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Abstract.  Zero-knowledge proofs were introduced in 1985, in a paper 
by Goldwasser, Micali and Rackoff ([6]). Their practical significance was 
soon demonstrated in the work of Fiat and Shamir ([4]), who turned 
zero-knowledge proofs of quadratic residuosity into efficient means of es- 
tablishing user identities. Still, as is almost always the case in public-key 
cryptography, the Fiat-Shamir scheme relied on arithmetic operations on 
larep niimhws. Tn 1989, there were two attempts to build identification 
protocols that only use simple operations (see [U, lo]). One appeared in 
the EUROCRYPT proceedings and relies on the intractability of some 
coding problems, the other waa presented at the CRYPTO rump session 
and depends on the so-called Permuted Kernel problem (PKP). Unfor- 
tunately, the first of the schemes wati uot really practical. In the prcscnt 
paper, we propose a new identification scheme, based on error-correcting 
codes, which is zero-knowledge and is of practical value. Furthermore, 
we describe several variants, including one which has an ident i ty  based 
character. The security of our scheme dependson the hardness of decod- 
ing a word of given syndrome w.r.t. some binary linear error-correcting 
code. 

1 The signature scheme 

Sincc thc nppcam.nce of public-key cryptography, basically all practical schemes 
have been based on hard problems from number the0 ry. This has remained true 
with zero-knowledge proofs, introduced in 1985, in A paper by Goldwasser. Mi- 
cali and Rackoff ([S]) and whose practical significance waa soon demonstrated 
in the work of Fiat and Shamir (141). In 1989, there were two attempts to build 
identification protocols that  only use simple operations (see [ll, lo]). One relied 
on the intractability of some coding problems, the other on the so-called Per- 
muted Kernel problem (PKP). Unfortunately, the h t  of the schemes was not 
really practical. 

In the present paper, we propose a new identification scheme, based on 
the syndrome decoding problem for error-correcting codes (SD), which is zero- 
knowledge and seems of truly practical value. The proposed scheme uses a fued 
(n-k)-matrix H over the two-element field. This matrix is common to all users 
and is originally built randomly. Thus, couvidered ati a parity-check m a t h ,  it 
should provide a linear binary code with a good correcting power. 
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Any user receives a secret key s which is an n-bit word with a prescribed 
number p of 1’s. This prescribed number p is also part of the system. The public 
identification is computed as 

i = H ( s )  

The identification scheme relies heavily on the technical notion of a commit- 
ment. If u is an sequence of bits, a commitment for u is the image of u via some 
cryptographic hash function. A commitment will be used as a one-way function: 
in order to disclose it, one announces the original sequence from which it was 
built. Once this is done, anyone can check the correctness of the commitment. 

We now describe the basic interactive zero-knowledge protocol that enables 
any user (which we will call the prover as usual) to identify himself to another 
one (which we call the verifier). The protocol includes r rounds, each of these 
being performed as follows: 

1. The prover picks a random n-bit word y together with a random permutation 
cr of the integers { 1 9 . . n} and sends commitments cl, c2, c3 respectively for 
(a, H(y)),  (y.u) and ((y@s).cr) t o  theverifier. Note that (,) denotes the action 
of the hash function on the concatenation of all the bits of information of its 
arguments. A permutation c is being considered in this setting as a vector 
of bits which encodes it; also note that y.o refers to the image of y under 
permutation u. 

2. The verifier sends a random element b of (0, 1,2}. 
3. If b is 0, the prover reveals y and 0. If b is 1, the prover reveals y @ s and a. 

Finally, if b equals 2, the prover discloses y.u and S.U.  

4. If b equals 0, the verifier checks that commitments c1 and c2, which were 
disclosed in step 2, have been computed honestly. 
If b equals 1, the verifier checks that commitments c1 and c3, were correct: 
note that u is known from step 3 and that H(y) can be recovered from 
H ( y  @ s) by the equation 

H(y) = H(y el 3) @ 2 

wher i is the user’s public key. 
Now, if b is 2, the verifier checks commitments c2 and c3 and the property 
that the weight of s,u has the prescribed value p .  

The number r of consecutive rounds depends on the required level of security 
and will be discussed further on as well as the values of the parameters n, k , p .  

