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Abstract. In this work we study relations between secret sharing and 
perfect zero knowledge in the non-interactive model. Both secret sharing 
schemes and non-interactive zero knowledge are important cryptographic 
primitives with several applications in the management of cryptographic 
keys, in multi-party secure protocols, and many other areas. Secret shar- 
ing schemes are very well-studied objects while non-interactive perfect 
zer-knowledge proofs seem to be very elusive. In fact, since the intro- 
duction of the non-interactive model for zero knowledge, the only perfect 
zero-knowledge proof known was for quadratic non residues. 
In this work, we show that a large class of languages related to quadratic 
residuosity admits non-interactive perfect zero-knowledge proofs. More 
precisely, we give a protocol for proving non-interactively and in perfect 
zero knowledge the veridicity of any “threshold” statement where atoms 
are statements about the quadratic character of input elements. We show 
that our technique is very general and extend this result to any secret 
sharing scheme (of which threshold schemes are just an example). 

1 Introduction 

Secret Sharing. The fascinating concept of Secret Sharing scheme has been 
first considered in [18] and [3]. A secret sharing scheme is a method of dividing 
a secret s among a set of participants in such a way that only qualified subsets 
of participants can reconstruct s but non-qualified subsets have absolutely no 
information on s. Secret sharing schemes are very useful in the  management of 
cryptographic keys and in multi-party secure protocols (see for instance [13]). 
For an unified description of recent results in the area of secret sharing schemes, 
and for a complete bibliography, see [20] and [19]. 

Zero Knowledge. The seminal concept of a Zero-Knowledge proof has been 
introduced in [15] that gave zero-knowledge proofs for the number-theoretic lan- 
guages of quadratic residues and quadratic non residues. A Zero-Knowledge (ZK) 
proof is a special kind of proof that allows an all-powerful prover to  convince 
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a poly-bounded verifier that a certain statement is true without revealing any 
additional information. 

The theory of zero knowledge has been greatly extended by the work of 
[13] that proved that indeed all NP languages have zero-knowledge proofs. This 
breakthrough work caused much excitement both for its theoretical importance 
and for its impact on the design of cryptographic protocols (see [14]). 

The zereknowledge proof for all NP of [13] , are computa.tionulzero-knowledge, 
that is secure only against poly-bounded adversaries] whereas those in [15] are 
perfect, that is secure against unlimited-power adversaries. Moreover] the proofs 
of [13] are based on the unproven complexity assumption of the existence of one- 
way functions. Perfect zero knowledge is a desirable property for a proof as one 
can never be sure of the computational power of the person he is giving the proof 
to. On the other hand, it is very unlikely that perfect zero-knowledge proof$ for 
all NP exist , as their complexity-theoretic consequences (the collapse of the poly- 
nomial hiermchy, see [7] and [ll]) are considered to be false. However, perfect 
zero-knowledge proofs have been given for some languages in NP which are not 
believed to  be neither NP-complete nor in BPP and are either number-theoretic 
or have the property of random self-reducibility [15, 13, 12, 21, 41. 

The shared-string model for Non-Interactive ZK has been put forward in 
[S] and further elaborated by [8, 51. In this model, prover and verifier share a 
random string and the communication is monodirectional. In [5] it is proved 
that under the quadratic residuosity assumption all N P  languages have non- 
interactive computational zero-knowledge proofs in this model. Subsequently, in 
[lo] it was proved that certified trapdoor permutations are sufficient for proving 
non-interactively and in zero knowledge membership to any language in N P  ([l] 
relaxed the assumption by proving that trapdoor permutations are sufficient). In 
the non-interactive model the only perfect zero-knowledge proof has been given 
in [5] for the language of quadratic non residuosity modulo Regalar(2) integers. 

Because of their importance, obtaining perfect-ZK proofs for certain classes 
of languages still remains an important research area. 

Organization of the paper and Our Results In the next section we review 
some number-theoretic results about quadratic residuosity and the definition of 
perfect zero-knowledge in the non-interactive model of [5]. 

