reduction algorithms for large integers are
compared with respect to their performance in portable aoftware: the
classical aIgorithm, Barrett’e algorithm and Montgomery’s algorithm.
These algorithms are a time critical step in the implementation of the
modular exponentiation operation. For each of these aIgorithxm their a g
plication in the modular exponentiation operation is considered. Modular
exponentiation constitutes the basis of many well known and widely used
public key cryptosystems. A fast and portable modular exponentiation
will considerably enhance the speed and applicability of these systems.

1 Introduction

The widely claimed poor performance of public key cryptosystems in portable
software usually results in faster, but non-portable assembly language imple-
mentations. Although they always will remain faster than their portable coun-
terparts, their major drawback is the fact that their applicability is restricted t o
a limited number of computers. This means that the development effort has to
be repeated for a different processor. A way out is to develop portable software
that approaches the speed of an assembly language implementation as closely
as possible. A primary candidate for the high level language is the versatile and
standardized C language.

A basic operation in public key cryptosystems is the modular reduction of
large numbers. An efficient implementation of this operation is the key to high
performance. Three well known algurithms are considered and evaluated with
respect to their software performance. It will be shown that they all have their
Bpecific behavior resulting in a specific field of application. No single algorithm
is able to meet all demands. However a good implementation will leave minor
differences’ in performance between the three algorithms.

In Section 2 the representation of large numbers in our implementation is d i e
cussed. The three reduction algorithms are described and evaluated in Section 3
and their behavior with respect to their argument is considered in Section 4.
Section 5 looks at their use in the modular exponentiation operation. Finally,
the conclusion is formulated in Section 6.

D.R. Stinson (Ed.): Advances in Cryptology - CRYPT0 ’93, LNCS 773, pp. 175-186, 1994.
0 Springer-Verlag Berlin Heidelberg 1994

2 Representation of numbers

The three algorithms for modular reduction are described for use with large
nonnegative integers expressed in radix b notation, where b can be any integer
2 2. Although the descriptions are quite general and unrelated to any particular
computer, the beat choice for 6 will of course be determined by the computer
and the programming language used for the implementation of these algorithms.
In particular, b should be chosen such that multiplications with, divisions by,
and reductions modulo bk (k > 0) are easy. The most obvious choice for 6 will
therefore be one of the programming language’s available integer types, in which
case these three operations are reduced to respectively shifting to the left over
k digits, shifting to the right over k digits (i.e., discarding the least significant k
digits) and discarding all but the least significant k digits. Moreover the larger b
is, the smaller the number of radix 6 operations to perform the same operation,
and hence the faster it will be. On the other hand all multiprecision operations
are performed using a number of primitive single precision operations, one of
which is the multiplication of two one-digit integers giving a two-digit answer.
This means that besides a basic integer type that can represent the values 0
through 6 - 1, we need an integer type that is able to represent the values
0 through (b - 1)2. Since we normally want the ability to add and multiply
concurrently [5, Algorithm 4.3.1M1, we need an integer type that is able to
represent the values 0 through b2 - 1, i.e., a type which is at least twice as long
as the basic type.

In the sequel let m be the modulus

k - 1

m = mjbi , 0 < mk-1 < b and 0 5 < b , for i = 0,1,. , ., k - 2 ,
i s 0

and z 2 m be the number to be reduced modulo m

1-1
z = z i b i , 0 4 21-1 < b and 0 5 z, c b , for i = 0, 1, . . . , 1 - 2 ,

i=O

both expressed in radix b notation.

3 Comparative Descriptions and Evaluation

The three algorithms to compute z mod m. are stated in terms of addition, sub-
traction and multiplication of both single and multiple precision integers, as
well as single precision division, division by a power of b and reduction mod-
ulo a power of 6. All algorithms require a precalculation, that depends only on
the modulus, and hence has to be performed once for a given modulus m. Bar-
rett’s and Montgomery’s methods require that the argument z is smaller than
respectively bZk and mbk, where k = Ilog, mJ + 1. If, aa is mostly the case,
these algorithms are used to reduce the product of two integers smaller than

177

the modulus, this restriction will have no impact on their applicability, for then
2 < rn2 < mbk < bab. The classical algorithm on the other hand imposes no re-
striction on the size o f t and can easily be adapted to a general purpose division
algorithm giving both quotient and remainder.

The classical algorithm is a formalization of the ordinary 1-k step pencil-and-
paper method, each step of which is the division of a (k + 1)-digit number z by
the k-digit divisor m, yielding the one-digit quotient q and the k-digit remainder
r. Each remainder r is less than m, so that it can be combined with the next
digit of the dividend into the (E + 1)-digit number rl + (next digit of dividend)
to be used as the new t in the next step.