2 Security of the scheme 

Of course, the security of the scheme relies on the difficulty of inverting the 
function 

s ----) H ( s )  
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when its arguments are restricted to valid secret keys. In order to give evidence of 
this difficulty, let us recall from [l] that it is NP-complete to determine whether 
a code has a word s of weight p whose image is a given k-bit word i. Let us 
also observe that, if p is small enough, finding s is exactly equivalent to finding 
the codeword w minimizing the weight of t @ w, when an element t of A-'(i) is 
chosen. But this is the problem of decoding unstructured codes which is currently 
believed to  be unsolvable. Algorithms known for this problem (such as those 
described in [7, 121) have a computing time that grows exponentially, A correct 
asymptotic evaluation of those algorithms has been recently given in [2] and 
confirmed by experiments in moderate sizes. Thus, as is the case for factoring, 
it is possible to state an intractability assumption for the Syndrome Decoding 
Problem, upon which the security of our scheme rests. Several versions of this 
assumption can be given, depending on the underlying model of security: for 
example, one may claim that no polynomial time probabilistic algorithm that 
takes as an input the parity check matrix H of an (n, n - l c )  code, together with 
a binary k-bit vector i, can output the minimum-weight solution of the equation 
H ( s )  = i, with a non-negligible probability of success and a for a significant part 
of the inputs that correspond to a ratio k/n lying in a fixed interval. As usual, 
the precise formulation of these intractability assumptions is rather cumbersome: 
we keep it for the final version of our paper. 

In order t o  counterfeit a given signature without knowing the secret key, 
various strategies can be used. 

- Having only y and c ready for the verifier's query and replacing the unknown 
s by some arbitrary vector t of weight p ,  In this case, the false prover hopes 
that b is 0 or 2 and the probability of success is (2/3)', where T is the number 
of rounds. A similar strategy can be defined with y @ s in place of y. 

- Having both y and y @ t ready where t is some element such that H ( t )  = i, 
distinct from s and whose weight is not p .  This yields the same probability 
of success. 

It is fairly clear that shifting beetween one strategy to another has also the 
same probability of success. Furthermore, it can be proven formally that any 
probabilistic interactive algorithm that is accepted by the verifier with a prob- 
ability of success that is significantly above (2/3)r can be turned into another 
that  discloses the secret key or else outputs collisions for the cryptographic hash 
functions used for commitments. This is along the lines of the proof of theorem 3 
of [5]  and will appear in the full paper. Thus, if secure cryptographic hash func- 
tions do exist and if the intractability assumption for the Syndrome Decoding 
Problem holds, our system actually provides a proper proof of knowledge. 

It can also be proved formally that the scheme is zero-knowledge. We will 
only give a brief hint. As we observed above, anyone can be ready to answer 
two queries among the three possible ones at each round. Hence, by using the 
standard idea of resettable simulation (see IS]>, one can devise a polynomial-time 
simulation algorithm that mimics the fair communication between the prover 
and the verifier in expected time 0 ( 2 / 3 . r ) .  Speaking more informally, the only 
information that comes out of a round is either a random word, y or y @ s 
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together with a random permutation, or else one random word y together with 
another random word of fixed weight p .  Therefore, i t  is virtually impossible t o  
undertake any statistical analysis that  might reveal s .  

We now discuss the size of the various parameters. Although a large variety 
of choices are opened, we recommend that  n equals 2k. Thus possible sizes are: 

- n = 512, k = 256 
- n = 1024, k = 512 

As for the value of p, we observe that, although it is tempting t o  lower it, this 
would be rather dangerous: using the arguments of [12], one can see tha t  secret 
keys of small weight (e.g. p = 20) will presumably be found, We recommend that  
p is chosen slightly below the value given by the so-called Warshamov Gilbert 
bound (IS]), which provides a theoretical limit value for the minimal weight d of 
a (n, k) random code, namely: 

d k 
n n 
- = &(-) 

where Hz is the entropy function defined by: 

H2 = -zlog,(z) - (1 - ~)logz(l- Z) 

When n is 2k, d is approximately 0.l ln and values ofp corresponding to the three 
possible data  mentionned above are about 56 in the first case and 110 in the 
second. From the estimations of [2], the workfactor for the known algorithms 
that might reveal the secret is above O(@) where D is about 1.18 for the 
chosen values. This yields a value of 2'l for k = 256, which can be considered aa 
unfeasible, especially as this is an estimate of a work factor, which means that  
the constant under the b i g 0  notation is fairly large. 

3 Performances of the scheme. 

We will restrict ourselves to  various remarks. 

