
Interactive Hashing can Simplify
Zero-Knowledge Protocol Design Without

Computational Assumptions
Extended Abstract

Ivan B. Damgdrd

Aarhus University

Abstract. We show that any 3-round protocol (in general, any bounded
round protocol) in which the verifier sends only random bits, and which
is zero-knowledge against an honest verifier can be transformed into a
protocol that is zereknowledge an general. The transformation is based
on the interactive hashing technique of Naor, Ostrovsky, Venkatesan and
Yung. No assumption is made on the computing power of prover or ver-
ifier, and the transformation therefore is valid in both the proof and
argument model, and does not rely on any computational assumptions
such as the existence of one-way permutations. The technique is also
applicable to proofs of knowledge. The transformation preserves perfect
and statistical zero-knowledge. As corollaries, we show first a generaliza-
tion of a result by Damgkrd on construction of bit-commitments from
zero-knowledge proofs. Other corollaries give results on non-interactive
zero-knowledge, one-sided proof systems, and black-box simulation.

1 Introduction

In this paper, we consider protocols in which a prover tries to convince a verifier
that some claim is true. Some protocols can be shown to not reveal anything to
the verifier, other than the fact that the claim is indeed true, by demonstrating
that the verifier could have simulated the protocol himself. Such a protocol is said
to be zero-knowledge [8]. Such protocols can be considered in the proof-model,
where the prover is unbounded while the verifier is polynomial time restricted;
or in the argument model, where the prover is poly-time bounded, while the
verifier may (in most cases) be unbounded l .

It is well known that the design of zero-knowledge proof or arguments is a
difficult task. A main complicating factor is the demand that the protocol must
be secure against dishonest behavior by both the prover and the verifier. For
example, by allowing the prover too much control over the conversation in an
effort to protect her privacy, we risk also allowing a dishonest prover to cheat.
It would be much easier if we could assume that the verifier wits honest.

This does not mean that an honest verfier needs infinite computing power to execute
the protocol, only that the protocol is secure, even against a cheating verifier with
unbounded resources

1

D.R. Stinson (Ed.): Advances in Cryptology - CRYPT0 '93, LNCS 773, pp. 100-109,1994.
0 Springer-Verlag Berlin Heidelberg 1994

101

In this paper, we consider this problem for protocols in which the verifier
sends only random bits, sometimes called public-coin protocols. This is quite a
large class of protocols, for example the general zero-knowledge proof systems
and arguments for any NP-problem in (71, [2] are of this type. where the private
are

For any bounded round public-coin protocol secure (zero-knowledge) against
an honest verifier, we present a generic method transforming it into a proto-
col that is zero-knowlcdge against any verifier. This is based on the interactive
hashing technique of [lo]. The transformation preserves the proving capabilities
of the original protocol, i.e. if it was a proof system, resp. an argument, resp.
a proof of knowledge, the resulting protocol will be a proof/argument/proof of
knowledge for the same problem. Also, if the original protocol was perfect or sta-
tistical zero-knowledge, so is the transformed protocol. In this paper, we show
explicitly only the case of 3-round protocols. The generalization to any bounded
number of rounds is in principle simple, but the proof is technically cumbersome.
It is not clear how to generalize t o any polynomial number of rounds. We will
return to this problem later.

As a corollary of the transformation, we obtain a generalization of the re-
sult from [5], on constructing bit commitments from a 3-move public coin zero-
knowledge prnnf nf knowledge. The result from [5] needed a restriction on the
number of random bits sent by the verifier, or on the error probability of the
protocol; we show that this restriction is unnecessary.

Another corollary is that any non-interactive zero-knowledge proof can be
transformed into an ordinary interactive zero-knowledge proof for the same prob-
lem. Also this transformation preserves perfect and statistical zero-knowledge.

Finally, we show that for bounded round, public coin, statistical zero knowl-
edge proofs, requiring one-sidedness (i.e. completeness with probability 1) or
black-box simulation is not a restriction on the set of statements that can be
proved.

