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Abstract. Gemmell and Naor proposed a new protocol for the authen-
tication of long messages which was based on block codes and which used
a transmission channel k times. This multiround authentication makes
it possible to limit the key size independently of the message length.
We propose a new attack and show that the probability analysis made
by Gemmell and Naor, which was only based on the minimum distance
property of the codes, does not hold for our attack. Considering also the
impersonation attack we conclude that the number of rounds have to be

odd.

1 Introduction

The first treatment of codes that detect deception was given by Gilbert,
MacWilliams and Sloane [1]. The use of nniversal hashing for authentication
codes {A-codes) without secrecy, so called Cartesian A-codes, was first described
in [2]. The general authentication problem was formulated in information theo-
retic terms by Stmmons [3]. Many constructions and bounds have been derived
for Cartesian A-codes [4] [5], [6], [7] and it is possible to construct such codes,
which are close to the theoretical bounds. However all these constructions only
deal with single transmission authentication. Gemmell and Naor [9] proposed a
multiple round authentication protocol. Let n denote the message length, H(K)
the key entropy and P, the probability for a successful substitution attack. For
single round Cartesian authentication codes it was shown that [1]

) 1 1
H(RK) zlog(n)—i—i&]og(}»{) —loglog(ﬁs—). ()
The Gemmell and Naor k-round protocol ohtains:
. 1
H(K)zlog(k‘“(n)+5log(~[)~) (2)

and Gemmell and Naor proved the existence of a k-round protocol such that

H(K) 2~ log* 1 (n) + 2log( !

) 3)
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Hence it would be possible to limit the key size independently of the message
length by using multiround authentication. We will start with describing the
essential properties of the protocol suggested by Gemmell and Naor. Section 3
and 4 consist of an analysis of the described scheme. We first bring to attention
an impersonation attack when the number of rounds is even. Next we describe
a substitution attack. Finally we give an example of the proposed substitution
attack for a construction based on RS-codes.

2 The Gemmell and Naor protocol

We assume two participants A and B, who want to communicate over an insecure
channel where an opponent O may introduce a new message m’; (impersonation
attack) or substitute message m; sent by A or B for m; (substitution attack).
Here m; denotes the message sent by A or B in the j-th round. The first mes-
sage myp is the information message and the rest of the messages only "check
messages” in the protocol. Hence the general goal for the opponent is to send an
OWn message myp or to substitute for a transmitted one. However in his attempts
to succeed with this purpose he may manipulate the "check messages” as well.
A and B share a sccret information, i.e., the key, unknown to the opponent.
In the Gemmell and Naor protocol:

i the error correcting code used in the j-th round,

C?(m): the codeword corresponding to message m when using the code (Y.
C!(m): the i-th code symbol of the codeword C7(m).

A a Cartesian A-code.

CA(m): the authentication tag corresponding to message m when using

the code C4.

zoy: concatenation of string x and y.
p: as defined in [9].
o)
A

B
mo §

my) = i1 o Cill(m())

my =iy 0 CF (my)

. — 3
ma = i3 © Ciﬁng)

my = (4 (mg3)

Figure 1: Multiround authenticalion for k = 5.
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Assume we will use a k-round protocol and that: C7 : {0,1}" — GF(Q;)™ is a
code with properties:

1) Q>

(1) The minimum distance d; of (7 satisfies: d; > nj — n]-p/Qk‘g’j.

Zk—l_]

The slightly modified(see below) Gemmell-Naor protocol may be described as
follows:
(i) A sends message mg=m,j = 0.
(ii) j = j+ 1, B receives message mj_, and chooses a random number
ij,1 <i; <nj. B sends message m; = 4; o Cf (m}_,).
(iii) If j = k — 2 then step vi).
(iv) j = j+ 1, A rcceives message vn3_1 and chooses a random number
i;,1 <14; <n;. B sends message m; =1 0 C‘f,(mﬁ-\).
(v} if j = k — 2 then step (vi), else back to step ii).
{(vi) I kiseven(odd) A(B) receives message m; = mj _, and use a Cartesian
A-code with P, < p, to transmit my_y = CY(m} _,).

We have changed the last step (vi) from the protocol in [9], by letting A(B) just
send the authentication tag for the last message m’. This is possible because
B(A) already knows the message to be authenticated. It is also important to
notice that it is not possible for the opponent to freely choose the substitution

message in the last step and that that this decreases the restrictions on the
A-code.

