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Abstract. We show that any 3-round protocol (in general, any bounded 
round protocol) in which the verifier sends only random bits, and which 
is zero-knowledge against an honest verifier can be transformed into a 
protocol that is zereknowledge an general. The transformation is based 
on the interactive hashing technique of Naor, Ostrovsky, Venkatesan and 
Yung. No assumption is made on the computing power of prover or ver- 
ifier, and the transformation therefore is valid in both the proof and 
argument model, and does not rely on any computational assumptions 
such as the existence of one-way permutations. The technique is also 
applicable to proofs of knowledge. The transformation preserves perfect 
and statistical zero-knowledge. As corollaries, we show first a generaliza- 
tion of a result by Damgkrd on construction of bit-commitments from 
zero-knowledge proofs. Other corollaries give results on non-interactive 
zero-knowledge, one-sided proof systems, and black-box simulation. 

1 Introduction 

In this paper, we consider protocols in which a prover tries to  convince a verifier 
that  some claim is true. Some protocols can be shown to not reveal anything to 
the verifier, other than the fact that the claim is indeed true, by demonstrating 
that the verifier could have simulated the protocol himself. Such a protocol is said 
to be zero-knowledge [8]. Such protocols can be considered in the proof-model, 
where the prover is unbounded while the verifier is polynomial time restricted; 
or in the argument model, where the prover is poly-time bounded, while the 
verifier may (in most cases) be unbounded l .  

It is well known that the design of zero-knowledge proof or arguments is a 
difficult task. A main complicating factor is the demand that the protocol must 
be secure against dishonest behavior by both the prover and the verifier. For 
example, by allowing the prover too much control over the conversation in an 
effort to  protect her privacy, we risk also allowing a dishonest prover to cheat. 
It would be much easier if we could assume that the verifier wits honest. 

This does not mean that an honest verfier needs infinite computing power to execute 
the protocol, only that the protocol is secure, even against a cheating verifier with 
unbounded resources 
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In this paper, we consider this problem for protocols in which the verifier 
sends only random bits, sometimes called public-coin protocols. This is quite a 
large class of protocols, for example the general zero-knowledge proof systems 
and arguments for any NP-problem in (71, [2] are of this type. where the private 
are 

For any bounded round public-coin protocol secure (zero-knowledge) against 
an honest verifier, we present a generic method transforming it into a proto- 
col that is zero-knowlcdge against any verifier. This is based on the interactive 
hashing technique of [lo]. The transformation preserves the proving capabilities 
of the original protocol, i.e. if it was a proof system, resp. an argument, resp. 
a proof of knowledge, the resulting protocol will be a proof/argument/proof of 
knowledge for the same problem. Also, if the original protocol was perfect or sta- 
tistical zero-knowledge, so is the transformed protocol. In this paper, we show 
explicitly only the case of 3-round protocols. The generalization to any bounded 
number of rounds is in principle simple, but the proof is technically cumbersome. 
It is not clear how to generalize t o  any polynomial number of rounds. We will 
return to this problem later. 

As a corollary of the transformation, we obtain a generalization of the re- 
sult from [5],  on constructing bit commitments from a 3-move public coin zero- 
knowledge prnnf nf knowledge. The result from [5] needed a restriction on the 
number of random bits sent by the verifier, or on the error probability of the 
protocol; we show that this restriction is unnecessary. 

Another corollary is that any non-interactive zero-knowledge proof can be 
transformed into an ordinary interactive zero-knowledge proof for the same prob- 
lem. Also this transformation preserves perfect and statistical zero-knowledge. 

Finally, we show that for bounded round, public coin, statistical zero knowl- 
edge proofs, requiring one-sidedness (i.e. completeness with probability 1) or 
black-box simulation is not a restriction on the set of statements that can be 
proved. 

2 Related Work 

The idea of transforming honest-verifier zero-knowledge into zero-knowledge in 
general was first studied by Bellare, Micali and Ostrovsky [4]. Their transforma- 
tion needed a computational assumption of a specific algebraic type. 

Since then several constructions have reduced the computational assump- 
tions needed. The latest in this line of work is by Ostrovsky, Venkatesan and 
Yung [ll], who give a transformation which is based on interactive hashing and 
preserves statistical zero-knowlegde. This transformation works for any proto- 
col, but only in the zero-knowledge proof model, in which the verifier is assumed 
to  be polynomial time bounded: the transformation relies on the existence of a 
one-way permutation which the verifier cannot invert. 

