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Abatract. A notion of “competitive” interactive proof system is de- 
fined by Bellare and Goldwasser as a natural extension of a problem 
whether computing a witness w of x E L is harder than deciding x E L 
for a language L E NP. It is widely believed that quadratic residuos- 
ity (QR) does not have a competitive interactive proof system. Bellare 
and Goldwasser however introduced a notion of “representative” of Z; 
and showed that there exists a competitive interactive proof system for 
promised QR, i.e., the moduli N is guaranteed to be the product of 
k = O(1og log INI) distinct odd primes. In this paper, we consider how 
to reduce the communication complexity of a competitive interactive 
proof system for promised QR and how to relax the constraint on k 
from O(log log INI) to O(1og IN(). To do this, we introduce a notion of 
“dominant” of 2; and show that promised QR with the constraint that 
k = O(logIN1) has a competitive interactive proof system with consid- 
erably low communication complexity. 

1 Introduction 

1.1 Background and Motivation 

Is proving membership harder than deciding memberrip? This is one c the 
most basic questions in theoretical computer science. It has been known that if 
a language L is NP-complete then computing a witness w for z E L is poly- 
nomially equivalent to deciding 3: E L. How about the languages that are not 
known to be A@-complete? In general, it has been widely believed that this is 
not the case. Recently, Bellare and Goldwasser [2], 131 showed that there exists 
a language L E NP - ‘P for which computing a witness w for x E L is ex- 
actly harder than deciding z E L if the class of deterministic double exponential 
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time is not equal to the class of nondeterministic double exponential time. The 
language L E A@' - P found by Bellare and Goldwasser [2], [3] satisfies the 
uniformly log-sparse property and thus it is somewhat unnatural. On the other 
hand, there exist several natural languages L E MF ior which computing a wit- 
ness w for z € L may be harder than deciding x E L, e.g., quadratic residuosity 
(QR), quadratic nonresiduosity (QNR), etc. 

What will happen when interactions and randomization are allowed in the 
proving process of membership? This way o€ the proving process of membership 
is formulated by Goldwasser, M i d ,  and Rackoff [7] (resp. independently by 
Babai and Moran [4]) a9 interactive proof systems (resp. Arthur-Merlin games). 
Informally, a language L has an interactive proof system (P, V )  if for the honest 
prover P and for any x 6 L, the honest verifier V accepts x E L with probability 
at least 2/3 and for any all powerful (dishonest) prover P' and for any I: jZ L, 
the honest verifier V accepts z Q L with probability at most 1/3. B e k e  and 
Goldwasser [2], (31 extended the problem whether computing a witness w for 
x E L is harder than deciding x E L for a language L E hfF to the case 
of interactive proof systems and formulated the problem to be "competitive" 
interactive proof systems. Xdormally, an interactive proof system ( P , V )  for a 
language L is competitive if for the (probabilistic polynomial time bounded) 
honest prover P with an access to the oracle L and for any x E L, the honest 
verifier V accepts 1: f L with probability at least 2/3 and for any all powerful 
(dishonest) prover P and for any x # L, the honest verifier V accepts x jZ L 
with probability at most 1/3. It should be noted that in interactive proof systems 
(P, V), the honest prover P is dowed to be a computationally unbounded Turing 
m d i n e ,  while in competitive interactive proof system (P, V), the honeat prover 
P must be a probabilistic polynomial time bounded oracle Turing machine with 
an access to the underlying language as an oracle. 

Then is proving membership still harder than deciding membership in com- 
petitive interactive proof systems? In eome cases, the interactions and the ran- 
domization alleviate the proving task, but in another cases, they may not. TO see 
this more precisely, let zu1 first consider the language QNR. It has not been known 
that computing a witness w for 5 E QNR is polynomially equivalent to deciding 
I: E QNR. Indeed it is believed that computing a witness w for x IZ QNR may 
be harder than deciding x E QNR. Goldwasser, MiCali, and R d o f f  [7] however 
showed that QNR has a competitive mteractive proof system and this implies 
that the (honest) prover P suffices to have the computational ability of deciding 
2 E QNR in order to prove membership of x E QNR in an interactive and a 
randomized manner. Next let us consider the language QR. It is also believed 
that computing a witness w for z E QR may be harder than deciding x E QR. 
Contrary to QNR, in all known interactive proof systems (P ,V)  for QR (see, 
e.g., (lo], [6]), the (honest) prover P requires to have at least the computational 
ability of computing square roots modulo a composite number N (equivalently 
the computational ability of factoring a composite number N). 