The formalization by D. K n d h [5 , Algorithm 4.3.1AI consists in estimating
the quotient digit q as accurately as possible. Dividing the two most significant
digits of z by rnk-1 will result in an estimate that is never too small and, if
mk-1 1 [SJ, at most two in error. Using an additional digit of both z and rn
(i.e., using the three most significant digits of z and the two most significant
digits of rn) this estimate can be made almost always correct, and at most one
in error (an event occurring with probability FZ 2/b). The pseudocode of this
algorithm is given in Algorithm 1.

Algorithm 1. Classical Algorithm (rnk-1 2 L i J)

b In general the normalization m* = [G J m will ensure that 2 [fj.
On a binary computer b will be a power of 2, and hence the normalization process
can be implemented more efficiently as a shift over so many bits to the left as
is necessary to make the most significant bit of the most significant digit of m
equal to 1 . At the end the correct remainder r is obtained by applying to it the

178

inverse of the normalization on m, i.e., by dividing it by [&J or by shifting
it to the right over the same number of bits 89 m was shifted over to the left
during normalization.

A slightly more involved kind of normalization [7, 101 fixes one or more of the
modulus' most significant digits in such a way that the most significant digit of
z can be used as a first estimate for q , resulting in a faster reduction. However
this normalization will increase the length of a general modulus by at least one
digit, and hence all intermediate results of a modular exponentiation as well.
First experiments seem to indicate that what is saved during a modular expe
nentiation in the modular reductions, ie lost again in additional multiplications.
It is aa yet unclear whether further optimalization will result in a faster modular
exponentiation.

P. Burreti [l] introduced the idea of estimating the quotient t div m with
operations that either are less expensive in time than a multiprecision division by
rn (viz., 2 divisions by a power of b and a partial multiprecision multiplication),
or can be done as a precalculation for a given m (viz., ji = b Z k divm, i.e., p
is a scaled estimate of the modulus' reciprocal). The estimate $ of x div m is
obtained by replacing the floating point divisions in q = l (. /b2k-- ') (b2k/m)/b 'J
by integer divisions:

r j = ((a! div b2"')p) div bt .
This estimate will never be too large and, if it < t 5 2 t , the error is at most two:

x div m - 2 5 4 5 2 div m , for k 4 t 5 2k.

It can be shown that for about 90% of the values of x < m2 and m the initial
value of Q will be equal to x div m and only in 1% of cases Q will be two in error.
The only influence of the t least significant digits of the product (t div bZk-')! on
the most significant part of this product is the carry from position t to position
t + 1. This carry can be accurately estimated by only calculating the digits at
position t - 1 and t , which has the advantage that the calculation of the t - 2
least significant digits of the product is avoided. The resulting quotient is never
too large and almost always the same as 8, and, if b > 1 - k, at most one in error.
Moreover the number of single precision multiplications and the resulting error
are more or less independent of t . The best choice for t , resulting in the least
single precision multiplications and the smallest maximal error, is k + 1, which
also was Barrett's original choice. The calculation of # can be speeded up even
slightly more by normalizing m, such that mk-1 2 [$J. This way 1 - k + 1 single
precision multiplications can be transformed into aa many additions.

An estimate i; for x mod rn is then given by i. = x - tm , or, as i < bkf' (if
tJ > 21, by

i = (z mod bk+I - (im) mod bk++') mod b k + ' ,

which means that once again only a partial multiprecision multiplication is
needed. At most two further subtractions of m are required to obtain the correct
remainder. Barrett's algorithm can therefore be implemented according to the
pseudocode of Algorithm 2.

179

q = ((x div b L - l) p) div bL+' ;
z = x mod bk+l - (qm) mod bL+';
i f (z < O) then

z = x + b k + l ;
while (z 2 m) do

x = x - m ;

Algorithm 2. Barrett's Algorithm (p = bfk div m)

By representing the residue classes modulo rn in a nonstandard way, Mont-
gomery's method [S] replaces a division by m with a multiplication followed by
a division by a power of 6 . This operation will be called Montgomery reduction.

Let R > rn be an integer relatively prime to m such that computations mod-
ulo R are easy to process: R = 6'. Notice that the condition gcd(m, b) = 1
means that this method can not be used for all moduli. In case b is a power of 2,
it simply means that rn should be odd. The m-residue with respect to R of an
integer x < m is defined as z R mod m. The set {tR mod m 10 5 z < rn} clearly
forms a complete residue system. The Montgomery reduction of 3: is defined as
XR-' mod m, where R-' is the inverse of R modulo m, and is the inverse opera-
tion of the m-residue transformation. It can be shorn that the multiplication of
two rn-residues followed by Montgomery reduction is isomorphic to the ordinary
modular multiplication.

