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Abstract. This paper introduces two new ideas in the construction of
fast universal hash functions geared towards the task of message authen-
tication. First, we describe a simple but novel family of universal hash
functions that is more efficient than many standard constructions. We
compare our hash functions to the MMH family studied by Halevi and
Krawczyk [12]. All the main techniques used to optimize MMH work on
our hash functions as well. Second, we introduce additional techniques for
speeding up our constructions; these techniques apply to MMH and may
apply to other hash functions. The techniques involve ignoring certain
parts of the computation, while still retaining the necessary statistical
properties for secure message authentication. Finally, we give implemen-
tation results on an ARM processor. Our constructions are general and
can be used in any setting where universal hash functions are needed;
therefore they may be of independent interest.

Key words: Message authentication codes, Universal Hashing.

1 Introduction

Message Authentication. Designing good Message Authentication schemes
is a very important objective in cryptography. The goal in message authentica-
tion is for one party to efficiently transmit a message to another party in such
a way that the receiving party can determine whether or not the message he
receives has been tampered with. The setting involves two parties, Alice and
Bob, who have agreed on a pre-specified secret key x. Two algorithms are used:
an algorithm Sx that applies a tag to a message, and a verification algorithm Vx

that checks if the tag associated with a given message is valid. If Alice wants to
send a message M to Bob, she first computes a message authentication code, or
MAC, µ = Sx(M). She sends (M, µ) to Bob, and upon receiving the pair, Bob
computes Vx(M, µ) which returns 1 if the MAC is valid, or returns 0 otherwise.
Without knowledge of the secret key x, it should be infeasible for an adversary
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to construct a message and a corresponding MAC that the verification algorithm
will accept as valid. The formal security requirement for a MAC was first defined
by Bellare, et al [4]. This definition is analogous to the formal security definition
of a digital signature [11]. In particular, we say that an adversary forges a MAC
if, when given oracle access to (Sx, Vx), where x is kept secret, the adversary can
come up with a pair (M∗, µ∗) such that Vx(M∗, µ∗) = 1 but the message M∗

was never made an input to the oracle for Sx.

Importance of Efficient MACs. In general, MACs are computed frequently
and on inputs which are often thousands of bytes long. Moreover, computing and
verifying tags is typically done in software, and may be done on relatively weak
platforms. Additionally, the computations must be done in real time. Therefore,
developing techniques for optimizing MAC Algorithms while retaining the ap-
propriate level of security is crucial. This paper presents two novel ideas in this
direction.

Common Approaches to Message Authentication. One approach to
message authentication involves using a secure block cipher, such as DES [21],
in cipher block chaining mode. Another approach to message authentication,
often seen in practice, involves using cryptographic hash functions like MD5
[24]. For example, one approach was to set µ = MD5(x · m · x); unfortunately,
this particular scheme is vulnerable to a clever key recovery attack due to Preneel
and and van Oorschot [23]. Other work on using cryptographic hash functions
in MACs is the HMAC construction of Bellare, et al [3]; their schemes are good
because they use fast and secure cryptographic building blocks. At first it appears
that these techniques yield the most efficient results; however, Wegman and
Carter [28] discovered that universal hash functions, allow us to avoid using
heavy duty cryptographic primitives on the entire input string.

The Universal Hash Function Approach. In this approach, one starts
with a family of hash functions H where for any pair m 6= m′ and for any
element δ in the range, Prh[h(m) − h(m′) = δ] ≤ ε. Here ε is a parameter
related to the security of the MAC). Such functions are called ε-∆-universal hash
functions. Now, in order to compute the authentication tag for a message m, the
communicating parties secretly agree on a function h ∈ H chosen at random,
and on a sequence of random pads p1, p2 . . .. To compute a MAC on the i-th
message mi, the sender computes µi = h(mi) + pi. One remarkable aspect of
this approach is that, even if a computationally unbounded adversary performs q
black-box oracle queries to both algorithms used by the MAC, he has probability
less than qε to forge the MAC. The idea in the Wegman-Carter construction is
to pre-process a message quickly using universal hash functions, and then apply
a cryptographic operation such as a one-time pad. In general, the one-time pad
can be replaced by pseudo-random sequence. Then, the parties would have to
pre-agree on the function h and on the seed s which would be fed to either a
pseudo-random generator or a pseudo-random function [10]. This approach to
message authentication was first studied in [6]. If pseudo-randomness is used,
then the resulting MAC is secure against a polynomially bounded adversary.



236 M. Etzel, S. Patel, Z. Ramzan

The Square Hash. This paper introduces two new ideas in the construction
of fast universal hash functions. We start with a simple but novel family of uni-
versal hash functions which should be more efficient than certain well-known
hash function families. The efficiency lies in the fact that whereas other common
constructions involve integer multiplications, our construction involves squaring
integers. Since squaring a large integer requires fewer basic word multiplications
than multiplying two large integers, we get a speed-up. In certain architectures,
multiplication takes significantly more time than other basic arithmetic oper-
ations, so we can get good savings with this approach. Our second idea is to
optimize the implementation of this hash function by ignoring certain parts of
the computation; moreover, we formally prove that, despite ignoring these parts
of the computation, the bound ε on the resulting optimized hash function is
still low enough to provide for a very secure MAC. One can think of this as
“theoretical hacking.” Specifically, the second new idea in this paper is to com-
pletely ignore some of the carry bits when performing the computation of the
hash function in our basic construction. Since carry bits can be cumbersome to
deal with, we can save computational effort in this manner. We stress that this
savings will primarily occur when our tag size is several words long since some
architectures allow you to multiply two words, and get a two-word result with
all the carries “for free.” At first it seems counterintuitive that we can simply
ignore what appears to be a crucial part of the computation. However, we are
able to obtain a bound on the resulting value of ε and we show that our MAC
algorithms are still secure for natural choices of the parameters.