Bellare and Goldwasser [2], [3] observed that the interactions and the ran- 
domization do not necessarily deviate the proving task and showed that there 
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exists a language L E NP - BP'P that does not have a competitive interac- 
tive proof system if the class of nondeterministic double exponential time is not 
included in the claas of bounded probabilistic double exponential time. (Inde- 
pendently, Beige1 and Feigenbaum [l] showed for a different purpose that there 
exists an incoherent language L E AfP if the cbss of nondeterministic triple 
exponential time is not included in the clasa of bounded probabilistic triple ex- 
ponential time.) Again, the language L € NF - BPP shown by Bellare and 
Goldwasser [2], [3] satisfies the nniformly log-sparse property and thus it is also 
somewhat unnatural, This result only parantees the existence of a Language 
L E NP - BPP that does not have a competitive interactive proof system M- 
der the complexity assumption but doen not necessarily imply that QR never 
has a competitive interactive proof system. Then is it possible to construct a 
competitive interactive proof system for QR like in the case for QNR? 
This has not been solved yet but is believed that this is not the cam. To 

affirmatively solve this open problem, Bellare and Goldwaeeer [3] investigated 
QR in a promised form. Intuitively, a promise problem (see, e.g., [S], [9], etc) 
is specified by a pair of disjoint sets A and B and for x E A U B we have to 
decide whether z E A or z E B. It should be noted that the promise problem 
is different from the language membership problem, because the former imposes 
restrictions on inputs but the latter does not. In this setting, Bellare and Gold- 
wasser (31 introduced a notion of npresenlatiwc of 2; and showed that there 
exists a competitive interactive proof system for promised QR, i.e., the moduli 
N is guaranteed to be the product of k = O(log1ogJNI) distinct odd primes. 
Informally* a vector = (yr , y2,. . , , v2b-I )  over Zf; is said to be represenlatiwe 
of Zf; if each yi (1 i 2' - 1) belongs to a distinct residue class except for 
quadratic residuea modulo N. The basic idea behind the result above is to use 
the fact that there exist = O(1og IN}) distinct reaiducs claerrce unda a relation 
appropriately d&ed on 2; and to reduce a quadratic residaosity test to a col- 
lection of quadratic n o d u o s i t y  tests. "hen the protocol following this idea 
requires about 22k quadratic nonresidaosity tests and thus the communications 
complexity of the resulting protocol is comparatively large - in the protocol, 
the provm P sends to the veder  V about p(1NI + p) bits and the verifier V 
sends to the prover P about 21b IN1 bits. 

1.2 Results 

In this paper, we consider how to reduce the communication complexity of a 
competitive interactive proof system for p r o d  QR and how to relax the 
constr&t on k kom O(logl0g INI) to O(1og INI). For thh pnrpoae, we first 
introduce a notion of dominant of ZG, which plays a role very similar to a basis 
in a linear space over GF(2). Informally, a vector v = (yl, y2,. . . , vk) over 2; 
is said to be dominant of 2: if for any vector e = (el,es,. . . ,eb) E (0, 1)' 
such that e # 0, z 3 yf'y;' .. 9 yf' (mod N) is not a square modulo N. Then we 
investigate several properties of a dominant vector of 2: and show that promieed 
QR with the constraint that k = O(log INI) has a competitive interactive proof 
system in which the prover P sends to the verifier V about k IN1 bits and the 
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verifier V sends to the prover P about 4 IN1 bits. The basic idea behind the result 
here is to use the fact that if the moduli N is guaranteed to be the product of 
k = O(log INI) distinct odd primes then there exist sufficiently many (samplable) 
vectors g = (yl, y2,. . . , pb) over 2; to uniquely specify 2' residue classes under 
a relation appropriately defined on 2;. The idea here is inspired by the one due 
to Bellare and Goldwasser [3] but its use enables us to avoid z2' invocations of 
quadratic nonreaidnosity tests. Thus the resulting protocol based on this idea 
considerably reduces the communication complexity. 