For the protocol described above Gemmell and Naor stated the following:

Propositionl (Gemmell-Naor). Let p be the parameter as it appears in [9].
Then

. 1
Ve 22 Pe<s2(l- m)e (4)

where P, 1s the probabilily of o successful substitution attack.

3 An impersonation attack

First we will bring to attention an impersonation attack for the case & is even.
Consider first the two round protocol(k = 2):
(i) O sends another message mg = m.
(i1) B receives message mg and uses a (lartesian A-code to transmit my =
CA(my).
(iii) O absorbs the message sent by B.

This case may easy be generalised to higher order even round protocol just
letting O act like A.
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Proposition2. When the number of rounds is cven, for the impersonation at-
tack above we have

Pr=1, (5)

where Py s the probability of a successful impersonation attack.

Proof. A never receives the last message, i.e., the authentication tag. Hence O
never will be caught.

Remark: For k odd, O succeeds in an impersonation attack if and only if he
the A-code the probability for this event < P;.

In the sequel we will assume k to be odd and we deal only with the substi-
tution attacks.

4 A substitution attack

A 0 B
(1) my
[ N
mh = o Gy lma)

(iii) my =1y 0 (7 (m)

(iv) Mo
my =130 (jz'll (7”’6) (V)
.

(vi) M = My

Figure 2: The attack scheme.

We will consider a specific substitution attack on the systern ahove in the
case k > 5. The attack is described by the scheme above.

(1) A sends an arbitrary message mg over the channel.

(11) The opponent receives the message my and chooses a random number
i1,1 < i < ny and sends m} =i} o (L'Z-l,l(mo) to A.

(ili) A receives the message m} and chooses a random number iy, 1 < iy <
ny and sends my = iy 0 C'Ii(m’l) over the channel.

(iv) The opponent receives message mo from A and now substitutes the
message my for mj, and sends this to B.

(v) B receives message mj and chooses a random number i, 1 < iy < m
and sends m; = 4; o C’ill(m{)) over the channel.
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(vi) The opponent receives the message m; from B and just absorbs it and
sends message my = mo to B.

Proposition 3: For the attack scheme ahove

o O = C? (m
P> max [{i: €7 (ma) C,,,,,(m;)}lv (6)

T omi#mo T

where

my =i 0 Cl-ll(m'o), 0<2 <ny,
my =iy o Ch(mp), 0<i) <ny,

1
{See Figure 2).
Proof. Clearly if for one particular 7; that B might choose we have
~2 12
Ci(my) = C7 (my),
then
mhy =iy o C/Eg(ml) =130 C'fg(mll) = mgy

and adding the fact that the opponent knows i3 before sending m{) and that B
chooses 1; at random the result follows.

This result differs from (4) given by Gemmell and Naor and hence when £ > 5
this must be taken into account when constructing the codes in the protocol.

We will now construct an example that will illustrate the consequences of this
result.

5 Example

Before describing an example of the G-N protocol we recall some simple facts
on Reed-Solomon codes (RS-codes) [8]. We use the polynomial description of
RS-codes as it appeared in the original paper by Reed and Solomon. Denote by
GF(Q) the Galois field with ¢ element. Consider the polynomial P(z} of degree
at most £ — 1 over GF(Q), i.e.,

P ={Ple);my+maz+- -+ mp_10F 7 my € GF(Q)) (7)

Let o € (GF(Q) be a primitive root. The RS-code € over GF((Q) is now obtained
as the set of Q-tuples

C = {(P0), P(a), P(a®). ... P{1)). P(z) € P}

It iz a code with k information symbols (over GF{(Q)) and blocklength Q. We
see that each codeword can be regarded as the k-tuple m = (g, my, -+, mp_1)

onto the @-tuple (P(0), P(a), P(a?),---. P(1)). Let (/(m) denote the image of
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m, ie. C(m) = (P(0), Pla), P(a?). ..., P(1)). As we already have seen we need
for the protocal not the whole codeword but only one of it’s ) coordinates. We
will use the mapping

Cy(m) = P(y), 7 € GF(Q). (8)

Finally we recall that the minimum distance d of the code C' satisfies
d=0¢ —k.

We now describe an example of the G-N protocol for £ = 5. Thus, see Figure
2, we need twa codes C! and (Y. We will show that we can give a construction
that gives a protocol for which P, = | using the substitution attack described
in Section 3.2.