Square Hash builds on some of the ideas in the MMH construction of Halevi
and Krawczyk [12]; Knudsen independently proposed a similar construction for
use in block cipher design [15]. We start with an underlying hash function which
is similar to the one used in MMH ; however, our new hash function performs
fewer multiplications. In MMH , the final carry bit of the output is ignored
– in Square Hash we extend this idea by showing that we can ignore almost
all of the carry bits and can still get quite a reasonable trade-off in security.
Hence, in theory, Square Hash should be a strong alternative to MMH . We
have implementation results on an ARM processor to substantiate this claim.
Moreover, since word blocks in the input can be worked on independently, our
constructions are parallelizable. We also show how to efficiently convert any ∆-
universal hash function into a strongly universal hash function. Thus Square
Hash has other applications besides those related to message authentication.

Previous Work. Unconditionally secure message authentication was first
studied in [9] and later in [28]. The universal hash function approach for MACs
was first studied in [28] and the topic has been heavily addressed in the litera-
ture [27], [16], [25], [2], [13], [14], [26], [12]. The MMH scheme [12] is our point
of departure. MMH achieves impressive software speeds and is substantially
faster than many current software implementations of message authentication
techniques and software implementations of universal hashing. Unfortunately, it
is impossible to do precise comparisons because the available data represents
simulations done on various platforms. The reader can refer to [26], [16], [5], [20]
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for implementation results of various MAC schemes. This paper aims to extend
the ideas in the MMH construction by exhibiting, what seems to be, a faster
to compute underlying hash function and by developing some new ideas which
noticeably optimize the implementation with reasonably small security costs. In
addition to their message authentication applications, universal hash functions
are used in numerous other settings [19], [22], [7], [28].

Organization of This Paper. In section 2 we review the basic definitions
and properties of universal hash function families and their variants. In section 3
we give the basic construction of the Square Hash, prove some basic properties,
and explain why it should perform better than one of the most well-known
universal hash function families. In section 4 we compare Square Hash with the
MMH family of hash functions [12]. We show that all of their clever optimization
techniques apply to Square Hash. We examine a novel optimization technique of
ignoring all the carry bits in certain parts of the computation, and prove that
the resulting construction still yields a strong message authentication scheme.
Finally, in the last two sections we discuss some relevant implementation issues
and give implementation results on an ARM processor.

2 Preliminaries

Let H be a family of functions going from a domain D to a range R. Let ε be
a constant such that 1/|R| ≤ ε ≤ 1. The probabilities denoted below are all
taken over the choice of h ∈ H .

Definition 1. H is a universal family of hash functions if for all x, y ∈ D with
x 6= y, Prh∈H [h(x) = h(y)] = 1/|R|. H is an ε-almost-universal family of hash
functions if Prh∈H [h(x) = h(y)] ≤ ε.

Definition 2. Let R be an Abelian Group and let ′−′ denote the subtraction
operation with respect to this group. Then H is a ∆-universal-family of hash
functions if for all x, y ∈ D with x 6= y, and all a ∈ R, Prh∈H [h(x) − h(y) =
a] ≤ 1/|R|. H is ε-almost-∆-universal if Prh∈H [h(x) − h(y) = a] ≤ ε.

Definition 3. H is a strongly universal family of hash functions if for all x, y ∈
D with x 6= y and all a, b ∈ R, Prh∈H [h(x) = a, h(y) = b] ≤ 1/|R|2. H is ε-
almost-strongly-universal family of hash functions if Prh∈H [h(x) = a, h(y) =
b] ≤ ε/|R|.

3 Square Hash

We now describe some basic constructions of universal hash function families
based on squaring. We also examine modifications that enable faster implemen-
tations at negligible costs in collision probability. In the definitions and theorems
that follow, we work over the integers modulo p where p is a prime.
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3.1 The Basic Construction

Definition 4. Define the SQH family of functions from Zp to Zp as: SQH ≡
{hx : Zp −→ Zp|x ∈ Zp} where the functions hx are defined as:

hx(m) ≡ (m + x)2 mod p. (1)

Theorem 1. The family SQH is ∆-universal.

Proof. For all m 6= n ∈ Zp, and δ ∈ Zp: Prx[hx(m) − hx(n) = δ] = Prx[(m +
x)2 − (n + x)2 = δ] = Prx[m2 − n2 + 2(m − n)x = δ] = 1/p. The last inequality
follows since for all m 6= n ∈ Zp and δ ∈ Zp there is a unique x which satisfies
the equation m2 − n2 + 2(m− n)x = δ. ut

3.2 Converting From Delta-Universal to Strongly Universal

We now show how to convert any ∆-universal family of hash functions to a
strongly universal family of hash functions.

Definition 5. Define the SQHU family of functions from Zp to Zp as: SQHU
≡ {hx,b : Zp −→ Zp|x, b ∈ Zp} where the functions hx,b are defined as:

hx,b(m) ≡ ((m + x)2 + b) mod p. (2)

Theorem 2. The family SQHU is a strongly universal family of hash functions.