2 Preliminaries 

In this section, we present definitions and notation necessary in the sequel. 
Let ( P , V )  be an interactive protocol Informally, an interactive protocol 

(P ,V)  is said to be an interactive proof system for a language L if for the 
honest prover P and for any z E L, the honest verifier V accepts z E L with 
probability at least 213 and for any all powerful dishonest prover P' and for any 
z L, the honest verifier V accepts x 4 L with probability at most 1/3. For 
further details on this, see, e.g., [q, [8], etc. 

Definition 1 [Z, S]. An interactive proof system (P, V) for a language L is said 
to be competitive if 

- Completeness: For any z E L, Prob{(PL,V) accepts z} 3 2/3, where the 

- Soundness: For any x 4 L and any all powerful dishonest prover P', 
prover €' is a probabilistic polynomial time oracle Turing machine; 

Prob{(P', V) accepts z} 5 1/3, 

where the probabilities are taken over all possible coin tosses of P and V. 

It is already known that there exist competitive interactive proof systems 
for quadratic nonresiduosity [7], for graph nonisomorphism (81, and for graph 
isomorphism [S], (101, however, quadratic residuosity is believed not to have a 
competitive interactive proof system. 

Let (A, B) be a pair of disjoint sets. Intuitively, the problem (A, B )  is said 
to be promised if the inputs me guaranteed to be in A u B. Associated to the 
promise problem (A, B), we define a promise oracle that returns correct wwers  
only when the queries are in A u  B. 

Definition 2 [a]. A promise problem is a pair of disjoint sets {A, B).  A promise 
oracle for (A,B)  is an oracle that given q E AUB, returns 1 if q E A and returns 
O i f g E B .  

Informally, a promise problem ( A , B )  has a a competitive interactive proof 
system (P, V) if for the (probabilistic polynomial time bounded) honest prover 
P with an access to the promise oracle for (A,B) and for any x E A, the honest 
verifier V accepts 2 E A with probability at least 2/3 and for any all powerful 
dishonest prover P and for any x E B, the honest verifier V accepts x E B with 
probability at most 1/3. 
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Definition 3 [3). A promise problem {A, B) is said to have a competitive inter- 
active proof system if 

- Completeness: For any z E A and any promise oracle 0 for ( A , B ) ,  
Prob((Po, V )  accepts x} 2 2/3, where P is a probabilistic polynomial time 
oracle Turing machine; 

- Soundness: For any x E B and any all powerful dishonest prover P*, 
Prob{(P’, V) accepts x} 5 1/3, 

where the probabilities are taken over all possible coin tosses of P and V. 

A language quadratic residuosity (QR) is defined to be QR = ((2, N) I 1: E 
23 is a square modulo N} and a language quadratic nonresidnosity QNR is 
defined to be QNR = { ( z , N )  I 2 E 2; is not a square modulo N}. The problem 
that we are interested in is when the moduli N is guaranteed to be the product 
of k 2 1 distinct odd primes, In the following, we define the problem “promised 
QR” that will be investigated in this paper. 

Definition4 [3]. A promised QR is a pair of disjoint sets (QR,, QNR,), where 
QRk = { ( x , N )  E QR I N is the product of k distinct odd primes}, QNRL = 
((2, N) E QNR I N is the product of k distinct odd primes}, and k 2 1. 

3 Known Results 

We overview the d t  by Bellare and Goldwasser [3], i.e., if k = O(log1og INI), 
then the promised QR (QRk, QNR,) has a competitive interactive proof system. 

Lemma5 [3]. r f  k = O(loglogINI), then promised QR (QR,,QNRk) has 0 
c o mp e f if iv e in  f e ra c f iv e proof s y st em. 

Here we overview the protocol given by Bellare and Goldwasser [3]. In the 
competitive interactive proof system for promised QR (31, Protocol QNR is used 
as a subprotocol. 

Protocol QNR: A ‘Competitive” IP for QNR 
cornmon mpnt: (5, N) and l’, where 8 is the secnrity parameter. 

V1: V  choose^ cj ER (0, l}, ri ER 2; and computes zi  x‘it? (mod N) 
(1 _< i 5 8) .  

v P: (tl, 22,. * - Z.). 

P1: For each i (1 5 i 5 B), if t i  E 2; is a square moddo N, then P sets 
di = 0; othexwise P sets di = 1. 

P -+ V :  ( d l , d i , .  . . , t i . ) .  
VZ: V accepts iff q = d; for each i (1 5 i 5 s). 