Thus compared to [ll], the contribution of this paper is a new technique for 
using interactive hashing, showing that if we restrict to  bounded round public- 
coin protocols, we can get a transformation that does not need any computa- 
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tional assumptions and therefore works even if the verifier (and/or the prover) is 
unbounded. Moreover, our transformation preserves both perfect and statistical 
zero- knowledge. 

Finally some recent independent work should be mentioned, in which Os- 
trovsky and Wigderson [12] show that the existence of honest verifier zero- 
knowledge proofs for non-trivial (i.e. non-BPP) problems impliy the existence 
of certain kinds of one-way functions. It appears that this could be immediately 
combined with the result in [3] that everything provable is provable in computa- 
tional zero-knowledge assuming that one-way functions exist. This would give a 
transformation without assumptions (but one that  would not preserve statisti- 
cal or perfect zero-knowledge). However, the notion of one-way functions used in 
[12] is technically different from the standard one needed in [3], and the results 
therefore cannot be combined without solving some technical problems. 

3 Notation and Definitions 

In this section, the technical definitions axid notation for zero-knowledge and 
probabilistic algorithms are given. 

As the results below are only presented informally in this extended abstract, 
we omit technicalities here and present a minimum of notation. 

We will restrict ourselves to  3-move public coin protocols for simplicity. 
Thus we can describe the protocol we start with as follows: common input to 

the prover and verifier is a word x of length n bits in a language L. The prover I' 
sends a message rnl, receives a random bit string c from the verifier V .  Finally 
P sends a message m2 to V ,  who then outputs accept or reject. We let t = t(n) 
be the length of c. 

Any function of n converging to 0 faster than any polynomial fraction will 
be called negligible. 

We assume the following about the protocol: if x E L, and P, V are honest, 
the probability that V accepts is a t  least 1 - ~ ( n ) ,  where E is negligible. If 
x $ L, then the probability that V accepts, when talking to an arbitrary prover 
P' is negligible. For arguments, we need to  replace "arbitrary prover" by "any 
polynomial time prover". We do not make this explicit here, however, because 
the results below do not depend on any such restriction. 

Finally, we assume that the protocol is zero-knowledge against the honest 
verifier: there is an expected polynomial time probabilistic machine S, which 
on input x produces a simulated conversation which is indistinguishable from 
the real conversation between P and the honest V on input x. We do not make 
explicit here, which flavor of zero-knowledge we talk about (perfect, statistical 
or computational) because the construction to  follow will work for all flavors. In 
accordance with the usual models, we do assume, however, that cheating verifiers 
are polynomial time bounded in the case of computational zero-knowledge, but 
may be unbounded in case of statistical or perfect zero-knowledge. 
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4 The Transformation 

For the transformation of the protocol, we need the technique of interactive 
hashing [lo], which we repeat here with some changes to match our context: 
we work with the vector space GF(2)t ,  and we assume that P is capable of 
computing some function g on values in this space. 

1. P selects a random t-bit vector c, which is kept secret from V. 
2. V selects at random t - 1 vectors in GF(2)f ,  h1, ..., &-I,  such that the hi's 

3. For j = 1 to t - 1: 
are linearly independent over GF(2).  

- V sends hj  to  P, 
- P sends bj := hj  . c  (the inner product) to V. 

4. Both parties compute the two vectors C I , C Z ,  with the property that C j . h j  = b j  
for j = l..t - 1, where of course c is one of c1 , c~ .  We say that the hashing 
isolates the values c1,cz and that P answers consistently with c.  

5 .  V sends v = 1 or 2 to  P. 
6. P returns g(c,) to V. 

In [lo], the following is proved about this procedure (some of the wording 
has been changed): 

Lemma 1 At the end of Step 4, an arbitrary cheating V* playing the role of V 
has no Shannon information about which of c1, c2 P has answered consistently 
with. 

Lemma 2 Let P' be any machine which plays the role of P and is capable of 
returning both g(cl) and g(c2) with probability E .  Then there is a probabilistic 
polynomial time algorithm M using P* as an oracle, which can, on input a ran- 
dom c, compute g(c) with probability T(t,e),  where 2' is a function polynomial 
in l / t  and E. This probability is over the choice of c and internal coin tosses of 
M. 

While the proof of Lemma 1 is easy, the proof of Lemma 2 is very technical 
and complicated. We refer to [lo] for details. 