Proof. Follows as a corollary of the next lemma. ut
Lemma 1. Let H = {hx : D −→ R|x ∈ K}, where R is an Abelian group
and K is the set of keys, be a ∆-universal family of hash functions. Then H ′ =
{h′

x,b : D −→ R|x ∈ K, b ∈ R} defined by h′
x,b(m) ≡ (hx(m) + b) (where the

addition is the operation under the group R) is a strongly universal family of
hash functions.

Proof. For all m 6= n ∈ D and all α, β ∈ R: Prx,b[h′
x,b(m) = α, h′

x,b(n) =
β] = Prx,b[hx(m) + b = α, hx(n) + b = β] = Prx,b[hx(m) − hx(n) = α − β, b =
α−hx(m)] = Prx,b[hx(m)−hx(n) = α−β | b = α−hx(m)]·Prx,b[b = α−hx(m)] =
1/|R|2. The last equation follows since hx is a ∆-universal hash function and
hx(m) − hx(n) takes any value in R with equal probability. ut

3.3 Comparison with Linear Congruential Hash

We compare our Square Hash to the Linear Congruential Hash, which is one
of the most heavily referenced Universal Hash Functions in the literature. We
define the Linear Congruential Hash (LCH) family of functions to be: LCH ≡
{hx,b : Zp −→ Zp|x, b ∈ Zp} where each of the functions hx,b are defined as:

hx,b(m) ≡ mx + b mod p. (3)

In most cases, the SQHU family requires less computation time than LCH .
The speedup occurs because squaring an n-bit number requires roughly half the
number of basic word multiplications than multiplying two n-bit numbers [18];
thus we can save when dealing with quantities that are several words long. We
now compare Square Hash with the MMH construction [12].
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4 Comparison with MMH

Recently Halevi and Krawczyk [12] studied a family of ∆-universal hash functions
entitled MMH . MMH was originally defined by Carter and Wegman. Halevi
and Krawczyk discovered techniques to speed up the software implementation at
negligible costs in the collision probabilities. These hash functions are suitable
for very fast software implementation. They apply to hashing variable sized data
and to fast cryptographic message authentication. In this section we compare
our SQH family to MMH . We show that in theory SQH is more efficient with
respect to both computation time and key sizes than MMH . We also show that
all of the clever software optimizations discovered by Halevi and Krawczyk for
MMH can be applied to SQH as well. Finally, we further optimize Square Hash
by disregarding many of the carry bits in the computation. We now describe
MMH∗ which is the basic non-optimized version of MMH .

4.1 Description of MMH∗

Definition 6. [12] Let k > 0 be an integer. Let x = 〈x1, . . . , xk〉, and m =
〈m1, . . . , mk〉, xi, mi ∈ Zp,The MMH∗ family of functions from Zk

p to Zp is
defined as follows: MMH∗ ≡ {gx : Zk

p −→ Zp | x ∈ Zk
p } where the functions gx

are defined as

gx(m) = m · x =
k∑

i=1

mixi mod p (4)

Theorem 3. [Halevi and Krawczyk]: MMH∗ is a ∆-universal family of
hash functions.

Halevi and Krawczyk [12] also discussed a way to generalize these functions so
that their range is Zl

p rather than just Zp. This can be done via a Cartesian
product type idea due to Stinson [27]. Specifically, we hash the message l times
using l independently chosen keys and we concatenate the hashes. This yields
a collision probability of 1/pl. At first this requires a much larger key size, but
that can be reduced by applying a Toeplitz matrix type idea due to Krawczyk
[16]; namely (for the case l = 2), choose k + 1 scalars x1, . . . , xk+1 and set the
first key to be 〈x1, . . . , xk〉 and the second key to be 〈x2, . . . , xk+1〉. The collision
probability reduces to 1/p2.

4.2 A Variant of Square Hash Similar to MMH∗

Definition 7. Let k > 0 be an integer. Let x = 〈x1, . . . , xk〉, and m = 〈m1,
. . . , mk〉, xi, mi ∈ Zp. The SQH∗ family of functions from Zk

p to Zp is defined
as follows: SQH∗ ≡ {gx : Zk

p −→ Zp | x ∈ Zk
p } where the functions gx are

defined as

gx(m) =
k∑

i=1

(mi + xi)2 mod p (5)
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Theorem 4. SQH∗ is a ∆-universal family of hash functions.

Proof. Let m 6= n ∈ Zk
p with m = 〈m1, . . . , mk〉, n = 〈n1, . . . , nk〉 and mi, ni ∈

Zp. Let δ ∈ Zp. Since m 6= n there is some i for which mi 6= ni. WLOG,
suppose m1 6= n1. Now, we show: ∀x2, . . . , xk Prx1 [gx(m) − gx(n) = δ] = 1/p
(where x = 〈x1, . . . , xk〉) which implies the lemma. So, Prx1 [gx(m) − gx(n) = δ]
= Pr[

∑k
i=1(xi + mi)2 − ∑k

i=1(xi + ni)2 = δ] = Pr[2(m1 − n1)x1 = δ − m2
1 +

n2
1 −

∑k
i=2(xi + mi)2 +

∑k
i=2(xi + ni)2] = 1/p. The last equation follows since

(m1 − n1) 6= 0 implies that there is a unique x1 ∈ Zp satisfying the equation
inside the probability. ut

4.3 Comparing SQH∗ to MMH∗

SQH∗ should be faster than MMH∗ because squaring can be implemented so it
requires roughly half the number of basic word multiplications as multiplying two
numbers [18]. Since multiplication is relatively expensive on many architectures,
we may save considerably. Halevi and Krawczyk made several clever software
optimizations on MMH ; the same optimizations apply to SQH as well.