1. It might be thought that  the proposed scheme requires a large amount of 
memory. THis is not accurate: on one hand, because the operations to  per- 
form are very simple, they can be implemented in hardware in a quite efficient 
way; on the other hand, if the scheme is implemented, partially or totally, 
in software, it is not neccessary to store all of H .  One can only store words 
corresponding to  some chosen locations and extend these by a fixed software 
random number generator. 

2. The communication complexity of the protocol is comparable to  what it is 
in the Fiat-Shamir scheme. If we assume that  permutations come from a a 
seed of of 120 bits via a pseudo-random generator and that  hash values are 
64 bits long, which is perfectly acceptable from a security point of view, we 
obtain an average number of bits per round which is close to  950 bits when 
n = 512. Using a trick that  saves space for sending s.u, this can be lowered 
to  approximately 860 bits. 
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3. The security of the scheme can be increased by taking n, k and p larger. The 
figures n = 512, k = 256 are to  be considered as a minimum. 

4. The heaviest part  of the computing load of the prover (which is usually a 
portable device with a limited computing power) is the computation of B ( y ) ,  
which is done in step 1. This load can be drastically reduced by extending 
the protocol to  a 5-pass version which will be discussed in the next section 

5 .  Considering that  the probability of any cheating strategy is bounded above 
by ( 2 / 3 ) r ,  where T is the number of rounds, we see that the basic protocol 
has to be repeated 35 times in order to  achieve a level of security of lo-’. A 
key difference between the proposed schemes and previous proposals is the 
fact that  a single round offers only security 1/3 instead of 1/2. There is a 
variant of our protocol tha t  achieves security 1/2. It will be discussed further 
on in this paper 

6. As is the case for Shamir’s PKP, our scheme is not identity based. This 
means that public keys have to  be certified by the issuing authority. We will 
consider below a variant of this scheme with an identity-based character. 

4 A variant that minimizes the computing load. 

In order to  minimize the computing load, we introduce a 5-pass variant. this 
variant depends on a new parameter q. 

Step 1 is the same except that  commitment c1 is replaced by (0). Thus H(y) 
is not computed at this stage. 

After step 1, the verifier sends back a choice of g indices from { 1 - * * k} (these 
refer to  a choice of q rows of the matrix R). 

The prover answers by sending the list of bits b l ,  - a  , b, corresponding to  the 
selected indices of the  vector H(y). 

The rest of the protocol is similar (with obvious changes for the checking 
step 6). 

Of course this opens up new strategies for cheating: basically, one will t ry  to  
have both y and y @ t ready where t is some element of weight p such that B(t) 
differs from i on a small number of bits, say h. This will increase the probability 
of success by an amount which is close to i(1- i)‘. In the case n = 512, k = 256, 
p = 56, q = 64, h = 15, this extra amount is roughly 0.007 and the loss can be 
compensated by adding only one extra round of the protocol. 

Of course, the new strategy becomes more and more successful as h decreases; 
for example, making h = 4 and keeping all other figures unchanged increases the 
probability of cheating successfully to  0.78. But it can be shown that finding a t 
as above is equivalent t o  finding a word s’ of weight at most p + h with a given 
syndrome H ( d )  = i and it is believed that, when h is very small, this remains 
unfeasable. Of course, many other trade-offs between n, k , p ,  h, q are possible. 
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5 A variant that minimizes the number of rounds. 

In this variant, the secret key s is replaced by a simplex code generated by 
$1,. a ,  sm . Recall that a simplex code of dimension m has all its non zero 
codewords of weight 2m-1 (see [9]). It is easy to construct such a code with 
length 2" - 1 and to extend the length to  any larger value n. The corresponding 
public key is the sequence H ( s l ) ,  . - - , H(sm) . 

It is unknown whether or not it is easier t o  recover the family of secret vectors 
than to recover a single one. As a set of minimal values, we recommend m = 7 
together with n = 576 and k = 288. This ensures consistency with our previous 
estimat ea. 

We now describe one 5-pass round of a protocol that achieves identification. 

1. The prover picks a random n-bit word y together with a random permutation 
(T of the integers { l . - . n )  and sends commitments cl,cz respectively for 
(a, H(y)), (y.r, s1.a, - .  , sm.a) to  the verifier. 