It is easy to see that the protocol above is a competitive interactive proof system 
for quadratic nonresidnosity (QNR). 

To show the protocol by Bellare and Goldwasser [3], we present a notion of 
“representative vector“ of Zf; and several technical 1- on its properties. 



Deflnition6 [a]. Let N be the product of k distinct odd primes. A vector 
y = (yl,yz,. . . , yp-1) over 2; is said to be representative of 2% if (1) for each 
i (1 < i 5 2' - l), gi E 2; is not a square modulo N and ( 2 )  for each i , j  
(1 5 i < j 5 2' - I), .tij P Y i Y i  (mod N) is not a q w e  m ~ d d o  N. 

The following is the key proposition on the reduction of a quadratic residu- 
osity test to a collection of quadratic nodduos i ty  teats. 

Proposition 7 [S]. Let N 1e the product of k distinct odd primes and let  y = 
(~l,~,...,y~a-1) 6e rcprerentofivc of 2;. Then ( z , N )  E QR, iff wi s zyi 
(mod N )  ir not a rpuan modulo N for each i (1 5 i 5 2k - 1). 

Bellare and GoMwawer [3] showed an efficient way to find a representative 
vector y of Z;, i.e., if k = O(loglogIN(), then there exists a probabilistic poly- 
nomial time oracle Taring machine with au access to the promise oracle for 
(QR,, QNR,) that   amp lea with probability at leaet 3/4 a representative vector 

Proposition8 [S]. If k = O(loglog(N(), then cn'str a proliabilirtic polyno- 
mial time oracle Turing machine R with an occerr to the promire oracle for 
(QRk, QNR,) that on input ( z , N )  E QR, U QNRt outputs either o represenfa- 
tive vector v = ( y 1 ( ~ ,  . . . , gafi-1) of 2: with probobilitp ot kart 314 or I with 
probability at moat 1/4. 

Y = (Vl, Yzr . . , Y O U )  of 2;. 

The bMic idea behind the result by Bellare! and Goldwasser [a] is as follows: 
(1) The prover P gcneratea a representative vector y of 2% (see Proposition 8); 
(2) The proves P shows to the verifier V that the vector y in redly representative 
of Z& (see Definition 6)  by the interactive proof system for QNR 171; and (3) 
The prover P shows to the verifier V that ( z , N )  E QRk (see Proposition 7) by 
the interactive proof system for QNR [fl. 

The following is the competitive interactive proof system for promised QR 
[3] under the constraint that k = O(log1og IN!). 

Protocol PQRl: A Competitive IP for Promised QR 
oommon input: (z, N) E QRt u QNR,, where k = O(log1og INI). 

P1: P runs the machine R to sample a vector u = (y1,g~,...,y~a-~) as a 
candidate of representative of 2; 

p - ,  Y = (Ylr$z,...,YzLl). 
V1: If V receives I from P, then V halts and rejects (I, N) E QRt UQNR,; 

P c) V: P shows to V by Protocol QNR with 8 = 2 that y; is not a s q a r e  

i 5 2' - l), then V halts 

otherwise V continues. 

modulo N for each i (1 5 i 5 2h - 1). 
V2: If V doer not accept (yi,N) for some i (1 

and rcjecb (2, N) E QRL U QNR,; otherwk V continues. 

is not a square moddo N for each i, j (1 5 i < j 5 P - 1). 
P * V: P &OWS to V by Protocol QNR with 8 = 2 that Zi j  f pivj (mod N) 
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V3 If V does not accept ( z i j , N )  for some i, j (1 5 i < j 3 2L: - I), then 
v halts and rejects (z, N) E QRk U QNRk; otherwk V continnes. 

P H V: P shows to V by Protocol QNR with r = 2 that wi E zyi (mod N) is 
not a aquare modulo N for each i (1 5 i 5 Zk - 1). 

i 5 2' - I), t h a  V 
halts and reject6 (2, N) E QR, U QNR,; otherwise V halts and accepts 

V 4  If V does not a e p t  ( W i g N )  for some i (1 

(5, N) E QRk U QNRk - 
The correctness of Protocol PQR-1 follows from that of Protocol QNR [3]. 

4 MainResults 

In this section, we show that if k = O(logINI), then promised QR (QR,, QNR') 
has a competitive interactive proof system with much lower communication com- 
plenty than the one by Bellare and Goldwaeeer [3]. 