4.4 Speeding up MMH∗

Here is the definition of MMH32, an optimized version of MMH∗, which ap-
peared in [12]:

Definition 8. Set p = 232 + 15 and k = 32. Let x = 〈x1, . . . , xk〉, and m =
〈m1, . . . , mk〉, xi, mi ∈ Zp. Define the MMH32 family of functions from
({0, 1}32)k to {0, 1}32 as: MMH32 ≡ {hx : ({0, 1}32)k −→ {0, 1}32 | x ∈
({0, 1}32)k where the functions hx are defined as

hx(m) = (((
k∑

i=1

mixi) mod 264) mod (232 + 15)) mod 232 (6)

Theorem 5. [Halevi and Krawczyk]: MMH32 is an ε-Almost-∆-Universal
family of hash functions with ε ≤ 6 · 2−32.

The same optimization applies to SQH∗.

4.5 Speeding up SQH∗

Here is a variant of Square Hash, called SQHasm, which is suited for assembly
language implementation.

Definition 9. Let l and k be positive integers, and let 2l < p < 2l + 2l−1. Let
x = 〈x1, . . . , xk〉, and m = 〈m1 , . . . , mk〉, xi, mi ∈ Zp. The SQHasm family of
functions from Zk

p to {0, 1}l is defined as follows: SQHasm ≡ {gx : Zk
p −→

{0, 1}l | x ∈ Zk
p } where the functions gx are defined as

gx(m) = ((
k∑

i=1

(mi + xi)2) mod p) mod 2l (7)
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Theorem 6. SQHasm is an ε-almost-∆-universal family of hash functions with
ε ≤ 3 · 2−l.

Proof. Let δ ∈ {0, 1}l be chosen arbitrarily. Let m 6= n be arbitrary message
vectors. Let x be the key such that hx(m) − hx(n) ≡ δ (mod 2l), where h ∈
SQH∗. Equivalently, h′

x(m) − h′
x(n) ≡ δ (mod 2l) where h′ ∈ SQHasm. Now,

both hx(m) and hx(n) are in the range 0, . . . , p − 1. Therefore, their difference
taken over the integers lies in the range −p+1, . . . , p−1. If we denote p = 2l + t
where 0 < t < 2l−1 then:

h′
x(m) − h′

x(n) ∈



{δ, δ − 2l} t ≤ δ ≤ 2l − t
{δ − 2l, δ, δ + 2l} 0 ≤ δ ≤ t − 1
{δ, δ − 2l, δ − 2l+1} 2l − t < δ ≤ 2l − 1

Therefore, there are at most three values for the quantity h′
x(m) − h′

x(n) which
cause hx(m)−hx(n) ≡ v (mod 2l). Since SQH∗ is a ∆-universal hash function,
it follows that for any δ′ ∈ {0, 1}l there is at most one choice of the key x for
which h′

x(m)−h′
x(n) ≡ δ′ mod p. Therefore, at most 3 keys satisfy the equation

hx(m)−hx(n) ≡ δ ( mod 2l). So, Prx[hx(m)−hx(n) ≡ δ ( mod 2l)] ≤ 3·2−l. ut

4.6 A Further Speed-Up

There is a minor weakness in SQHasm. The values mi and xi may each be l + 1
bits long. We would, however, like to make l the word size of the machine on
which we are implementing our code (typically l = 32 or 64) in order to speed
up computations. Having to deal with l + 1 bit quantities means that we have
to store and square several extra words. A first solution is to restrict both mi

and xi to be at most l bits. Unfortunately, mi + xi may be an l + 1 bit quantity
which means we still need to store and square extra words. It turns out that
we simply can ignore the most significant bit of mi + xi at just a minor cost in
the important statistical properties of the new hash function. We give another
Square Hash variant and prove that it performs well.

Definition 10. Let l and k be positive integers with 2l < p < 2l + 2l−1. Let
x = 〈x1, . . . , xk〉, and let m = 〈m1, . . . , mk〉, xi, mi ∈ {0, 1}l. Define SQHasm2

family of functions from ({0, 1}l)k to {0, 1}l as: SQHasm2 ≡ {gx : ({0, 1}l)k −→
{0, 1}l | x ∈ {0, 1}l} where the functions gx are defined as

gx(m) = ((
k∑

i=1

((mi + xi) mod 2l)2) mod p) (8)

So, all we are doing is ignoring the most significant bit of xi + mi. This means
that the sum will fit into l bits, which means that we do not have to use an extra
word to both store and square.

Theorem 7. SQHasm2 is an ε-almost-∆-universal family of hash functions with
ε ≤ 2 · 2−l.
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Proof. Let m 6= n ∈ {0, 1}l with m = 〈m1, . . . , mk〉, n = 〈n1, . . . , nk〉 and
mi, ni ∈ {0, 1}l. Let δ ∈ Zp. Since m 6= n there is some i for which mi 6= ni.
WLOG, suppose m1 6= n1. Now, we show for all x2, . . . , xk Prx1 [gx(m)−gx(n) =
δ] ≤ 2/2l (where x = 〈x1, . . . , xk〉) which implies the lemma. First, let

A =
k∑

i=2

((xi + mi) mod 2l)2 mod p, and let B =
k∑

i=2

((xi + ni) mod 2l)2 mod p.