2 Related Work

The idea of transforming honest-verifier zero-knowledge into zero-knowledge in
general was first studied by Bellare, Micali and Ostrovsky [4]. Their transforma-
tion needed a computational assumption of a specific algebraic type.

Since then several constructions have reduced the computational assump-
tions needed. The latest in this line of work is by Ostrovsky, Venkatesan and
Yung [ll], who give a transformation which is based on interactive hashing and
preserves statistical zero-knowlegde. This transformation works for any proto-
col, but only in the zero-knowledge proof model, in which the verifier is assumed
to be polynomial time bounded: the transformation relies on the existence of a
one-way permutation which the verifier cannot invert.

Thus compared to [ll], the contribution of this paper is a new technique for
using interactive hashing, showing that if we restrict to bounded round public-
coin protocols, we can get a transformation that does not need any computa-

102

tional assumptions and therefore works even if the verifier (and/or the prover) is
unbounded. Moreover, our transformation preserves both perfect and statistical
zero- knowledge.

Finally some recent independent work should be mentioned, in which Os-
trovsky and Wigderson [12] show that the existence of honest verifier zero-
knowledge proofs for non-trivial (i.e. non-BPP) problems impliy the existence
of certain kinds of one-way functions. It appears that this could be immediately
combined with the result in [3] that everything provable is provable in computa-
tional zero-knowledge assuming that one-way functions exist. This would give a
transformation without assumptions (but one that would not preserve statisti-
cal or perfect zero-knowledge). However, the notion of one-way functions used in
[12] is technically different from the standard one needed in [3], and the results
therefore cannot be combined without solving some technical problems.

3 Notation and Definitions

In this section, the technical definitions axid notation for zero-knowledge and
probabilistic algorithms are given.

As the results below are only presented informally in this extended abstract,
we omit technicalities here and present a minimum of notation.

We will restrict ourselves to 3-move public coin protocols for simplicity.
Thus we can describe the protocol we start with as follows: common input to

the prover and verifier is a word x of length n bits in a language L. The prover I'
sends a message rnl, receives a random bit string c from the verifier V . Finally
P sends a message m2 to V , who then outputs accept or reject. We let t = t(n)
be the length of c.

Any function of n converging to 0 faster than any polynomial fraction will
be called negligible.

We assume the following about the protocol: if x E L, and P, V are honest,
the probability that V accepts is a t least 1 - ~ (n) , where E is negligible. If
x $ L, then the probability that V accepts, when talking to an arbitrary prover
P' is negligible. For arguments, we need to replace "arbitrary prover" by "any
polynomial time prover". We do not make this explicit here, however, because
the results below do not depend on any such restriction.

Finally, we assume that the protocol is zero-knowledge against the honest
verifier: there is an expected polynomial time probabilistic machine S, which
on input x produces a simulated conversation which is indistinguishable from
the real conversation between P and the honest V on input x. We do not make
explicit here, which flavor of zero-knowledge we talk about (perfect, statistical
or computational) because the construction to follow will work for all flavors. In
accordance with the usual models, we do assume, however, that cheating verifiers
are polynomial time bounded in the case of computational zero-knowledge, but
may be unbounded in case of statistical or perfect zero-knowledge.

103

4 The Transformation

For the transformation of the protocol, we need the technique of interactive
hashing [lo], which we repeat here with some changes to match our context:
we work with the vector space GF(2)t , and we assume that P is capable of
computing some function g on values in this space.

1. P selects a random t-bit vector c, which is kept secret from V.
2. V selects at random t - 1 vectors in GF(2)f , h1, ..., &-I, such that the hi's

3. For j = 1 to t - 1:
are linearly independent over GF(2).

- V sends hj to P,
- P sends bj := hj . c (the inner product) to V.

4. Both parties compute the two vectors C I , C Z , with the property that C j . h j = b j
for j = l..t - 1, where of course c is one of c1 , c~ . We say that the hashing
isolates the values c1,cz and that P answers consistently with c.