The rationale behind the m-residue transformation is the ability to perform
a Montgomery reduction 2R-l mod rn for 0 5 z c Rm in almost the same time
u a multiplication. This is based on the following theorem:

Theorem 1 P. Montgomery. Let m' = -m-I mod R. Ifgcd(m, R) = 1, then
for all integers 2, (z + tm) /R is an integer satisfying

x + t m
R

-- 1 x R - l (modm)

where t = xm' mod R.

It can easily be verified that the estimate P = (z + tm)/R for zR-l mod rn is
never too small and the error is at most one. This means that a Montgomery
reduction is not more expensive than two multiplications, and one can do even
better: almost twice as fast. Hereto, it is sufficient to observe [2] that the basic
idea of Montgomery's Theorem is to make x a multiple of R by adding multiples
of m. Instead of computing all o f t at once, one can compute one digit ti at a time,
add timb' to z, and repeat. This change allows to compute mb = -m;' mod b
instead of m'. It turns out to be a generalization of Hensel's odd division for
computing inverses of "2-adic" numbers (introduced by K. Hensel around the

180

turn of the century, see e.g., [3]) to a representation using b-ary numbers that
have gcd(m0, b) = 1 [9].

A Montgomery modular reduction can be implemented according to the pseu-
docode of Algorithm 3. If z is the product of two m-residues, the result is the
m-residue of the remainder, and the remainder itself is obtained by applying one
additional Montgomery reduction. However both the initial m-residue transfor-
mation of the argument(s) and the final inverse transformation (Montgomery
reduction) are only necessary at the beginning, respectively the end of an oper-
ation using Montgomery reduction (e.g. a modular exponentiation).

for (i = O ; i < k ; it+) do {
ti = (xi . mb) mod b ;
x = x + timb’;

1
x = x div bk ;
i f (x > r n) then

t = z - m ;

Algorithm 3. Montgomery’s Algorithm (rnb = -mg’ mod b , Hensel’s bary
division)

An indication of the attainable performance of the different algorithms will
be given by the number of single precision multiplications and divisions necessary
to reduce an argument twice as long as the modulus (I = 2k). This approach
is justified by the fact that a multiplication and a division are the most time
consuming operations in the inner loops of all three algorithms, with respect
to which the others are negligible. The number of multiplications and divisions
in Table 1 are only for the reduction operation, i.e., they do not include the
multiplications and divisions of the precalculation, the argument transformation,
and the postcalculation. Our reference operation is the multiplication of two k-
digit numb ers.

Table 1 indicates that if only the reduction Operation is considered (i.e., with-
out the precalculations, argument transformations, and postcalculations) and for
arguments twice the length of the modulus, Montgomery’s algorithm (only for
moduli rn for which gcd(rn0, b) = 1) is clearly faster than both Barrett’s and the
classical one and almost as fast as a multiplication. Barrett’s and the classical
algorithm will be almost equally fast, with a slight advantage for Barrett.

These observations are confirmed by a software implementation of these al-
gorithms, see Table 2. The implementation is written in ANSI C [4] and hence
should be portable to any computer for which an implementation of the ANSI c
standard exists. All figures in this article are obtained on a 33 MHz 80386 based

181

Algorithm
Multiplications
Divisions
Precalculation
Arg. transformation
Postcalculation
Restrictions

Classical Barrett Montgomery Multiplication ’
k(k + 2.5) k(k + 4) k(k + 1) k a

k 0 0 0
Normalization b2k div m -m;’ mod b None

None None m-residue None
Unnormalization None Reduction None

None z < bZk z < mbk None

k
8

16
32
48
64

PC using the 32-bit compiler WATCOM C/386 9.0. The radix C is equal to 216,
which means that Montgomery’s algorithm is only applicable to odd moduli.

However an operation using Barrett’s or Montgomery’s modular reduction
methods will only be faster than the same operation using the classical modular
reduction if the pre- and postcalculations and the rn-residue transformation (only
for Montgomery) are subsequently compensated for by enough (faster) modular
reductions. An example of such an operation is modular exponentiation. This
also means that for a single modular reduction the classical algorithm is the
obvious choice, as the pre- and postcalculation only involve a very fast and
straightforward normalization process.