In Section 3 we present two simple proof systems. The first is to  prove that 
an integer is a Blum integer while the second is for the logical or of quadratic 
non residuosity. More precisely, for the language OR of triples (2, y1 , yz) such 
that at least one of yl,y2 is a quadratic non residue modulo 2 and 2 is a Blum 
integer. 

In Section4, we present our main result: a perfect non-interactive zero- 
knowledge proof system for any threshold statement of quadratic residuosity 
of any number of inputs. That is, for all k 5 m, we give a proof system for the 
language T(k, rn) of (m+ 1)-uples (2, yl , . . , y,) such that less than k of the yi’s 
are quadratic non residues modulo 2 and 8 is a Blum integer. Our construction 
is based upon the properties of secret sharing schemes. We give a way of con- 
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structing a set of shares from the random string that has the following property. 
If less than k of the y,'s are quadratic non residues modulo 2, then this set can 
be opened by the prover as a sharing both of the bit b = 0 and of the bit b = 1. 
On the other hand, if at least L of the yi's are quadratic non residues modulo 
2, then this set can be opened in a unique way. Then a bit b is taken from the 
random string and the prover has to construct a set of shares for it. Thus, if 
the input pair (z, y3 does not belong to T(k ,  m), the prover has probability less 
than 1/2 of success. By repeating rn times the protocol with different pieces of 
the reference string, we force the probability of cheating to be negligible. The 
construction of the shares employs the protocol for the language OR of Section 3. 

In Section 5, we briefly discuss the generalization of the tecnique of the previ- 
ous section to statements based on secret sharing schemes in which the subsets of 
participants that recover the secret are arbitrary. That is, given a secret sharing 
scheme for an access structure on a set of participants, then we can construct a 
non-interactive perfect zero-knowledge proof system for a special formula based 
on the access structure given. 

time provided that the factorization of the modulus is given as an additional 
input. 

In all of our proof systems the prover's program can be performed in polynomial- 

2 Background and Notations 

2.1 Notations 

We identify a binary string u with the integer z whose binary representation is 
u. If u and 7 are binary strings, we denote their concatenation by either u o 7 or 
47. By the expression w' we denote the L-uple (wl,. . . , w ) )  of numbers or bits. 
We say that w' E S meaning that wj E S ,  for i = 1,. . . ,k. By the expression 1.1 
we denote the length of z if z is a string. If z' is a k-uple, by the expression 151 
we denote the number k of components of 12'1. 

2.2 Number Theory 

We refer the reader to [17] and [5] for the definitions of quadratic residues, Jacobi 
symbol and Regular(s) integers. We define the quadratic residuosity predicate as 
Q&) = 0 if y is a quadratic residue modulo z and 1 otherwise. Moreover, we let 
ZZ' and 2;' denote, respectively, the sets of elements of 2; with Jacobi symbol 
+1 and -1 and Q% = (Y E Z$'IQ&) = 0), N Q R ,  = (y E Z$'IQ,(y) = 1). 
In this paper we w i l l  be mainly concerned with the special moduli called Blum 
integers. 

Definition 1. An integer z is a Blum integer, in symbols z E BL, if and only if 
z = p k l q L P ,  where p and q are different primes both z 3 mod 4 and k~ and k2 
are odd integers. 
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From Euler’s criterion it follows that, if z is a Blurn integer, -1 mod z is a 
quadratic non residue with Jacobi symbol +l. Moreover we have the following 
iac t . 
Fact 1. On input a Blum integer z, it is easy to generate a random quadratic 
non residue in 2:’: randomly select r E 2; and output -r2 mod z. 

The following lemmas prove that the Blum integers enjoy the elegant property 
that each quadratic residue has a square root which is itself a quadratic residue. 
Thus each quadratic residue modulo a Blum integer has also a fourth root. 

Lemma2. Let z be a Blum integer. Every quadratic residue modulo z has at 
least one square root which is itself a quadratic residue modulo z. 

On the other hand, if z is a product of two prime powers, but not a Blum 
integer, then the above lemma does not hold. 