5 . V sends v = 1 or 2 to P.
6. P returns g(c,) to V.

In [lo], the following is proved about this procedure (some of the wording
has been changed):

Lemma 1 At the end of Step 4, an arbitrary cheating V* playing the role of V
has no Shannon information about which of c1, c2 P has answered consistently
with.

Lemma 2 Let P' be any machine which plays the role of P and is capable of
returning both g(cl) and g(c2) with probability E . Then there is a probabilistic
polynomial time algorithm M using P* as an oracle, which can, on input a ran-
dom c, compute g(c) with probability T(t,e), where 2' is a function polynomial
in l / t and E. This probability is over the choice of c and internal coin tosses of
M.

While the proof of Lemma 1 is easy, the proof of Lemma 2 is very technical
and complicated. We refer to [lo] for details.

The reader may notice that the counterpart of P' in [lo] (called S' there)
was assumed to be polynomial time bounded. But this was only necessary there
because g was the inverse of a one-way permutation, and the purpose was to
show in a proof by contradiction that S' could compute this inverse. However,
the analysis in [lo] essentially shows that for any strategy used by P* to choose
the bj's, at least one of c1, q will be almost uniformly chosen. Their construction
of M will therefore work in our case for any P*.

We are now ready to show our transformed protocol for proving that x E L.
The prover and verifier from the original protocol will be called Po, Vo.

104

Intuitively, the reason why the original protocol play not be secure against an
arbitrary verifier V', is that even though we can, using S, generate valid looking
transcripts rnl,c,rnz of the protocol where c is uniform, this distribution of c
may not be the one that V* would generate. In particular, there could be some
dependency between c and m l that a random c-value has only negligible prob-
ability of satisfying. Hence trying to use the honest-verifier simulator directly
might take expected exponential time. We therefore apply in the transforma-
tion the interactive hashing to cut down the number of possible c's to a small
number. This increases our chance of hitting the right c-value in the simulation
enough t o make the expected time polynomial. We cut down to 2 possibilities
for simplicity because this allows us to use the results of [lo] without modifi-
cations. In practice, one could gain efficiency by stopping the hashing earlier,
leaving more possibilities for c. But note that if the transformation is to remain
provably secure, the number of possible values must be kept polynomial.
The transformed protocol consists of repeating the following n = 1x1 times:

1. P starts running PO on input x. She sends the ml generated by Po to V .
2. P and V go through the interactive hashing process described above. The

value g(c) is defined to be the m2 Po would return given that the initial
message was m l and the challenge from VO was c. Therefore, to compute
g(cv), P passes c, on to Po, gets m2 back and sends i t t o V.

3. V uses Vo t o decide if the conversation ml,c, ,mz would lead to accept by
VO. If so, he outputs accept, otherwise he rejects.

Remark: to improve readability, we have simplified things a little by defining
g as a simple function of c: in general there may be more than one valid answer
from P given tha t the first part of the conversation was ml , c, so that g(c) would
in fact be a random variable. This makes no difference in the following, however.

Lemma 3 If (PO, VO) is perfect resp. statistical resp. computational honest ver-
ifier zero-knowledge, then (P, V) is perfect resp. Statistical resp. computational
zero- knowledge.

Proof Sketch We show a simulator S', working with any verifier V*. One
iteration of steps 1-3 above will be called a round. It is sufficient to show how
to simulate 1 round:

1. Run the honest-verifier simulator S on input 2. This results in a conversation

2. Go through the interactive hashing with V' while answering consistently

3. Receive TJ from V". If c = c,,, send m2 to V' , stop. Else rewind V' t o the

ml, c,mz. Send ml to V'.

with c.

start of Step 1. Go to 1.

105

It is clear that, by Lemma 1, the probability that c = cv would be exactly
1/2 if the c we use in Step 2 had been uniformly chosen. The c we actually use is
produced by S. In the perfect/statistical zero-knowledge case c cannot be distin-
guished from a uniform choice by any unbounded verifier. In the computational
case c is only computationally indistinguishable from a uniform choice, but the
difference cannot be told by a polynomially bounded verifier. Hence in any case
the probability that c = c, is away from 1/2 by at most a negligible amount, and
therefore simulation of one round needs an expected number of rewinds that is
O(1). Thus the complete simulation takes expected linear time.