Then, Prx1 [gx(m)−gx(n) = δ] = Prx1 [(((x1+m1) mod 2l)2+A)−(((x1+n1) mod
2l)2 + B) ≡ δ (mod p)] = Prx1 [((x1 + m1) mod 2l)2 − ((x1 + n1) mod 2l)2 ≡
B − A + δ (mod p)]. Since x1 and m1 are both l bit quantities, their sum will
be at most 2l+1 − 2, which means that to reduce this quantity mod 2l we have
to subtract off at most 2l. Therefore,

((x1 + m1) mod 2l) = x1 + m1 − 2lc(x1, m1), (9)

where c(x1, m1) is some value in {0, 1}. In this case, c is the carry bit associated
with adding x1 and m1. Similarly, we can write ((x1 + n1) mod 2l) = x1 +
n1 − 2lc(x1, n1). Replacing these equations into the above and performing some
arithmetic manipulation, we get:

Pr
x1

[((x1 + m1) mod 2l)2 − ((x1 + n1) mod 2l)2 ≡ B − A + δ (mod p)]

= Pr
x1

[2x1((m1 − n1) + (c(x1, n1) − c(x1, m1))2l) ≡ δ′ (mod p)].

Where

δ′ = B − A + δ + (n1 − c(x1, n1)2l)2 − (m1 − c(x1, m1)2l)2. (10)

Now, (c(x1, n1)−c(x1, m1))2l ∈ {−2l, 0, 2l}. However, since m1, n1 ∈ {0, 1}l and
since m1 6= n1, it follows that (m1 − n1) ∈ {(1 − 2l), . . . ,−1, 1, . . . , (2l − 1)}
which implies that ((m1 − n1) + (c(x1, n1) − c(x1, m1))2l) 6= 0, and for a given
c(x1, m1) and c(x1, n1) there is at most one value of x1 satisfying the above
equations. Finally, we have

Pr
x1

[2x1((m1 − n1) + (c(x1, n1) − c(x1, m1))2l) ≡ δ′]

≤ Pr
x1

[2x1((m1 − n1) − 2l) ≡ δ′ (mod p)|c(x1, n1) − c(x1, m1) = −1]

+Pr
x1

[2x1(m1 − n1) ≡ δ′ (mod p)|c(x1, n1) − c(x1, m1) = 0]

+Pr
x1

[2x1((m1 − n1) + 2l) ≡ δ′ (mod p)|c(x1, n1) − c(x1, m1) = 1] ≤ 3/2l.

This gives us a bound of 3/2l. We can improve this to 2/2l by observing that for
fixed values of m and n, c(x1, n1)− c(x1, m1) cannot simultaneously take on the
values +1 and −1 for varying choices of x1. In particular, if n1 > m1 then we
claim that c(x1, n1)−c(x1, m1) ≥ 0. This follows because c(x1, n1)−c(x1, m1) =
−1 implies x1 +n1 < 2l and x1 +m1 ≥ 2l which implies that m1 > n1. Similarly,
it can be shown that n1 < m1 implies c(x1, n1)−c(x1, m1) ≤ 0. Thus c(x1, n1)−
c(x1, m1) takes on at most two possible values and ε is bounded by 2/2l. ut
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4.7 Ignoring Carry Bits in the Computation

We now describe a way to further speed up Square Hash at a small tradeoff
in the collision probability. The idea is novel, and can be applied not only to
MMH but perhaps to other constructions of universal hash functions. Basically,
we show that we can ignore many of the carry bits in the computation of Square
Hash and still get very strong performance for cryptographic applications. In
some sense this extends the ideas of Halevi and Krawczyk who sped up MMH
by ignoring only the most significant carry bit. We start by describing the notion
of carry bits and explain why computation can speed up if you ignore them. We
then define variants of Square Hash in which you can ignore some of the carry
bits, and show that the resulting performance is still excellent for cryptographic
applications. Finally, we define yet another variant of Square Hash in which you
can ignore even more carry bits and show that the performance is still strong
for cryptographic applications under suitable settings for the parameters.

Carry Bits When two words are added, there is usually an overflow or carry
that takes place in the computation. For example, if the word size is 8, and you
compute 11001001 + 10010001 you get 101011010. Since the word size is 8, the
most significant bit 1 is called the carry or overflow bit because it overflowed
from the usual 8 bit word size. Now, when arithmetic operations are performed
on very long integers, as is usually the case for cryptographic applications, the
carry bits between individual word operations are used for the next operation.
So, if the word size is 8, and you are trying to compute 1011010100110101 +
1010101111100101 then the computation is broken up into parts. First, each bit
string is broken up to take word size into account. The first string is broken up
into two parts which we label A and B respectively: A = 10110101 and B =
00110101. The second string would be broken up into two parts: C = 10101011
and D = 11100101. Now, the computation is carried out as follows: first we
compute B + D store the answer in a word, and store the carry c0 separately.
Denote by E the word in which we store B + D. Then E = 00011010 and the
carry bit c0 = 1. Now, we compute F = A + C + c0 and store the carry bit
in c1. Then F = 01100001 and the carry bit c1 is 1. The total answer is the
concatenation c1FE: 10110000100011010. So, it is necessary to keep track of a
carry bit as you do the computations on integers that require more than one word
to represent. Unfortunately, certain instructions on processors do not deal with
carry bits effectively (for example the Multiply with Accumulate instruction on
the ARM). Also, even if an instruction saves the carry bit, this information may
get destroyed when other instructions are executed. In addition, most high level
programming languages do not deal with carry bits effectively; this increases the
computation time of arithmetic instructions over integers that are several words
long because it becomes necessary to explicitly keep track of the carry bit. High
level programming languages are, however, preferable because they are portable
and they facilitate the task of programming. We show that we can overcome
these dilemmas by ignoring the carry bits altogether. We call these variants of
Square Hash SQHc and SQHc2 since they can be effectively implemented with
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high level programming languages such as C. We can prove that we get strong
performance despite ignoring what seems to be a crucial part of the computation.