4.1 Technical Lemmas 

LetM>2beanoddinteger .Foranyz~  Z s , l c t Q ~ ( t ) = O i f t E Z ~ i s a  
square modulo M and let Q M ( x )  = 1 if x E Z& it3 not a aquare modulo M. Let 
N = p:* pi' * p i ' ,  where p l ,  a,. . . Pk arc distinct odd primes and a, 2 1 for 
each i (1 5 i 5 k). For any z , y  E Zh, define a binary relation = on 2; to be 
5 = y if€ Q,Jx) = QJy) for each i (1 5 i 5 k). 

It is easy to see that the relation z on 2; is an eqwivalence relation on 
Z&. The equivalence clam &(t) of z E 2; under the relation N on Zf;, i.e., 
R&) = (y f 2; I z cv g}, is called to be a residue c h  of 3: E 2;. 
Definition 9. Let N = p:'p;' . . . p t '  be the product of k distinct odd primes. 
Then for a! E Zk, a vector c, = (Cf,G,. . . , $) E (0, l}' is said to be associated 
with z E 2; if Q = Qp4(z) for each i (1 5 i 5 k). 

ated with z E 2;. 

Lemmalo. Let N be the product of k dirtinct odd primer. For any z,y E 
Z;, k t  P i xy (mod N) and let cS,cy,cZ E (O,l}' Ce vcetorr arrociuted with 
q y , z  E z&, nrpecfive~y. Then c. s c, + cy (mod 2). 

Lemma 11. Let N Ie  the product of k didinct odd primer and l e t  c, E (O,l}' 
be a vector arrociated with z E ZG. For any integer e 2 0, let cy E (0, l}k he a 
vector urrociated wifh y 

The following notion of "dominant" h one of the most important ones in our 
main result here. It playa a role similar to a bash in a linear space over GF(2). 

Definition12. Let N be the product of k distinct odd primes. A vector y = 
(91, A,. . . , g k )  h Mid to be dominant of 2;; if vectors cyl, cy,, . . . , cr, E (0, l}', 
each of which is associated with yi E 2; (1 5 i 5 k), arc linearly hdepmdat  
over GF( 2). 

The following  lemma^ show basic properties of a vector c, E (0,l)' 

2' (mod N). Then cr E ec, (mod 2). 
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Hereafter, we use d, for a dominant vector y = (yl,y2, ...,Y I )  of 2; to 
denote a vector associated with yi E 2; instead of cli (1 5 i 5 k). 

Let y = (yl, y2,. .. ,yk)  be a vector over 2; and let e = (e l ,  e2, .  . . , ek) 
be a vector over GF(2). For simplicity, here we use y t e to denote y T e E 
yf '  y;' * * * 3:' (mod N). In the following lemma, we show that if k = O(1og INI), 
then a dominant vector y of 2; can be efficiently sampled by a probabilistic 
polynomial time oracle Turing machine with an access to the promise oracle for 
promised QR (QR,, QNR,}. 

Lemm13. If k = O(logINJ), then there ezist5 a probabilistic polynomial  t ime 
oracle Turing machine D with an access t o  the promise oracle f o r  (QR,, QNR,) 
that o n  input (5, N) E QRk U QNR, outputs either a dominant  vector  y of 2; 
with probability at lead 3/4 or I with probability at  most 1/4. 

Proof .  Let y = ( ~ l , y 2 , .  . . , y k )  be a vector over 25 and let c; E (0, l}, be a 
vector associated with y; E ZG for each i (1 5 i 5 k). The probability P r S d  that 
the vectors c l ,  c2,. , . , Ck are linearly independent over GF(2)  is bounded by 

2 
7 ' 

m M 
( -1r 

(2 - 1)(22 - 1)...(2' - 1) 2 n (1 - 2 4 )  = 1 + c > -  
irl 1 4  

where IlAll denotes the cardinality of a (finite) set A. Then the machine D 
randomly chooses m vectors y, = (yy, y2,, . . . , Y k j )  over 2: (1 i j 5 m). For 
each V j  (1 5 j 5 m),  the machine D computes qi z y j  t bin(!) (mod N) for 
each C (1 5 C i 2' - l), and queries qj to the promise oracle for (QR,, QNRk) 
to get the answer a; E {O,l}, where bin(!) is the binary representation of an 
integer 1 (1 5 C 5 2' - 1). If there exists an index j (1 5 j 5 2k - 1) such that 

= 0 for each C (1 5 C 5 2' - l), then the machine D outputs y = y j  as a 
dominant vector of 2;; otherwise the machine D outputs 1. 