To show correctness of the output distribution, first note that it is sufficient
for all flavors of indistinguishability to show that the simulation of 1 round is in-
distinguishable from a real execution, since we have used a back-box simulation,
which is closed under serial composition.

Then observe the following: the messages sent by the verifier V' in real
conversations are computed from mr chosen by PO and answers from P consistent
with a random c-value. Our simulator uses ml, c as produced by S , but otherwise
uses the same algorithm as P to compute the answers in the interactive hashing.
The final message mz is a random sample of PO'S final message, given that the
first part of the conversation was ml and c, as chosen by V". In the simulation
we have a random sample of what S would produce, given that the first part of
the conversation was ml, c, .

This immediately implies that if the output of S is perfectly indistinguishable
from real conversations between PO and VO, then the output of S' is perfectly in-
distinguishable from conversations between P and V'. Statistical indistinguisha-
bility introduces at most it negligible deviation from real conversations.

For the computational case, we give a proof by contradiction: assume that we
have a successful distinguisher D for S' . Then we can turn D into a distinguisher
for S: it is well known that indistinguishablity does not depend on whether the
distinguisher gets 1 or any polynomial number of samples of the distributions in
question. So assume we are given a list L containing a linear number of samples
produced by either S or P0,Vo. We then use the algorithm of S' to make from
this a conversation C, seemingly between P and V'. This is done by changing
Step 1 such that we take the next sample in the input list, in stead of running
S. The only problem is if many rewinds are necessary, so that L is exhausted
before we finish. But this only happens with negligible probability, as we have a
linear number of samples. We give the conversation produced to D and output
its result.

It is now clear that if L was produced by S, C will be statistically indistin-
guishable from the output of S", while if it was produced by Po,Vo, C will be
statistically indistinguishable from conversations between P and V . Therefore,
if D is a successful distinguisher for S', we get a successful distinguisher for S.

Lemma 4 For any prover P' that convinces the verifier in step 1-3 of the trans-
formed protocol with probability 1/2 + E , there is a prover P,* in the original
protocol which convinces & with probability T(t (n) ,e) , where T is a fuuction

1 06

polynomial in l/t(n) and E. Po' is polynomial time, using P* as an oracle.

Proof We show the algorithm of P;:
1. Start running P". Get ml, and send it to &.
2. Receive c from VO.
3. Use the procedure of Lemma 2 to get an valid m2 = g(c) from P*. Send it

to vo
To see that this works, observe that the success probability of 1/2 + E of P'

implies that for at least a fraction E of the possible choices of the hj's, we can,
by rewinding P' get correct replies to both v = 1 and 2. Therefore P' satisfies
the requirements of Lemma 2, and we get that we convince Vo with probability
W n) , €1.

Theorem 1 Assume that a language L has an honest verifier zero-knowlegde
proof system, resp. argument that is a 3-round public coin protocol. Any such
protocol can be transformed into an ordinary zero-knowledge proof, resp. argu-
ment for L.

Similarly, any honest verifier zero-knowledge proof of knowledge for a pred-
icate PTe that is a %round public coin protocol can be transformed into an
ordinary zero-knowledge proof of knowledge for Pre.

Both types of transformations preserve perfect and statistical zero-knowledge.
The transformations are efficient in the sense that provers and verifiers in the
transformed protocols are polynomial time machines that use the original provers
and verifiers aa oracles.

Proof In all cases, the transformation given above will work.
The statements on zero-knowledge are clear from Lemma 3.
If the original protocol is a proof system (an argument), it is clear from

Lemma 4 that the transformed protocol is also a proof system (an argument).
Lemma 4 also shows that if the original protocol was a proof of knowledge,

so is the transformed one: we can construct a knowledge extractor for P', by
first using Lemma 4 to get a prover Po" in the original protocol and then use the
knowledge extractor we know exists for the original protocol.