Ignoring Carry Bits in the Outer Summation We describe a preliminary
speedup in which we ignore the carry bits in the outer summation, and show
that we still get a powerful approximation to a ∆-universal hash. Let us de-
note by C(Σn

i=1ai) the value you get if you compute the sum Σn
i=1ai but ignore

the carry bits between the words. For example, if you let the word size be 8
and compute a1 = 1011010100110101 and a2 = 1010101111100101 as in the
above example, then C(Σ2

i=1ai) = 0110000000011010. The normal sum a1 +a2 is
10110000100011010. But recall that the 9th least significant bit is the result of
the carry from the summation of first pair of words, and the most significant bit
is the result of the carry from the second pair of words. Since you are ignoring
the carry bits, the function C(Σn

i=1ai) can be implemented much more efficiently
than just the normal sum Σn

i=1ai. This is especially true if the ai are large inte-
gers and each require several words in order to store. We now formally define a
new variant of Square Hash and show that it still gives us strong performance.

Definition 11. Let l and k be positive integers with 2l < p < 2l + 2l−1. Let
x = 〈x1, . . . , xk〉, and m = 〈m1 , . . . , mk〉, xi, mi ∈ Zp. The SQHc family of
functions from Zk

p to Zp is defined as follows: SQHc ≡ {gx : Zk
p −→ Zp | x ∈ Zk

p }
where the functions gx are defined as

gx(m) = (C(
k∑

i=1

(mi + xi)2) mod p) (11)

Theorem 8. Let l be the word size of the architecture on which you are com-
puting and let w be the number of words it takes to store xi. Then SQHc is an
ε-almost-∆-universal family of hash functions with ε ≤ 32w/2lw.

Proof. Fix a value a ∈ Zp and let m = 〈m1, . . . , mk〉 6= m′ = 〈m′
1, . . . , m

′
k〉 be

your two messages. Assume wlog that m1 6= m′
1. We prove that for any choice of

x2, . . . , xk Prx1 [gx(m) − gx(m′) = a mod p] ≤ 32w/2lw (where x = 〈x1, . . . , xk〉)
which implies the theorem. Now, let us fix some choice of x2, . . . , xk and let
s = C(

∑k
i=2(mi + xi)2). Then,

C(
k∑

i=1

(mi + xi)2) = (x1 + m1)2 + s − c (12)

where c ∈ {0, 1}2l+1 is a “correction vector” in which the ith bit of c (counting
from the left) contains a 1 if there was an overflow of 1 at that position (and
contains a 0 otherwise). In the example above with a1 and a2 the correction
vector c is: 1000000100000000.
Similarly, if we let s′ = C(

∑k
i=2(m

′
i + xi)2) then

C(
k∑

i=1

(m′
i + xi)2) = (x1 + m′

1)
2 + s′ − c′ (13)
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where c′ is the associated correction vector. Therefore,

Pr
x1

[gx(m) − gx(m′) ≡ a (mod p)]

= Pr
x1

[(x1 + m1)2 + s − c − (x1 + m′
1)

2 − s′ + c′ ≡ a (mod p)]

= Pr
x1

[x1 ≡ (a + (c − c′) + s′ − s + m′2
1 − m2

1)/2(m1 − m′
1) (mod p)]

≤ (The number of distinct values c − c′ can take) · 2−lw .

So we must derive a bound for the number of distinct values c−c′ can take. Now,
c and c′ consist mostly of 0’s. In fact, the only positions of c in which there could
be a 1 are the ones where there could be a carry – and since carries only occur at
the boundaries between words, only bits l+1, 2l+1, 3l+1, . . . , 2wl+1 can possibly
contain a 1. The same hold true for c′. In the il + 1 bit cil+1 − c′il+1 ∈ {−1, 0, 1}
for 1 ≤ i ≤ 2l. Since there are only 2w bits that can get affected and 3 different
values for their difference, the total number of different vectors c− c′ is bounded
by 32w. So, we have that Prx1 [gx(m) − gx(m′) ≡ a(modp)] ≤ 32w/2lw – which
proves the theorem. ut

Now, observe that the quantity 32w/2lw is actually rather small. We see this
if we substitute suitable values for the parameters. If the word size l is 32 bits,
then a computationally unbounded adversary can forge a MAC tag of size 2,3,4,
or 5 words with probability at most 2−57, 2−86, 2−115, and 2−144 respectively.
These are negligible and are smaller that what one may need for a reasonably
secure MAC. This leads to the question of whether we can optimize further at
a slightly greater cost in security. The next section works towards this aim by
showing that we can ignore even more carry bits at an increased cost in collision
probability.