Lemma 3. Let z = p k l q k 2 ,  where p 1 mod 4. Then, at least one half of the 
quadratic residues has no square root which is itself a quadratic residue modulo 
2. 

The following characterization of Blum integers will be used to obtain a non- 
interactive perfect zero-knowledge proof system for the set of Blum integers. 
Fact 2. An integer z is a Blum integer if and only if z E Regzrlar(2), -1 mod 2 E 
NQR,, and for each w E Q& there exists an r such that r4 E wmod x .  

2.3 Non-Interactive Perfect Zero Knowledge 

Let us now review the definition of Non-Interactive Perfect ZK of [5] (we refer 
the reader to the original paper for motivations and discussion of the definition). 
We denote by L the language in question and by z an instance to it. Let P a 
probabilistic Turing machine and V a deterministic Turing machine that runs in 
time polynomial in the length of its first input. 

Definition4. We say that (PI V) is a Non-Interactive Perfect Zero-Knowledge 
Proof System (Non-Interactive Perfect ZK Proof System) for the language L if 
there exists a positive constant c such that: 

1. Completeness. tlz E L ,  1x1 = n and for all sufficiently large n, 

Pr(o c {0,1)~~;  Proof t P(C,  z> : ~ ( o ,  2, ~ r o o j )  = 1) > 1 - P .  

2. Soundness. For all probabilistic algorithms Adversary outputting pairs (z, Proof), 
where z $! L,  1.1 = n, and all sufficiently large n,  

Pr(o t { O , l ) ” c ;  (2, Proof) +- Adversay(o)  : V ( C ,  2, Proof) = 1) < 2-”. 
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3. Perfect Zero Knowledge. There exists an efficient simulator algorithm S such 
that Vx E L ,  the two probability spaces S(z) and Viewv(z)  are equal, where 
by Viewv(z )  we denote the probability space 

V i e w v ( x )  = {u t { 0 , 1 } 1 ~ 1 ” ;  Proof + ~ ( g ,  x) : (0, Prooj)}. 

We notice that in soundness, we let the adversary chmse the false statement he 
wants to prove after seeing the random string. Nonetheless, he has only negligible 
probability of convincing V. 
We say that (P,V)  is a Non-Interactive Proof System for the language L if 
completeness and soundness are satisfied. 
We call the “common” random string c, input to both P and V,  the reference 
string. (Above, the common input is r and z.) 

2.4 Secret Sharing 

Shamir [18] and Blackley [3] were the first to consider the problem of secret 
sharing and gave secret sharing schemes known as threshold schemes. We review 
the notion of threshold scheme as it will be instrumental for our construction of 
a non-interactive perfect zero-knowledge proof system for threshold statements 
of quadratic residuosity. A (k, m)-threshold scheme is an efficient algorithm that 
on input a data S outputs m pieces Sz, . . . , S,, such that: 

knowledge of any k or more pieces S, makes S easily computable; 
0 knowledge of any k - 1 or fewer pieces S, leaves S completely undetermined 

Shamir [18] shows how to construct such threshold schemes using interpolation 
of polynomials. We have the following fact: 
Fact 3. The following is a (k, m)-threshold scheme. Let (€, +, .) be a finite field 
with more than m elements and let S be the value to be shared. Choose at 
random a, , .. . , a k - 1  E E ,  construct the polynomial q(z)  = S + a, . z + . . . + 
a k - 1  . xS-’ and output Si = q ( i )  (all operations are performed in E).  

(all its possible values are equally likely). 

We say that a sequence (S1,. . . , Sm) is a (k, m)-sequence of admissible shares 
for S (we will c d l  it sequence of admissible shares when k and m are clear from 
the context) if there exists a polynomial q(z) = a0 + a,z + ... + a k - 1 z L - l  with 
coefficients in E ,  such that uo = S and S; = q ( i )  for i = 1,. . . , m. 