Remark on generalizations of Theorem 1 To generalize Theorem 1 to any
bounded number of rounds, we make the transformation by simply doing one
interactive hashing process for each random string sent by the verifier. Zero-
knowledge is proved essentially as before. Showing soundness of the transformed
proof can be done by proving a multi-round version of Lemma 4 by essentially
applying the technique of Lemma 2 once for each interactive hashing done. It
appears, however, that the overall success probability of the resulting reduction
will tend to 0 exponentially in the number of rounds, and therefore it is not clear
how to generalize Theorem 1 to any polynomial number of rounds.

107

5 Consequences of the main result

5.1

In [5] , it was shown how to construct bit commitments from %move public-
coin zero-knowledge proofs of knowledge. These commitments will hide the bits
committed to statistically, resp. perfectly if the protocol used is statistical, resp.
perfect zero-knowledge.

The technique used in (51, however, only works if either the number of bits
sent by the verifier is constant, or the error probability decreases sufficiently fast
as a function of the security parameter.

What we have shown in the previous section is how to transform any 3-move
public coin protocol into one that is essentially equivalent to a protocol where
the verifier sends only 1 bit. Hence the technique from [5] can be used on the
transformed protocol, and we get directly from Theorem 1:

Bit Commitments from Zero-Knowledge Proofs

Corollary 1 Assume there exists any Smove public coin zero-knowledge proof
of knowledge for a problem of which hard instances can be sampled efficiently.
Then bit commitments exist. The commitments will hide the bits committed
to statistically, resp. perfectly if the protocol used is statistical, resp. perfect
zero-knowledge. The commitments are computationally binding.

The prime interest of this result is its ability to produce perfectly or statis-
tically hiding bit commitments. Such commitments otherwise seem to require
one-way permutations or collision intractable hash functions, and neither as-
sumption seems to follow from the assumption of Corollary 1.

5.2 Non-Interactive Zero-Knowledge

In the non-interactive zero-knowledge model [l], prover and verifier both have
access to a uniformly chosen, random bit string. Based on this string, the prover
can produce a proof consisting of just 1 message, that can be checked by the
verifier. A simulator in this model produces both a simulated shared random
string and a proof. Security from both the verifier’s and prover’s point of view
is based on trust in the randomness of the shared string.

Thus the non-interactive model is less powerful than the ordinary one because
interaction is not allowed, but more powerful because a shared random string
is assumed as a part of the model. It is therefore not immediately clear, if a
language that has a non-interactive (perfect) zero-knowledge proof also has an
ordinary (perfect) zero-knowledge proof.

F’rom Theorem 1, however, we can get the following:

Corollary 2 If a language L has a non-interactive perfect/statisticaJ/computa-
tional zero-knowledge proof, then L has an ordinary perfect/statistical/computa-
tional zero-knowledge proof.

108

Proof Just observe that from the non-interactive proof we can trivially get an
interactive honest-verifier zero-knowledge proof, by just letting the verifier choose
the ”shared” random string, and then let the prover respond with the proof. This
is of course a 3-round public coin protocol (where the prover’s first message is
empty), so we can use Theorem 1.

5.3 One-sidedness and Black-box Simulation

In [ll], Ostrovsky, Venkatesan and Yung show a transformation from honest
verifier zero-knowledge to ordinary zero-knowledge. As mentioned in the intro-
duction, this transformation works for both public and secret coin protocols, but
needs to assume existence of one-way permutations. They show show two impli-
cations, which also rely on one-way permutations. These results were first shown
in [4], under a stronger computational assumption. With our result, we get those
two corollaries for bounded round public coin protocols without computational
assumptions.