The reader may notice that the counterpart of P' in [lo] (called S' there) 
was assumed to  be polynomial time bounded. But this was only necessary there 
because g was the inverse of a one-way permutation, and the purpose was to 
show in a proof by contradiction that S' could compute this inverse. However, 
the analysis in [lo] essentially shows that for any strategy used by P* to  choose 
the bj's, at least one of c1, q will be almost uniformly chosen. Their construction 
of M will therefore work in our case for any P*. 

We are now ready to  show our transformed protocol for proving that x E L. 
The prover and verifier from the original protocol will be called Po, Vo. 
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Intuitively, the reason why the original protocol play not be secure against an 
arbitrary verifier V',  is that  even though we can, using S, generate valid looking 
transcripts rnl,c,rnz of the protocol where c is uniform, this distribution of c 
may not be the one that  V* would generate. In particular, there could be some 
dependency between c and m l  that  a random c-value has only negligible prob- 
ability of satisfying. Hence trying to use the honest-verifier simulator directly 
might take expected exponential time. We therefore apply in the transforma- 
tion the interactive hashing to cut down the number of possible c's to a small 
number. This increases our chance of hitting the right c-value in the simulation 
enough t o  make the expected time polynomial. We cut down to 2 possibilities 
for simplicity because this allows us to  use the results of [lo] without modifi- 
cations. In  practice, one could gain efficiency by stopping the hashing earlier, 
leaving more possibilities for c. But note that  if the transformation is to  remain 
provably secure, the number of possible values must be kept polynomial. 
The transformed protocol consists of repeating the following n = 1x1 times: 

1. P starts running PO on input x. She sends the ml generated by Po to V .  
2. P and V go through the interactive hashing process described above. The 

value g(c)  is defined to  be the m2 Po would return given that  the initial 
message was m l  and the challenge from VO was c. Therefore, to  compute 
g(cv),  P passes c, on to  Po, gets m2 back and sends i t  t o  V. 

3. V uses Vo t o  decide if the conversation ml,c, ,mz would lead to  accept by 
VO. If so, he outputs accept, otherwise he rejects. 

Remark: to  improve readability, we have simplified things a little by defining 
g as a simple function of c: in general there may be more than one valid answer 
from P given tha t  the first part of the conversation was ml , c, so that  g(c) would 
in fact be a random variable. This makes no difference in the following, however. 

Lemma 3 If (PO, VO)  is perfect resp. statistical resp. computational honest ver- 
ifier zero-knowledge, then (P, V )  is perfect resp. Statistical resp. computational 
zero- knowledge. 

Proof Sketch We show a simulator S', working with any verifier V*.  One 
iteration of steps 1-3 above will be called a round. It is sufficient to show how 
to simulate 1 round: 

1. Run the honest-verifier simulator S on input 2. This results in a conversation 

2. Go through the interactive hashing with V' while answering consistently 

3. Receive TJ from V".  If c = c,,, send m2 to V' ,  stop. Else rewind V' t o  the 

ml, c,mz. Send ml to  V'. 

with c.  

start  of Step 1. Go to  1. 
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It is clear that, by Lemma 1, the probability that c = cv would be exactly 
1/2 if the c we use in Step 2 had been uniformly chosen. The c we actually use is 
produced by S. In the perfect/statistical zero-knowledge case c cannot be distin- 
guished from a uniform choice by any unbounded verifier. In the computational 
case c is only computationally indistinguishable from a uniform choice, but the 
difference cannot be told by a polynomially bounded verifier. Hence in any case 
the probability that c = c, is away from 1/2 by at most a negligible amount, and 
therefore simulation of one round needs an expected number of rewinds that is 
O(1). Thus the complete simulation takes expected linear time. 

To show correctness of the output distribution, first note that it is sufficient 
for all flavors of indistinguishability to show that the simulation of 1 round is in- 
distinguishable from a real execution, since we have used a back-box simulation, 
which is closed under serial composition. 

Then observe the following: the messages sent by the verifier V' in real 
conversations are computed from mr chosen by PO and answers from P consistent 
with a random c-value. Our simulator uses ml,  c as produced by S ,  but otherwise 
uses the same algorithm as P to compute the answers in the interactive hashing. 
The final message mz is a random sample of PO'S final message, given that the 
first part of the conversation was ml and c, as chosen by V".  In the simulation 
we have a random sample of what S would produce, given that the first part of 
the conversation was ml, c, . 