Remark. Let I C (1, .. . , m} and suppose 111 < k. Then given S and a sequence 
(S;li E I )  of values, it is always possible to efficiently generate random values 
S;, i $! I ,  such that (S1, . . . , Sm) is a sequence of admissible shares for S (for 
random values S;, i e I we mean that the S;’s for i $! I are uniformly distributed 
among the Sj’s such that (S1, . . . , Sm) is a sequence of admissible shares for S). 
Moreover, given a sequence (S;li E I )  of values, if the values S; for i 4 I are 
chosen with uniform distribution among the Si’s such that (SI, . . . , Sm) is a 
sequence of admissible shares for some S ,  then S is uniformly distributed in C. 
On the other hand, if III = k, then a sequence (Sili E I) of values uniquely 
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determines a value S and values S, for i $! 1 such that (S1 , . . . , Sm) is a sequence 
of admissible shares for S. 

3 Preliminary Results 

In this section we discuss two simple non-interactive perfect zero-knowledge proof 
systems for the language BL of Blum integers and for the language OR of logical 
or of quadratic residuosity that we will define later. They will be useful in the 
construction of our main result. 

3.1 

A proof system (A,B) for BL is easily obtained using the characterization of 
Blum integers given by Fact 2. In fact, it is sufficient for the prover to first prove 
that z is a Regdar(2)  integer and that -1 is a quadratic non residue modulo 
z using the proof system given in [5]. Then, all it is left to prove is that every 
quadratic residue has a fourth root modulo z. This is done by giving, for each 
element y E Z$' taken from the random string, a fourth root modulo I: of y or 
-y, depending on the quadratic residuosity of y. Completeness, soundness, and 
perfect zero knowledge are easily seen to be satisfied. 

The Proof System for BL 

3.2 

We now describe a non-interactive perfect ZK proof system (C,D) for the lan- 
guage 

The Proof System for OR 

This is an extension of the proof system for quadratic non residuosity given in 

In our construction we will use the following 

Definition5. For any positive integer 2, define the relation NN= on 2:' x Z:' 
as follows: (a1 , a,) =z (b , ,  b,) +=+ alb, E QR, and a,b, E QR,. 

We write (al ,  a,) #, (b ,  b,) when (a1 , a,) is not xZ equivalent to (b, ,  b , ) .  One 
can prove that for each integer z E Regular(s), ssz is an equivalence relation on 
2:' x Z,+' and that there are 22("-') equally numerous M, equivalence classes. 

Let us informally describe the protocol (C,D). By (A,B) we denote the non- 
interactive perfect zero-knowledge proof system for the language BL described 
above. On input (2, Y, , y,), C and D share a reference string y = p o b ,  where c is 
split into pairs (u i , l ,q2) ,  First C proves that z E BL by running the algorithm 
A on input 2 and using the random string p .  C partitions the pairs (Ci,I,ui,z) 
belonging to 2:' x 2:' according to the relation w, into 4 classes. It is easy for C 
to  prove that two pairs (ci,l, CQ) and (uj,~, o j , ~ )  belong to the same class: C just 
gives a square root modulo z of the products O;<JC~,I mod 2 and ~i,zaj,2 mod 2 .  

PI * 
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Once all the pairs, including the input pair (y l , y , ) ,  have been assigned to an 
equivalence class, C uncovers the class of pairs made of two quadratic residues 
by giving the square root of both elements of one of its pairs. D checks first that 
z is a Blum integer, by running the algorithm B, and then that the pair (y,, y,) 
is in a different class from that whose pairs are both quadratic residues. 

Now, suppose (2, y,, y,) $! OR. Then two situations may happen: (a) 2 $! BL 
or (b) z E BL and yl, y;! E &&. In the first D accepts with negligible probability 
because of soundness of the proof system (A,B). In the second C can perform 
the protocol if and only if one of the three classes of pairs, for which at least one 
element is a quadratic non residue, does not appear in the random string. In fact 
the prover has to uncover the class of pairs made of two quadratic residues and 
thus (y,, y,) has to  be assigned to one of the three remaining classes. However, 
this means that all the pairs in that class must be made of two quadratic residues 
and thus we would only have representatives from three classes. This happens 
with negligible probability. 