In [6] , it is shown that any language which has an Arthur-Merlin proof (pub-
lic coin protocol), also has a one-sided Arthur-Merlin proof, i.e. one in which the
verfier always accepts if the common input is in L. Their proof is a transforma-
tion that builds a one-sided proof system in which the number of rounds in the
original proof system is preserved. The transformed protocol is not necessarily
zero-knowledge, even if the original protocol was. But it can (with minor modifi-
cations) be shown to be honest verifier statistical zero-knowledge, if the original
protocol was honest verifier statistical zero-knowledge. This means that we get
the following:

Corollary 3 If a language L has a bounded round public coin statistical zero-
knowledge proof system, it also has a one-sided public coin statistical zero-
knowledge proof system.

A final implication concerns black-box simulation, which is a special case of
zero-knowledge, in which the simulator is only allowed to use the verifier as an
oracle. It is unknown in general whether black-box simulation is more restrictive
than the most liberal definition, where the simulator is allowed to depend on the
verifier. But for public coin bounded round protocols, we can show that black
box simulation is not a restriction for any flavor of zero-knowledge, simply from
the fact that the simulation guaranteed by Theorem 1 and its generalization is
black- box:

Corollary 4 If a language L has a bounded round public coin perfect, statistical
or computational zero-knowledge proof system, it also has a public coin perfect,
statistical or computational black-box zero-knowledge proof system.

109

6 Open Problem

The main open problem arising from the results in this paper is of course whether
a general transformation from honest verifier zero-knowledge can be found tha t
preserves perfect and statistical zero-knowledge. It is worth noting tha t this
problem would be immediately solved if perfectly hiding bit commitments could
be implemented based on any one-way function. But also this problem is open
so far.

References

1. Blum, De Santis, Micali and Persiano: Non-Interactive Zero-Knowledge, SIAM

2. G.Brassard, D.Chaum and C.Crkpeau: Minimum D i d o s u r e Proofs of Knowledge,

3. Ben-Or, Goldreich, Goldwasser, Hbtad, Killian, M i d and Rogaway: Everything

4. Bellare, Micali and Ostrovsky: The (true) Complezity of Statsiticai Zero-

5. 1.DamgArd: O n the Ezistence of Bit Commitment Schemes and Zero-Knowledge

6. Goldreich, Mansour and Sipser: Poofs that Never Fail and Random Selection, FOCS

7. O.Goldreich, S.Micali and A.Wigderson: Proof that Yield Nothing b i t their Validity

8. S.Goldwasser, S.Micali and C.Rackoff: The Knowledge Complexity of Interactive

9. Impagliazzo and Yung: Direct Minimum-Knowledge Computations, Crypto 87.

Journal of Computing, v01.20, no.6, 1991.

JCSS.

Provable is Provable in Zero-Kowledge, Proc. of Crypt0 88.

Knowledge, STOC 90.

Proofs, Proc. of Crypto 89, Springer Verlag LNCS series.

87.

and a Methodology of Cryptographic Protocol Design. Proc. of FOCS 86.

Proof Sys tems , SIAM J.Computing, vo1.18, pp.186-208, 1989.

10. Naor, Ostrovsky, Venkatesan and Yung: Zero-Knowledge Arguments ~ O T N p can
be bated o n General Complezity Assumptions, Proc. of Crypt0 92, Springer Verlag
LNCS series.

11. Ostrovsky, Venkatesan and Yung: Interactive EaJhing Simplifies Zero-Knowledge
Protocol Design, to appear in Proc. of EuroCry-pt 93, Springer Verlag LNCS Series.

12. Ostrovsky and Wigderson: One-way f i n c t i o m are e s n t i a l f o r non-trivial zero-
knowledge proofs, preliminary manuscript.

	Interactive Hashing can SimplifyZero-Knowledge Protocol Design WithoutComputational Assumptions
	1 Introduction
	2 Related Work
	3 Notation and Definitions
	4 The Transformation
	5 Consequences of the main result
	5.1 Bit Commitments from Zero-Knowledge Proofs
	5.2 Non-Interactive Zero-Knowledge
	5.3 One-sidedness and Black-box Simulation

	6 Open Problem
	References