Length of Times in mseconds
rn in bits Classical Barrett Montgomery Multiplication

128 0.278 0.312 0.205 0.182
256 0.870 0.871 0.668 0.632
512 3.05 2.84 2.43 2.36
768 6.56 5.96 5.33 5.19
1024 11.39 10.23 9.33 9.12

4 Behavior w.r.t. argument

The execution time for the three reduction functions depends in a different way
on the length of the argument. The time for a reduction using the classical al-
gorithm or Barrett’s method will vary linearly between their maximum value
(for an argument twice as long as the modulus) and almost zero (for an ar-
gument aa long as the modulus). For arguments smaller than the modulus no
reduction takes place, as they are already reduced. On the other hand, the t h e

182

for a reduction using Montgomery’s method will be independent of the length
of the argument. This is a consequence of the fact that in all cases, whatever
the value of the argument, a modular multiplication by R’l takes place. This
means that both the classical algorithm and Barrett’s method will be faster than
Montgomery’s method below a certain length of the argument. This is illustrated
in Figure 1 for a 512-bit modulus. However in most caes the argument will be
close to twice the length of the modulus, as it normally is the product of two
values close in length to that of the modulus.

Time
(msec)

3.0

2.5

2.0

1.5

1.0

0.5

0

Length (bits)

Fig. 1. Typical behavior of the three reduction functions in reducing a number UP t o
twice the length of the modulus (6 = 21°, length of the modulus = 512 bits, on a 33
MHz 80386 baaed PC with WATCOM C/386 9.0).

In addition, all the modular reduction functions have, for a given length,
input values for which they perform faster than average in reducing them. For
some of these inputs the gain in speed can be quite substantial. Since these input
values are different for each of the reduction functions, none of the functions is
the fastest for all inputs of a given length.

Montgomery’s method will be faster than average in reducing m-residua
with consecutive zeroes in its least significant digit positions. The gain in speed
will be directly proportional to the number of zero digits. The same applies to
arguments that produce, after n steps (0 < n < k) in Montgomery’s algorithm,
a number of consecutive zero digits in the intermediate value 2 . For example,

183

the argument
n-1

x = hbk + bk - (c timb') mod bk ,
i = O

where
0 < h c bl-k
ti = [yi(-mG1 mod b)) mod b 0 5 yj < b

produces after n steps k - n consecutive zeroes, with once again a speed gain
directly proportional to the number of consecutive zero digits.

Barrett'8 method will be faster than average, and possibly faster than Mont-
gomery's method, for an argument z with zero digits among its k + 1 most
significant digits or that produces an approximation i of z div m containing
zero digits. An example of the latter will be encountered in the next paragraph.

3.0

2.5

2.0 Time
(msec)

1.5

1.0

0.5

0

0 Classical + Barrett
0 Montgomery

0 4 8 12 16 20 24 28 32

Steps n

Fig.2. Behavior of the three reduction functions in reducing the argument
2 = grnb"" + h, where 0 < n 5 k, 0 < g < bn and 0 5 h < m for the case
k = 32 (b = 2Ie , length of the modulus = 512 bits, on a 33 MHz 80386 based PC with
WATCOM C/386 9.0).

The central part of the classical algorithm is the (I - k)-fold loop, in each
iteration of which a digit of the quotient x div m is determined. Therefore the
classical algorithm will be faster than average, and possibly faster than Mont-
gomery's and Barrett's method, for an argument that produces a quotient with

184

a number of zero digits. For example, the argument

z = gmbl-k-n + h , k < l < 2 k
O < n < l - k
O < g < b "
O < h < m ,

produces a quotient q = gb'-'-" containing 1 - k - n zero digits in its least
significant positions, and hence only n steps of the central loop will be executed.
As the time for a reduction using the classical algorithm is clearly directly pro-
portional to the number of non-void steps in the central loop, the reduction of
the above argument will be considerably faster than average. Moreover, since the
actual quotient contains 1 - k - n zero digits, the reduction of this argument us-
ing Barrett's method will be faster than average &s well: in 90% of the cases the
approximation @ will be equal to q, and hence the multiplication rjm mod bktl
will consist of n steps only instead of the 1 - k steps in the average case. This
means that in this case the classical algorithm will be faster than Barrett's
method, which in turn will be faster than Montgomery's method. This situation
is illustrated in Figure 2 for the case I = 2k = 64.