This immediately implies that if the output of S is perfectly indistinguishable 
from real conversations between PO and VO, then the output of S' is perfectly in- 
distinguishable from conversations between P and V'. Statistical indistinguisha- 
bility introduces at most it negligible deviation from real conversations. 

For the computational case, we give a proof by contradiction: assume that we 
have a successful distinguisher D for S' . Then we can turn D into a distinguisher 
for S: it is well known that indistinguishablity does not depend on whether the 
distinguisher gets 1 or any polynomial number of samples of the distributions in 
question. So assume we are given a list L containing a linear number of samples 
produced by either S or P0,Vo. We then use the algorithm of S' to make from 
this a conversation C, seemingly between P and V'. This is done by changing 
Step 1 such that we take the next sample in the input list, in stead of running 
S. The only problem is if many rewinds are necessary, so that L is exhausted 
before we finish. But this only happens with negligible probability, as we have a 
linear number of samples. We give the conversation produced to D and output 
its result. 

It is now clear that if L was produced by S, C will be statistically indistin- 
guishable from the output of S", while if it was produced by Po,Vo, C will be 
statistically indistinguishable from conversations between P and V .  Therefore, 
if D is a successful distinguisher for S', we get a successful distinguisher for S. 

Lemma 4 For any prover P' that convinces the verifier in step 1-3 of the trans- 
formed protocol with probability 1/2 + E ,  there is a prover P,* in the original 
protocol which convinces & with probability T(t (n) ,e ) ,  where T is a fuuction 
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polynomial in l/t(n) and E. Po' is polynomial time, using P* as an oracle. 

Proof We show the algorithm of P;: 
1. Start running P". Get ml, and send it to &. 
2. Receive c from VO. 
3. Use the procedure of Lemma 2 to  get an valid m2 = g(c) from P*. Send it 

to vo 
To see that this works, observe that the success probability of 1/2 + E of P' 

implies that for at least a fraction E of the possible choices of the hj's, we can, 
by rewinding P' get correct replies to  both v = 1 and 2. Therefore P' satisfies 
the requirements of Lemma 2, and we get that we convince Vo with probability 
W n ) ,  €1. 

Theorem 1 Assume that a language L has an honest verifier zero-knowlegde 
proof system, resp. argument that is a 3-round public coin protocol. Any such 
protocol can be transformed into an ordinary zero-knowledge proof, resp. argu- 
ment for L. 

Similarly, any honest verifier zero-knowledge proof of knowledge for a pred- 
icate PTe that is a %round public coin protocol can be transformed into an 
ordinary zero-knowledge proof of knowledge for Pre. 

Both types of transformations preserve perfect and statistical zero-knowledge. 
The transformations are efficient in the sense that provers and verifiers in the 
transformed protocols are polynomial time machines that  use the original provers 
and verifiers aa oracles. 

Proof In all cases, the transformation given above will work. 
The statements on zero-knowledge are clear from Lemma 3. 
If the original protocol is a proof system (an argument), it is clear from 

Lemma 4 that the transformed protocol is also a proof system (an argument). 
Lemma 4 also shows that if the original protocol was a proof of knowledge, 

so is the transformed one: we can construct a knowledge extractor for P', by 
first using Lemma 4 to  get a prover Po" in the original protocol and then use the 
knowledge extractor we know exists for the original protocol. 

Remark on generalizations of Theorem 1 To generalize Theorem 1 to any 
bounded number of rounds, we make the transformation by simply doing one 
interactive hashing process for each random string sent by the verifier. Zero- 
knowledge is proved essentially as before. Showing soundness of the transformed 
proof can be done by proving a multi-round version of Lemma 4 by essentially 
applying the technique of Lemma 2 once for each interactive hashing done. It 
appears, however, that the overall success probability of the resulting reduction 
will tend to  0 exponentially in the number of rounds, and therefore it is not clear 
how to  generalize Theorem 1 to  any polynomial number of rounds. 
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5 Consequences of the main result 

5.1 

In [5] ,  it was shown how to construct bit commitments from %move public- 
coin zero-knowledge proofs of knowledge. These commitments will hide the bits 
committed to statistically, resp. perfectly if the protocol used is statistical, resp. 
perfect zero-knowledge. 

The technique used in (51, however, only works if either the number of bits 
sent by the verifier is constant, or the error probability decreases sufficiently fast  
as a function of the security parameter. 