The vector y sampled by the machine D is always dominant of 2;. We show 
this by contradiction. We assume that the vector g = (yl, yz,. . . , y k )  sampled 
by D is not dominant of 2;. Then for a vector c; associated with yi E 2; 
(1 5 i I k), there exists a nonzero vector e = (el, e2,. . . , ek)  over GF(2) 
such that e lc l  + e2c2 i- ..' + ekci G 0 (mod 2). This implies that z E y T e 
(mod N) is a square modulo N and this contradicts the fact that qc G y bin(!) 
(mod N )  is not a square modulo N for each C (1 5 C 5 Z k  - 1). The probability 
Pdom that the machine D samples a dominant vector y of Z; is bounded by 
f'bm = 1 - (1 - P,ld)m > 1 - (1 - 2/7)*. Then letting m 2 5 ,  I'h,,, 2 3/4- 
Since the machine D queries to the promise oracle for (QR,, QNRk) at most 
m2' times, it runs in probabilistic polynomial (in IN[)  time. 

Thus on input (2, N) E QR, U QNRk, the machine D with an access to the 
promise oracle for promised QR (QR,, QNR,) outputs either a dominant vector 
y of 25 with probability at  least 3/4 or I with probability at  most 1/4. 
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The lemma below is the essential to reduce the communication complexity 
of a competitive interactive proof system for promised QR (QR,, QNR,). 

Lemma14. Let N be the product of k distinct odd primes and let a vector 
y = (y l ,  y2, . . . , y k )  he dominant of Z;, Then f o r  any x E Zh, there ezists a 
unique vector e = (e l ,  ez,. . . , e k )  over GF(2) such that z H y t e. 

Proof. We assume that N = p:'pga - p t A  , where p1, p2,  . . . , pk are distinct odd 
primes and ai 2 1 for each i (1 5 i k). Let c, be a vector associated with 
2 E 2; and let d, be a vector associated with y, E 2; for each i (1 5 i 5 k). 
Since y ki dominant of Z;, dl ,  4,. . . , dk are linearly independent over GF(2). 
Then there exists a unique vector e = (el,e2,...,e') over GF(2) such that 
c, eldl + e 2 4  + - -  + ekdt (mod 2). Here we define z E 2; to be z = v e 
(mod N). From the property of the Jacobi symbol, it follows that Q p i ( x )  = 
QPi(z) for each i (1 5 i 5 k) and thus x H z H y t e. 

The uniqueness of avector e = (el, e2,. . . , e k )  can be shown by contradiction. 
Here we assume that there exist distinct vectors e = (el ,  ez,. . . , e') and f = 
( f l , f z , .  . . , f k )  over GF(2) such that x H 11 1 e 2 y 7 f .  Then for a vector c, 
associated with 2 6 ZY;, c, G eldl +ezd2+.  . - + e k d h  E f l & +  f&+-  - - + f k d ,  
(mod 2). This implies that there exists a nonzero vector g = (gl, g2,. . . , g') over 
GF(2)such thatgldl+gadz+...+gkd, = 0 (mod 2), whereg; E e,+fi  (mod 2) 
for each i (1 5 i 5 k), and this contradicts the assumption that dl,  dz, . . . , dt 
are linearly independent over GF(  2). 

The following lemma shows that if k = O(logINI), then there exists an 
efficient algorithm that for a dominant vector y of 2; and any L E Z; ,  finds a 
(unique) vector f E {0,1}' satisfying z 21 y t f. 

Lemma15. Let N be the product of k distinct odd primes. Let y be dorni- 
nant of Z& and let z E 2;. If k = O(log(N(),  then there ezists a determin- 
istic polynomial time algorithm FIND with an access t o  the promise oracle for 
(QRI,QNRk) that on input (y,z) always outputs a (unique) vector f E (0,l)' 
such that z = y T f .  

Proof. The following is an algorithm with an access to the promise oracle for 
(QR,, QNRa) that on input (y, z )  outputs f E (0,l)' such that z H y 

Algorithm FIND: 
f .  