Ignoring Carry Bits When Squaring Since the process of squaring can be
expressed entirely in terms of doing basic word multiplications, shifts, and add
operations, we can consider the idea of ignoring the carry bits when performing
a squaring operation to further speed up our hash functions. We show that if we
also ignore the carry bits that occur when the quantity (xi +mi) is squared, then
the resulting function still yields a close approximation to a δ-universal hash
for suitable values for the parameters. So let’s denote by C2(a2

i ) the quantity
obtained if you ignore the carry bits in the computation of a2

i .

Definition 12. Let l and k be positive integers, with 2l < p < 2l + 2l−1. Let
x = 〈x1, . . . , xk〉, and m = 〈m1, . . . , mk〉, xi, mi ∈ {0, 1}l. The SQHc2 fam-
ily of functions from ({0, 1}l)k to Zp is defined as follows: SQHc2 ≡ {gx :
({0, 1}l)k −→ Zp | x ∈ ({0, 1}l)k} where the functions gx are defined as

gx(m) = (C(
k∑

i=1

C2((mi + xi)2)) mod p). (14)
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Note that we ignore carry bits when we square and when we take the sum
over the (xi + mi)2. However, we do not ignore the carry bits when we actually
compute (xi +mi). It is possible that we may be able to get away with ignoring
these carry bits as well. We now state our main theorem about how well this
new family of hash functions performs:

Theorem 9. Let l be the word size of the architecture on which you are com-
puting and let w be the number of words it takes to store xi. Then SQHc2 is an
ε-almost-∆-universal family of hash functions with ε ≤ (

∏w
i=1(4i + 1)2)/2lw.

Proof. (sketch) The proof uses similar ideas to the proof of the previous theorem
about ignoring carry bits in the outer summation. In particular, we define cor-
rection vectors c and c′ in the same manner as before, and bound the number of
distinct possibilities for their difference c− c′. We first observe that for ith word
of c (counting from the right for 1 ≤ i ≤ w) there are 1’s in at most the log(2i+1)
least significant bit positions of that word – the remaining bits must be 0. So, only
the least significant log(2i+1) bits in word i are undetermined. Similarly, for word
j with w + 1 ≤ j ≤ 2w, the least significant log(4w + 3− 2j) are undetermined.
Moreover, we can show that if the b least significant bits of each of two different
words are undetermined, then the difference of those two words can take on at
most 2b+1 − 1 different values. The number of distinct possible values for c − c′

is the product of the number of different possible values each of the individual
words can take. This equals:

∏w
i=1(2

log(2i+1)+1−1)·∏2w
j=m+1(2

log(4w+3−2j)+1−1)
= (

∏w
i=1 2log(2i+1)+1 − 1)2 = (

∏w
i=1 4i + 1)2. ut

Although this expression looks large, for suitable values of the parameters it
still gives good security. Keep in mind that typically 1 ≤ w ≤ 5. In particular,
if the word size l is 32 bits, and we hash down to 2,3,4, or 5 words, then com-
putationally unbounded adversaries will fail to forge the MAC with probability
better than 2−53, 2−77, 2−101, or 2−124 respectively.

4.8 Fully Optimized Square Hash

We present the fully optimized version of Square Hash:

Definition 13. Let l and k be positive integers with 2l < p < 2l + 2l−1. Let
x = 〈x1, . . . , xk〉, and m = 〈m1, . . . , mk〉, xi, mi ∈ {0, 1}l. The SQHE fam-
ily of functions from ({0, 1}l)k to {0, 1}l is defined as follows: SQHE ≡ {gx :
({0, 1}l)k −→ {0, 1}l | x ∈ {0, 1}l} where the functions gx are defined as

gx(m) = (C(
k∑

i=1

C2(((mi + xi) mod 2l)2)) mod p) mod 2l (15)

Theorem 10. Let l be the word size on which you are computing and w is the
total number of words needed to store xi. Then SQHE is an ε-almost-∆-universal
family of hash functions with ε ≤ (6 · ∏w

i=1(4i + 1)2)/2lw

Proof. Combine the proofs and statements of previous theorems. ut
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4.9 Comparison to NMH

At the end of their paper, Halevi and Krawczyk [12] briefly discussed another
family of ∆-universal hash functions called NMH . It would be interesting to do
a detailed comparison between NMH and SQH that studies speed and required
key sizes. Another interesting area for future research would be to apply some
of our techniques of ignoring carry bits to MMH and NMH .

5 Considerations on Implementing Square Hash

In this section, we discuss various important implementation considerations, and
in the next we give actual implementation results. To start with, Square Hash
should be faster since we use squaring instead of multiplication. The speed-up
factor for squaring an n word integer versus multiplying two n word integers is
(n− 1)/2n. Typically, MACs have tag sizes between 32 and 160 bits, depending
on the level of security needed. Therefore, on 32-bit architectures, 1 ≤ n ≤ 5 and
we get speed up factors of %0, %25, %33, %38, and %40 for the different values
of n. Now, on most slower architectures, multiplications require many more clock
cycles than other simple arithmetic operations such as addition. For example,
on the original Pentium processor, the ratio between number of clock cycles for
unsigned multiplication versus addition is about 5:1. This ratio probably gets
much larger on weaker processors such as those on cellular phones, embedded
devices, smart-cards, etc,. Moreover, for these types of smaller processors, word
sizes may be smaller, hence the number of words we multiply increases, and the
savings we achieve by using squaring rather than multiplication greatly increases.
Thus, we recommend using Square Hash on such architectures. On some of the
more modern processors such as the Pentium Pro and Pentium II, multiplications
do not take much more time than additions (closer to 2:1, [8]), so Square Hash
is not advantageous is such cases.