Let us now give a sketch of the proof that (C,D) is perfect zero-knowledge. 
On input (2, yl, y,) E OR, the simulator S has to generate uniformly distributed 
pairs (u;,l, ui,J belonging to each of the four classes of 2:' x Z:' determined by 
the relation w,. Notice that, on input (2, y,, y,) E OR, it is possible to efficiently 
construct four pairs (a1, PI), . . . , (a4, ,B4), each belonging to a different M, class, 
in the following way. Randomly choose r ,  s E A':, and output 

(a11 Pl) = (Yll Y2), 

(a32 P3) = (YlY2 mod 2, Yl), 
( 0 4 , P 4 )  = (5b,Y1Yzmod 2). 

( ~ 2 , / 3 ~ )  = (r2mod z,s2rnod z), 

Thus it is possibIe to efficiently generate a uniformly distributed pair belonging 
to one (randomly chosen) of the four x, classes, in the following way. Randomly 
choose j E (1, .. . ,4}  and u,v E A':, and output the pair ( Q ~ , ~ , L T ~ J ) ,  where 
uj,l = mi u mod z and 0,,2 = ,L?T1v2mod z. Moreover, it is easy for S to give 
random square roots modulo z of the products uj,lai mod z and crj,zPi mod 2: 
he simply gives u and u.  

-1 2 

4 
St at ement 

Non-Interactive Perfect Zero-Knowledge for Threshold 

In this section we give a non-interactive perfect zereknowledge proof system 
(P,V) for the Ianguage T(k,  rn) of pairs (z, y3 where less than k elements of 
y' = (yi ,  . . . , ym) are quadratic non residue modulo z. That is, the language 

T(k,m)= { ( z , ~ I x E  BL,yi E ZC+', i =  l , - * . , m  a d  I{gilyi ENQ&}l < k} j 

for 1 5 k 5 rn + 1. For instance, T(1, m) is the language of pairs (z, $ that 
satbfy (yi E Q&) A . . . A (y, E Q&) and T(m, m) is the language of pairs 
(z, y3 that sat& (YI E Q&) V .  - - V (ym E &&). 
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The prover P wants to convince the polynomial-time verifier V that less than k 
of the m integers y l , . .  . ym are quadratic non residue modulo the Blum integer 
z without giving away any information that V was not able to compute alone 
before. V cannot compute by himself whether (z, y3 E T(k, m), since the fastest 
way known for deciding quadratic residuosity modulo a composite integer x con- 
sists of first factoring 2. Thus no efficient algorithm is known to decide if ( z , g  E 
T(k, m).  Moreover, the proof is non-interactive (P sends only one message to V), 
and perfect zereknowledge (V does not gain any additional information even if 
not restricted to run in polynomial time). 
We use the proof systems (A,B) and (C,D) of previous sections as subroutines 
for (P,V). 

4.1 

Let us now introduce a bit of notation that we will use in the description of 
our proof system. Let z E BL, w and y E 2:' and b E { O , l } .  We define the 
predicate B ( z ,  y, w, b )  in the following way: 

The Proof System (P,V) for T(lc,m) 

B(~: ,Y,  w, b)  = ((-l)bwmod 1: E QR,) V (y E QRx).  

We say that the prover (2, y)-opens w as b if he proves that B(z7 y, w, b )  = 1. 
If y E QRz then B ( z ,  y, w, 0) = B ( z ,  y, w ,  1) = 1 regardless of the quadratic 
residuosity of w and thus the prover can (z,y)-open w both as a 0 and as a 
1. Instead, if y E NQRx then the prover can open w in just one way deter- 
mined by the quadratic residuosity of w. In fact, suppose that w € QR,. Then 
obviously B(z ,  y, w, 0) = 1 (and thus the prover can (c, y)-open w as a 0) and 
B ( z ,  y, w, 1) = 0, as, by the fact that -1 is a quadratic non residue modulo z, 
-w mod 2: is a quadratic non residue modulo z. Now, suppose that w E NQR,. 
Then B ( x ,  y, w, 1) = 1, as, by the fact that -1 is a quadratic non residue modulo 
z, -wmod z is a quadratic residue modulo z, (and thus the prover can (z,y)- 
open w as a 1) and obviously B ( x ,  y, w, 0) = 0. In our protocol, the (z, y)-openhg 
of w as b is done in a zero-knowledge fashion by using the proof system (C,D) 
of the previous section. More precisely, B ( z ,  y, w, b) is proven to hold by running 
C on input (z,(-l)l-*wmod 2,-ymod z). 