2. The verifier sends a random binary vector bl , . - , b,. 
3. The prover computes 

on 

z = (y 63 @ b j S j ) . ( T  
j=1 

and sends 2: to the verifier 
4. The verifier responds with a one bit challenge b. 
5. If b is 0, the prover reveals a. If b is 1, the prover discloses y.o as well as the 

full sequence $1 ,c, 9 ' - , sm.c. 
6. If b equals 0, the verifier checks that commitment c1 has been computed 

honestly.Note that H ( g )  can be recovered from H(x.a- ' ) ,  the sequence of 
public keys and the binary vector issued at step 2. 
If b equals 1, the verifier checks that commitment c2, was correct, that the 
computation of t. is consistent and that $ 1 ,  * * ,sm actually form a simplex 
code of the required weight. 

This basic round can be repeated and it can be shown that the probability of 
success of a single round, when no information about the secret keys is known, 
is at most q, which is essentially 1/2. On the other hand, it is clear that 
the communication complexity is worse than in the single-key case. 

6 An identity based version. 

One attractive feature of the Fiat-Shamir scheme is that the public key can 
be derived from the user's identity, thus avoiding the need to  link both by some 
signature from the issuing authority. Neither Shamir's PKP scheme nor our basic 
scheme have this feature. We now investigate various modifications that can turn 
our scheme into an identity-based scheme. 



19 

A first possibility is t o  use a set of t simplex codes of dimension m. If 
s1, - , sm is the first of these codes, then m bits can define a specific key 

6 bjsj 
j=1 

and therefore, assuming that  the identity of a user is given by tm bits, one can 
define t secret keys for each user. Now, these secret keys can be used randomly to  
perform identification. The  verifier has t o  store tm vectors of k bits (the images 
of the basis vectors of the codes), which is much less than a full directory of 
users. We suggest m = 7 t = 6 as a reasonable implementation. 

The other possibility we describe is a bit more intricate. It uses a “master 
code” consisting of t vectors s1?. - ? st whose one-bits only cover a subset T of 
the possible n locations. Given the identity of a user as a sequence of t bits 
el ,  - * - , et it is easy, by Gaussian elimination, to find a linear combination s of 
the sj’s such that  

t 

j=1 

and whose weight p is approximately IT] - t / 2 .  This will be the secret key of 
the user, computed by the issuing authority. The security of this variant is more 
difficult to analyze. Typically, the existence of the master code implies that  some 
code that can de defined from the public data has a vector with a small number 
of ones located within the (unknown) set T. The dimensions should be designed 
in order that  the weight of this vector is large enough. We suggest, as an example, 
t = 56, p = 95, n = 864, k = 432. 

7 An analogous scheme based on modular knapsacks. 

In this section, we briefly mention an analogous scheme that can be devised by 
replacing the (0, 1)-matrix H by a matrix over a finite field with an extremely 
small number of elements (typically 3, 5 or 7). In this situation, the weight 
constraint is replaced by the constraint that the secret solution s to the equa- 
tion H ( s )  = i consists entirely of zeros and ones. Thus the underlying difficult 
problem is a modular knapsack. Although it is known that knapsacks can be 
attacked by methods based on lattice reduction (see [8, 3]), it is clear also tha t  
these methods do not apply to  the modular case, at least when the modulus m 
is very small. Possible values for the scheme are (with the same notations as 
above) 

- n = 196, k = 128, m = 3 
- n = 384, k = 256, m = 3 
- n = 128, k = 64, m = 5 
- n = 192, k = 96, m = 5 
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One round of the protocol is performed as follows: 

1. The prover picks a rar,dom vector y with coefficients from the m-element 
field, together with a random permutation u of the integers (1.. - n} and 
sends commitmentscl,c2, cg respectively for (r~,H(y)), (y.r~) and ((y$s).v). 

2. The verifier sends a random element b of {0,1,2}. 
3. If b is 0, the prover reveals y and r ~ .  If b is 1, the prover reveals y + s mod m 

and u. Finally, if b equals 2, the prover discloses y.v and S.U.  

4. The verifier makes the obvious checks. 

8 Conclusion 

We have defined a new practical identification scheme based on the syndrome 
decoding problem (SD). We have also described several variants of this scheme. 
The scheme only uses very simple operations and thus widens the range of tech- 
niques that  can be applied in crytography. We welcome attaccks from readers 
and, as is customary when introducing a new cryptographic tool, we suggest 
that  the scheme should not be adopted prematurely for actual use. 
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