We begin with setting up the protocol by chosing the codes” €' and C?.
Let ¢ be a power of 2 and { = ¢/2. The code C? is chosen to be an RS-code
over GF(Q2),Q2 = ¢°, with k4 = 2. Hence it has block length ny = ¢? and
distance do = ¢? — 2 = ¢° — q. The code €' is chosen to be an RS-code over
GF(@Q1), Q1 = @4, with k& = ¢¥~!. Hence it has block length n; = ¢* and
distance d) = ¢ — ¢*~' = ¢9(1 — 1/¢). The coordinates of the codewords of ('’
are obtained by evaluating a polynomial, associated with the ¢%/~! tuple m over
G'F(Q1) as specified by (8). Similar we obtain the codewords of C* by evaluating
a polynomial associated with the 2/ tuple over GF(Q2).

Recall that mg constitutes the aclual information message that A wants to
send to B. The second message m; consists of the index #; chosen by B (of size
log Q1) and the coordinate of the corresponding codeword from ! selected by
this index. Thus m; has size 2log @, = 4/logq. Similary, the third message ms
consists of the index 72 chosen by A and the corresponding coordinate. It has
size 2log s = 4logy. Thus we see that the original message is “reduced” as
llustrated below

size
mo ¢*log Q1 = ¢ logyg
1 im »
my i w) 2qlogq
.o
Mz ! Z El;’(ml) 4logq

Now recall from the definition of the G-N protocol property (ii) that n; —
n;p; = d;, hence we have

{ 20 _ 21-1 1
p]:l—lzl——q——;)ql———:~,

L q- q

da - 1
pp=1-t=1 0o

n; q- q

%2 Actually we need also C° and €' but these are irrelevant for our attack.
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and hence according to proposition 1. (4) (Claim!) we would have for the prob-
ability of a successful attack in the two first rounds

Pe=p1+ps—pip2 < 2/q

However let the received message in the first round be mg = [iy o CF, (m])]. For
simplicity define

=i, 8 =iy, and ¢ = C7,(m})
i.e. my = [Boc]. The attack given in Section 4 succeeds if C3(my) = C3(m)).
Now write

My = 10,0, 70,1y -5 Mg g2i=1—1, TN g € GF(Q1)7

miy =myg, M1, ..., mya-1, mj € GF(Q2).

. o 2-1_q
Thus CL{my) = mgp+ mo 0o+ mpea’ + -+ Mg gat-1- 10

We have o € (F(Q) and CL(mg) € GF(Q1) and since GF(Q;) is an ex-
tension field of GF(Q3),a and C}(mg) may be represented as a [-tuple over

GF(Qa).

Now recall that o consists of the first [ coordinates of m; and Cl(mg) of the
second batch of the | coordinates, i.e.,

O = g, Qg oo, X = MNP0, TR -
Ly — 1 1 ,
Climg) = CLlme)o, Colmo)y, ., Colmo)i_1 = M1 1, Mgty oy M 201,11 5 -

Thus for the whole m; given by
my = [ o CL(mo)] = myo,my 1,y 10y 1™ (41, .., 1 2—1 We get that

Cg(ml) =mio+myiBtmy a3+ g a1 R B € GF(Q)(C GF(Q1)Y).

Suppose now that we (‘hOOSL to 1eplace message mo by ml = ¢(8)", —(8)7!

., 0. Note that ¢(#)~!, —(#")~! are elements of the small field G F(Q2). Then

Ciimp) = (@)= = (8

Thus for m,; we get

my = [cy,(f'i,(rné)] = g, a1, ..., 1,(( (mg))o, (('](mo)) .,(Cé(mg))l_l =

:fl’(),ﬂl,-~~1Gl—1;(0(ﬁl)_l “(ﬁ) If-Y]n«—(ﬁl) CYl»"-w*(ﬁl)_lul—l,

where we used the fact that (¢( (u” —( oy fori=1,2,... -1
(recall that both ¢(3")~! and (;3’) are elemcnts of GF(Q2)). Hence

Cg(?‘lll) =ap+a g+ (13/33 + -4+ (11_.1/#-1 +
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B = (B ) + —(F) e B 4 =) e ) =
=ag+arF+ o+ o A+
+ec—ag—ayd— (,1'2‘[)’2 = ,”_“,31—1 -

A
== (z(m))

and independently of the index « chosen by B, the substitution attack will
succeed, 1.e., P, = 1.

6 Conclusion

We have analysed the Gemmell and Naor multiround protocol. We have shown
that the number of rounds have to be an odd number. Furthermore, we have
given a counter example to the Claim by GGemmell and Naor for the probability
of a successful substitution attack.
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