5 Use in modular exponentiation

The calculation of ae mod m in our implementation uses an (optimized) pa ry
generalization of the standard binary square and multiply method, in which a
table of small powers of Q is used. For p = 16 this reduces the mean number
of modular multiplications to about the number of bits in e (compared to
f for binary square and multiply). The number of squarings in both methods
is the same and equal to the number of bits in e. Each of the three reduction
algorithms can be used in this implementation, resulting in three modular ex-
ponentiation functions. The speed differences between the reduction functions
will consequently be reflected in speed differences between the exponentiation
functions. For a full length exponentiation (length of argument = length of expo-
nent = length of modulus) the Montgomery based exponentiation will be slightly
faster than the Barrett based exponentiation, in turn being slightly faster than
the classical one, see Table 3

The behavior of the reduction functions with respect to the size of the ar-
gument will also be reflected in the behavior of the exponentiation functions.
The exponentiation of an argument Q smaller in length than the modulus will
for the classical and Barrett's algorithm result in a table of small powers of Q

containing values which are still smaller in length than the modulus. Hence each
multiplication by an entry of this table will yield a product that is shorter than
twice the length of the modulus. The subsequent reduction will be faster than
average, as the execution time of the classical and Barrett's algorithm depends
linearly on the length of its argument. For these two algorithms the exponen-
tiation of an argument smaller in length than the modulus will thus be faster
than an exponentiation of a full length argument. Moreover for small enough

185

Length of
rn in bits

128
256
512
768
1024

Times in seconds
Classical Barrett Montgomery
0.072 0.078 0.062
0.430 0.430 0.366
2.95 2.83 2.55
9.46 8.90 8.28
21.74 20.30 19.14

arguments the exponentiation using these algorithms will be even faster than
the exponentiation using Montgomery's modular reduction, which is explained
by the fact that for these arguments not only the products but also some squares
will be shorter than twice the length of the modulus. This is illustrated in Fig-
ure 3. Barrett based exponentiation is therefore the best choice to perform Rabin
prirndity tests [8] with small bases.

3

2.8

2.6

2.4

2.2 2 0 1 32 64 128 256 384 512

Length of argument (bits)

Fig. 3. Typical behavior of the exponentiation functions based on the three reduction
functions in exponentiating a number up to the length of the modulus (b = 218, length
of modulus and exponent = 512 bits, on a 33 MHz 80386 based PC with WATCOM
C/386 9.0).

186

6 Conclusion

A theoretical and practical comparison has been made of three algorithms for
the reduction of large numbers. It has been shown that in a good portable
implementation the three algorithms are quite close to each other in performance.
The classical algorithm is the best choice for single modular reductions. Modular
exponentiation based on Barrett’s algorithm is superior to the others for small
arguments. For general modular exponentiations the exponentiation based on
Montgomery’s algorithm has the best performance.

References

1. P.D. Barrett, “Implementing the Riveat ShaInir and Adleman public key encryp
tion algorithm on a standard digital signal processor,” Advances in Cryptology,
Proc. Crypto’86, LNCS 263, A.M. Odlyzko, Ed., Springer-Verlag, 1987, pp. 311-
323.

2. S.R. DUBS& and B.S. Kaliski, “A cryptographic library for the Motorola
DSP56000,” Advancer in Cryptology, Proc. Eurocrypt’PO, LNCS 473, I.B. Dam-
g%d, Ed., Springer-Verlag, 1991, pp. 230-244.

3. K. Hensel, Theorie der algebrairchen Zahlen, Leipzig, 1908.
4. “American National Standard for Ptvgmmming Languages-C,)’ ISO/IEC Stan-

dard 9899:1990, International Standards Organization, Geneva, 1990.
5. D.E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Alga-

n’thms, 2nd Edition, Addiaon-Wesley, Reading, Mass., 1981.
6. P.L. Montgomery, “Modular multiplication without trial division,” Mathematic8 of

Computation, vol. 44, 1985, pp, 519-521.
7. J.-J. Quisquater, presentation at the rump session of Eurocrypt’SO.
8. M.O. Rabin, “Probabilistic algorithms for testing primality,” 1. of Number Theory,

9. M. Shand and J. Vdemin, “Fast Implementations of RSA cryptography,” Pro-
ceedings of the 11th IEEE Symposium on Computer Arithmetic, IEEE Computer
Soaety Press, Los Alamitos, CA, 1993, pp. 252-259.

Advance8 in
Cryptology, Proc. Crypto’91, LNCS 576, J. Feigenbaum, Ed., Springer-Verlag,

VO~. 12, 1980, pp. 128-128.

10. C.D. Walter, “Faster modular multiplication by operand scaling,”

1992, pp. 313-323.

	Comparison of three modular reductionfunctions
	1 Introduction
	2 Representation of numbers
	3 Comparative Descriptions and Evaluation
	4 Behavior w.r.t. argument
	5 Use in modular exponentiation
	6 Conclusion
	References