Another important implementation consideration is the memory architecture
of the processor on which you are implementing. In our case, we need extra data
registers to quickly implement squaring. On Pentium architectures there are
only 4 32-bit data registers [8]. Hence, we may need to make additional memory
references which could slow things down. On the other hand, the PowerPC has
32 32-bit general purpose registers [1], which allows us to get fast squaring.

6 Implementation Results

We used the ARM (i.e. ARM7) processor to create hand optimized assembly
code to compare speeds of various algorithms. The ARM7 is a popular RISC
processor and is used inside cellular phones, PDAs, smartcards, etc. It is a 32
bit processor with 16 general purpose registers. Basic operations like addition
require 1 cycle whereas multiplication usually requires 6 cycles.

Our results show a significant speedup for square hash over MMH , and thus
validate our theoretical results. For long messages and same or better security
than MMH , square hash is 1.31 times faster than MMH (Table 1).
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MMH SQH1 SQH2 HMAC-SHA1
(some carries
dropped)

Cycles 2061 1659 1575 4000+
Speedup over MMH 1x 1.24x 1.31x .52x
Speedup over SHA1 1.94x 2.41x 2.54x 1x
Security - ε 6.25

290
6

296
2.53
290

Code Size (bytes) 408 3040 2704 4000+
Hash key Size 2208 2112 2112
(random bits) (2112+96)

Table 1. Assembly implementations on ARM7 with 96 bit output and input
block size of 2112 bits.

Message authentication using universal hash functions is performed by break-
ing up a long message (e.g 1Mbyte) in to smaller blocks (e.g. 2112 bits) and
reducing each block, using an equivalent size hash key, down to the size of the
MAC output or tag size (e.g. 96 bits). This is repeated via a tree hash until the
final tag is output. Tree hash adds about 10% overhead to both square hash
and MMH [12] and we omit it in the calculations presented in the tables for
purposes of simplifying comparison. The security parameter ε as reported in the
tables would have to be multiplied by the height of the tree [12].

We report results for a tag size of 96 bits since we believe it is a popular choice
for message authentication in Internet standards (e.g. HMAC). Larger output
sizes of 128 and 160 bits could further improve speedup factors due to greater
savings on multiplications. We also report cycle counts for SHA1 on an ARM7 to
verify that we are faster than traditional non-universal hash based MACs (e.g.
HMAC). To create the MAC, in actual use, MMH and square hash would have
to encrypt the 96 bit output and HMAC-SHA1 would need to perform a further
SHA1. We exclude this in the cycle counts in the tables to simplify comparison.

First for 2112-bit blocks (a multiple of 96) we compare MMH , SQH1,
SQH2, and HMAC-SHA1. SQH1 is the basic square hash function SQHasm

with the minor optimization of SQHasm2 giving an overall security of 6
296 com-

pared to the security of 6.25
290 for 96 bit MMH . SQH2 is the same as SQH1,

except that some carry bits are dropped in the squaring until the security is
similar or better than that of MMH . As a result of dropping some carries,
computation time decreases.

SHA1 requires more than 1000 operations on 512-bit input and thus requires
more than 4000 operations on 2112 bit input. All 3 universal hashes are signifi-
cantly faster than the SHA1 based MAC. SQH1 is 1.24 times as fast as MMH
and SQH2 is 1.31 times as fast as MMH . Code sizes are somewhat large be-
cause of loop unrolling. Without unrolling additional computational time will
be added to all three universal hashes to handle looping. The hash key (random
bits) for MMH is 96 bits larger than square hash if the Toeplitz construction is
used [12].
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MMH SQH1 SQH2 HMAC-SHA1
(some carries
dropped)

Cycles 1086 856 816 2000
Speedup over MMH 1x 1.27x 1.33x .54x
Speedup over SHA1 1.84x 2.34x 2.45x 1x
Code Size 220 1544 1384 4000+
Hash key Size 1152 1056 1056
(random bits) (1056+96)

Table 2. Assembly implementations on ARM7 with 96 bit output and input
block size of 1056 bits.

In Table 2 we also report cycle counts for 1056-bit blocks. Since 1024 bit
blocks, as used by [12], are not a multiple of 96, we used 1056 (a multiple of 32
and 96) as the input length. We ran experiments with messages that had the
same size as the tag, and we noticed similar speedups. We also tested C versions
of MMH and square hash and we saw similar speedups.

Table 3 gives break downs of the instruction and cycle counts for both MMH
and SQH2. In the future we hope to experiment with other processors.

Instructions Cycles
MMH 66 (2112/32) words 105 687

key + message loading 28 188
Multiply + Accumulate 66 461
mod p reduction 5 9
function call 6 29

Total (3 times MMH 66 words) 105 2061

SQH2 3 words 29 69
key + message loading 2 10
Multiply 5 30
Multiply + Accumulate 1 7
Adds 21 21

22 (2112/96) times SQH2 (3 words) 638 1518
mod p reduction 16 25
function overhead 10 32
Total 664 1575

Table 3. MMH and SQH2 cycle count break downs: 96 bit output and block
size of 2112 bits.
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7 Conclusion

We described a new family of universal hash functions geared towards high
speed message authentication. On some platforms, our hash functions appear
to be faster than the MMH family, which itself is considered to be one of the
fastest universal hash function implementations. We also introduced additional
techniques for speeding up our constructions. These constructions and techniques
are general and may be of independent interest.
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