Input: (y,z), where y is dominant of 2; and z E 25, 
Step 1: Compute g1 I (y bin(!)) x z (mod N) for each I (0 5 I 5 2' - 1). 
Step 2: Query qi to the promise oracle for (QR,,QNR,) to get the answer 

Step 3 If at = 1 for some I (0 5 L 5 2k - l), then outputs f = bin(I); 
a1 E (0, I} for each .t (0 i L 5 2, - I). 

otherwise output 1. 
Output: f E {O,l)k such that z H y t f. 
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It follows from Lemma 14 that if y is dominant of Z;, the algorithm FIND 
always finds a unique f E (0, l}, such that z y t f. Since k = O(1og INI) and 
the algorithm FIND queriw to the promise oracle €or (QRk, QNR,) at most 2' 
times, the algorithm FIND runs in detenninistic polynomial (in INI) time. 

4.2 A Low Communication Competitive IP for Promised QR 

We now describe the whole protocol of a competitive interactive proof system for 
promised QR (QR,, QNR,) with considerably low communication complexity. 

Protocol PQR-2: A Competitive IP for Promised QR 
common input: ( z , N )  E QR, u QNR,, where k = O(logIN1). 

P1: P rum the machine I) to sample a vector y = (yl,yZ, ...,y,) as a 
candidate of dominant of 2;. 

p - ,  v: Y = ( Y l , Y o , * . . r Y k ) .  
Vl-1: If V receives 1 from P, then V halts and rejects (2, N) E QR, UQNR,; 

V1-2: V O j )  x $ 
otherwise V continues. 

(mod N) for each j (0 5 j 5 1). 
aj ER (0, l}k and r, ER 2; m d  computes zj 3 (Y 

v --+ p: zo,z1 E 2;. 

P + V: ao, a1 E {0,1}" 
P2: P computes a j  E (0, I}' such that z j  N y 1 a j  for each j (0 5 j I 1). 

V2-1: V checks that a j  = u j  for each j (0 
V2-2: If either a0 # a0 or a1 # al, then V halts and rejects ( z , N )  E 

V2-3: V  choose^ e j  ER (0, l}, bj ER (0,  l)', a j  ER 2; for each j (0 < j 5 1). 
V2-4: V computes w j  E zej x (g t b,) x sj (mod N) for each j (0 5 i 5 1). 

P3: P computes f l j  E {0,1}' such that w j  21 y 1 a, for each j (0 5 j 5 1). 

j 5 1). 

QR, U QNR,; otherwise V continues. 

v + P: WOY W l  E 2;. 

P --+ v: &,& E {O,l}k. 
V3-1: V checks that p j  = b j  for each j ( 0  5 j 5 1). 
V3-2: If either Po # 4 or PI # bl, then V halts and rejects (2, N) E QR, U 

QNR,; otherwise V halts and accepts {z, N) 6 QR, u QNRI. 

Correctness of PQR-2: We show that even when k = O(logINI), Protocol 
PQR-2 is a competitive interactive proof system for promised QR (QRb, QNR,). 

(Complefenerr) Assume that (2, N) E QRk. It follows from Lemma 13 that 
in step Vl-1, V receives a dominant vector y = ( ~ 1 ,  y2,. . . , y,) of 2; from p 
with probability at least 3/4. 

Assume that y is dominant of 2;. Then it follows from Lenuna 14 that there 
exists aunique vector a j  E (0,l)' such that zj z y 1 a j  for each j (0 5. j 5 1). 
To find such a vector aj E (0, I),, P executes the algorithm FIND on hpnt 
( ~ , z j )  for each j (0 5 j 5 1). Since k = O(logINI), P runs in deterministic 
polynomial (in INI) time in step P2 (see Lemma 15). fiom the assumption that 
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s dominant of ZE, it follows that aj = a, for each j (0 5 j 5 1). This implies 
at if v is dominant of i?;, then V never rejects (2, N) E QR, in step V2-2. 
For any I E Z;, let E zr (mod N). From the fundamental property of 