An informal description. Let us now informally describe our proof system. 
Let (z, y3 E T(k, rn) and let 1.1 = n and y' = (yl, . . . , ym). First P proves that 
x E BL by running the algorithm A on input z and using a first part of the 
reference string 7. Then, from the reference string T,I P picks mpog(m + 1)1 
integers pij E Z$l and a bit b and (z,yj)-opens each pi, as a bit s,j in such a 
way that the following condition is satisfied: denoted by Sj the integer whose 
binary representation is su ...~p,~(,,,+1)1j~ the rn-uple (S1,. . . , Sm) represents 
a (k, m)-sequence of admissible shares for b .  Now, why is this a proof that less 
than k. elements of c a r e  quadratic non residues? 
Let I be the set of i such that yi E N Q R , .  Then the value of Si is fixed for all 
i E I. Thus, if )I) < L then it is always possible to choose Si for i r$ I such that 
(S1, . . . , Sm) is a sequence of admissible shares for b. 
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Suppose now that 111 2 k. Then the values Si for which i E I completely deter- 
mine s. Moreover, the Si's are uniformly distributed and thus the probability 
that S = b is at most 1/(El 5 l /m. Thus, the probability that the prover con- 
vinces the verifier can be made negligible by repeating the protocol on different 
parts of the reference string. 

A formal description of the proof system (P,V) can be found in Figure 1. Here 
(C,D) is a non-interactive perfect ZK proof system for OR. Our field C is the 
field with 2r'0dm+1)1 elements. 

Theorem 6. (P,V) is a Non-Interactive Perfect ZereKnowledge Proof System 
for the language T(k, m). 

Proof. Omitted. 

Remark. The protocol (P,V) can be easily extended to a proof system for the 
language of pairs (z, 9, where the number of quadratic non residues in y' is 
greater or equal to %, that is: 

The prover uses the algorithm P on input (z, -yl mod 2,. . . , -ym mod z). 

5 
Access Structures Statements 

Non-Interactive Perfect Zero-Knowledge for General 

In general a secret sharing scheme is a procedure to share a secret among a 
certain number of participants so that only qualified subsets of participants can 
reconstruct the secret. Threshold schemes are pasticular secret sharing schemes 
where the set of qualified subsets consists of all the subsets with at least IC 
participants. The set of qualified subsets is called access structure. For obvious 
reasons an access structure A has to be monotone; i.e., if A E A then all A' that 
contain A also belong to A. 

As done for threshold scheme, to each access structure A, we associate a lan- 
guage AS(d) of pairs (x,$, where t is a Blum integer and Jis an m-uple of ele- 
ments of Z:', in the following way. For each access structure A = { A l ,  - .  - , Ak},  
where A; = { C Q I , . . . , ~ ; ~ , }  {O, l , - - . ,m},  wecan defineapredicatep,(z,$ as 
follows: 

1 if for each i = 1,. . . , %, at least one out of {yil, . . . , yik,} 
is a quadratic residue modulo t and { 0 otherwise. 

P J X ,  y3 = 

Then the language AS(d) is the language of pairs (z,g for which p A ( z ,  y3 = 1. 
We consider polynomial-time ideal secret sharing schemes, that is schemes in 

which the secret and its shares are taken from the same set (for instance GF(q),  
where q is a prime), the algorithm of the dealer is polynomial-time, and it is 
possible to verlfy in polynomial time that a given set of shares reconstructs the 
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nput to P and V: 

A reference string (I. 
a (qg E T(t, m), where 1.1 = n and $= (PI,. . . ,ym). 