What we have shown in the previous section is how to transform any 3-move 
public coin protocol into one that is essentially equivalent to a protocol where 
the verifier sends only 1 bit. Hence the technique from [5] can be used on the 
transformed protocol, and we get directly from Theorem 1: 

Bit Commitments from Zero-Knowledge Proofs 

Corollary 1 Assume there exists any Smove public coin zero-knowledge proof 
of knowledge for a problem of which hard instances can be sampled efficiently. 
Then bit commitments exist. The commitments will hide the bits committed 
to statistically, resp. perfectly if the protocol used is statistical, resp. perfect 
zero-knowledge. The commitments are computationally binding. 

The prime interest of this result is its ability to produce perfectly or statis- 
tically hiding bit commitments. Such commitments otherwise seem to require 
one-way permutations or collision intractable hash functions, and neither as- 
sumption seems to follow from the assumption of Corollary 1. 

5.2 Non-Interactive Zero-Knowledge 

In the non-interactive zero-knowledge model [l], prover and verifier both have 
access to  a uniformly chosen, random bit string. Based on this string, the prover 
can produce a proof consisting of just 1 message, that can be checked by the 
verifier. A simulator in this model produces both a simulated shared random 
string and a proof. Security from both the verifier’s and prover’s point of view 
is based on trust in the randomness of the shared string. 

Thus the non-interactive model is less powerful than the ordinary one because 
interaction is not allowed, but more powerful because a shared random string 
is assumed as a part of the model. It is therefore not immediately clear, if a 
language that has a non-interactive (perfect) zero-knowledge proof also has an 
ordinary (perfect) zero-knowledge proof. 

F’rom Theorem 1, however, we can get the following: 

Corollary 2 If a language L has a non-interactive perfect/statisticaJ/computa- 
tional zero-knowledge proof, then L has an ordinary perfect/statistical/computa- 
tional zero-knowledge proof. 
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Proof Just observe that from the non-interactive proof we can trivially get an 
interactive honest-verifier zero-knowledge proof, by just letting the verifier choose 
the ”shared” random string, and then let the prover respond with the proof. This 
is of course a 3-round public coin protocol (where the prover’s first message is 
empty), so we can use Theorem 1. 

5.3 One-sidedness and Black-box Simulation 

In [ll], Ostrovsky, Venkatesan and Yung show a transformation from honest 
verifier zero-knowledge to ordinary zero-knowledge. As mentioned in the intro- 
duction, this transformation works for both public and secret coin protocols, but 
needs to  assume existence of one-way permutations. They show show two impli- 
cations, which also rely on one-way permutations. These results were first shown 
in [4], under a stronger computational assumption. With our result, we get those 
two corollaries for bounded round public coin protocols without computational 
assumptions. 

In [6] ,  it is shown that any language which has an Arthur-Merlin proof (pub- 
lic coin protocol), also has a one-sided Arthur-Merlin proof, i.e. one in which the 
verfier always accepts if the common input is in L.  Their proof is a transforma- 
tion that builds a one-sided proof system in which the number of rounds in the 
original proof system is preserved. The transformed protocol is not necessarily 
zero-knowledge, even if the original protocol was. But it can (with minor modifi- 
cations) be shown to be honest verifier statistical zero-knowledge, if the original 
protocol was honest verifier statistical zero-knowledge. This means that we get 
the following: 

Corollary 3 If a language L has a bounded round public coin statistical zero- 
knowledge proof system, it also has a one-sided public coin statistical zero- 
knowledge proof system. 

A final implication concerns black-box simulation, which is a special case of 
zero-knowledge, in which the simulator is only allowed to use the verifier as an 
oracle. It is unknown in general whether black-box simulation is more restrictive 
than the most liberal definition, where the simulator is allowed to  depend on the 
verifier. But for public coin bounded round protocols, we can show that black 
box simulation is not a restriction for any flavor of zero-knowledge, simply from 
the fact that  the simulation guaranteed by Theorem 1 and its generalization is 
black- box: 

Corollary 4 If a language L has a bounded round public coin perfect, statistical 
or computational zero-knowledge proof system, it also has a public coin perfect, 
statistical or computational black-box zero-knowledge proof system. 
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6 Open Problem 

The main open problem arising from the results in this paper is of course whether 
a general transformation from honest verifier zero-knowledge can be found tha t  
preserves perfect and statistical zero-knowledge. It is worth noting tha t  this 
problem would be immediately solved if perfectly hiding bit commitments could 
be implemented based on any one-way function. But also this problem is open 
so far. 
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