e Jacobi symbol, it is easy to see that z H r if ( z , N )  E QR,. This implies 
at Wj N tl t /3, regardless of the value of e j  E {0,1} for each j (0 5 j 5 1). 
en it follows from Lemma 14 that P can find a unique vector /3, E {0,1)' 
running the algorithm FIND on input (y,wj) for each j (0 5 j 5 1). Since 
= O(logIN(), P runs in deterministic polynomial (in INI) time in step P3 
e Lemma 15). From the assumption that y is dominant of ZG,  it follows that 
= bj for each j (0 5 j 5 1). This implies that if y is dominant of Z&, then 

always accepts ( z , N )  E QR, in step V3-2. 
Thus for any ( z , N )  E QRa, the (probabilistic polynomial time bounded) 

onest prover P with zm access to the promise oracle for (QR,,QNR,) can 
se the honest verifier V to accept (z, N) E QR, with probability at least 3/4. 
(Soundness) Assume that ( z , N )  E QNRk. If V receives I from P in step 

Vl-1, then V halts and rejects (5, N) E QNRL. Then any dishonest prover P' 
eeds to send to V a vector y = (y1,y2,... ,g,) over Z G .  Assume that y is 

not dominant of 2;. For each z, E 2% (0  5 j 5 1) in step V1-2, there are 2' 
(1 _< t 5 k) possible a, E {O, such that z, z y t a, for each j (0 5 j 5 1). 
This implies that if y is not dominant of Z;, then with probability at most 
2''' 5 1/4, any all powerful P' can find a vector a, E {O, 1)' such that a, = a, 
for each j (0 5 j 5 1) in step P2. Thus if y is not dominant of ZY;, then V halts 
and rejects (2, N) E QNR, in step V2-2 with probability at least 3/4. 

Assume that y is dominant of 2;. Since ( z , N )  E QNR,, there exists a 
unique vector e E {0,1}' such that z Y, 1 7 e and e # 0. For each j (0 5 j 5 l), 
there exist @,a,! E {O,1}' such that wj r~ Y T s,' and W j  N z x (v 1 0;) 
Indeed, for i, j (0 5 i ,  j 5 l), s b, + ((ej + i )  x e} (mod 2). This implies that 
any dishonest prover P cannot guess better at random the value of e j  E (0,l)  
for each j (0 5 j 5 1) even if it is infinitely powerful. Thus i€ y is dominant of 
Ztj, then with probability at most 1/4, any all powerful P' can find a vector 
pi E {0,1}' such that fJ j  = b, for each j (0 5 j 5 1) in step P3. Then V halts 
and rejects (z, N) E QNR, in step V3-2 with probability at least 3/4. 

Thus for any (T, N) E QNR,, any all powerful dishonest prover P' can cause 
the honest verifer V to accept (z, N) E QNRt with probability at most 1/4. H 

5 Discussions 

Let CCp(A) (resp. CCv(A)) be the total number of bits sent by the prover P 
(resp. the verifier V )  to the verifier V (resp. the prover P) in the protocol A. 

On one hand, in Protocol PQR-1 (see section 3), we have CCp(PQR-1) = 
(ZC-1)((Nl+Zt+2) and CCv(PQR-1) = (2k-1)(2k-t-2)~N~. On theother hand, 
in Protocol PQR-2 (see section 4), we have CCp(PQR-2) = k IN( + 2k + 2k = 
k(lN( + 4) and CCv(PQR-2) = 2 IN1 + 2 IN1 = 4 INI, From the fact that k 2 1, 
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i t  immediately follows that  

and thus Protocol PQR-2 considerably reduces the communication complexity. 
In Protocol PQR-1, the constraint that k = O(loglogIN1) is caused by the 

task in step P1. In step P1, the prover P queries t o  the promise oracle for 
(QR,, QNRt) at most 22* times t o  sample a representative vector y of 2;. Then 
we must xisume that k = O(logloglN1) in Protocol PQR-1 t o  guarantee that P 
ram in probabilistic polynomial (in IN!) time. In Protocol PQR-2, however, the 
prover P queries to the promise oracle for (QR,, QNR,) to sample a dominant 
vector y of Z; at most 2‘ times. Then we must assume that k = O(logJN1) in 
Protocol PQR-2 to guarantee that  P runs in probabilistic polynomial (in IN!) 
t h e .  The essential of a dominant vector y = (yl, y2,. . . ,Yk) of Z> is that  i t  can 
generate arepresentative vector y’ = (yi, y;. . . , Y;,-~) of Z; by  yl z v t bin(1) 
(mod N) for each I (1 < C 5 2’ - 1). 
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