(Set 1 = T O  u, where o = 6 0 p 0 yll 0 .  o 71m o -. . o ypos(n+l),l 0 . .  . O 7p0r(m+i)lm 1 

lbl = 1 and pis  the concatenation of pij E Z$', 1 5 i 5 pog(rn + 1)1 and 1 5 j 5 m.) 
hstructions for P. 
P.1 (Prove that 2 i s  a Blum integer.) 

P.2 (Construct the sequence of admhsible shares.) 
Run the algorithm A on input z using the random string r and send its output Pj. 

For j such that gj E N Q R S ,  
for i = 1,. . . , [log(m + 1)1, 

let Sj be the integer whose binary representation is s l j  . I .  spor(m+l~l,. 
if pij E QR, then set 8i j  * 0, else set ~ i j  + 1; 

Randomly choose SI, with I such that 
constitutes a (k, m)-sequence of admissible shares for the bit b. 
For 1 such that yl E QR,, 

E QB,, in such a way that (Sit.. .,Sm) 

let ~ 1 1 . .  . apog(,,,+1)ll be the binary representation of Si. 
P.3 (Prove that the sequence of admissible  share^ has been correctly constructed.) 

For;= 1, ...,p og(rn+l)l, 
for j = 1,. . . , rn, 

(t,  yj)-open pij a~ s i j  by running the algorithm C on input 
(~,(-l) '- '~jpi> mod z,;-y, mod z) using yij as random string and obtaining as 
output nij. Send s,j rrnd Ilij. 

Input to V: 
a A proof Pf that z E BL. 
0 A sequence of shares (SI~.. . , Sm). 

A sequence of proofs Dij, for 1 5 i 5. flog(m + 1)1, 1 5 j 5 m. 

V.l (Verify that z is a Blurn integer.) 

V.2 (Verify the admissibility of the $equence of ahares.) 

Instructions for V. 

Run the algorithm B on input x and r thus verifying Pj. 

Verify that the m-uple (Sl, . , , , Sm) is a (k, m)-sequence of admissible shares for th 
bit b. 

For i = 1,. .. , pog(m + 1)1, 
V.3 (Verify that the sequence of admissible shares has been correctly constructed.) 

for j = 1,. . -, m, 
verify that the proof Ilij is correct by running the program of D on input 
(z,(-l)'-'ijpij mod 2, -y j  mod z) using 7ij as randam string. 

If all verifications are successful then ACCEPT else REJECT. 
~~ ~ ~ ~ 

Fig. 1. The proof system (P,V) for T(k, m). 
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secret. Supposing the existence of such a secret sharing scheme, a non-interactive 
perfect ZK proof system for AS(d) can be obtained in the following way. Let 
(z,@ E AS(d) be the input to  the protocol. Similarly to the protocol (P,V), 
the prover picks from the reference string rnpog(m + 1j1 integers p i j  E 2:’ and 
a bit b and (z,yj)-opens each p i j  as a bit sjj  in such a way that the following 
condition is satisfied: denoted by Sj the integer whose binary representation is 
slj * * - Srlog(m+l)l j , the rn-uple (5’1,. . . , Sm) represents a secret sharing scheme 
for b for the access structure A on P. 

Theorem 7. Let P be a set of rn participants and A a monotone access structure 
on it. Suppose there exist a polynomial-time secret sharing scheme for the access 
structure A. Then the  protocol described above is a non-interactive perfect z e r e  
knowledge proof system for AS(A). 

Proof’s sketch: Using the existence of a polynomial-time ideal secret sharing 
scheme for the access structure A, and ideas similar to those of protocol (P,V), 
one can see that the theorem holds. 0 

Notice that in the above theorem no restriction is imposed upon the size of 
d = { A l ,  * * ,  Ak}; e.g., k can be exponential in m (the length of the vector 9. 
This is actually what happens in threshold schemes. 
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