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Abstract. This paper discusses the security of the Fast Data Encipher- 
ment Algorithm (FEAL) against Linear Cryptanalysis. It has been con- 
firmed that the entire subkeys used in FEAL-8 can be derived with 225 
pairs of known plaintexts and ciphertexts with a success rate approxi- 
mately 70% spending about 1 hour using a WS (SPARCstation 10 Model 
30). This paper also evaluates the security of FEAL-N in comparison 
with that of the Data Encryption Standard (DES). 

1 Introduction 
This paper analyzes the applicability of Linear Cryptanalysis t o  the Fast Data 
Encipherment Algorithm (FEAL) [MSSSS]. The structure of FEAL is similar 
to  DES, except, for example, the permutation and the S-Boxes in F-function of 
DES are replaced by byte rotation and addition operation, and these differences 
are interesting from the viewpoint of cryptanalysis. In the Linear Cryptanalysis 
of FEAL, our main concerns in evaluating the security of FEAL considering 
the replacement of F-function and S-Boxes are: 1) how to find effective linear 
expressions, 2) an estimation of the success rate against the number of pairs of 
plaintexts and corresponding ciphertexts and the approximate probability, and 
3) an estimation of the memory size and the processing amount of the attack. 

2 Linear Cryptanalysis 
2.1 Nota t ions  and Preliminaries 

The modified FEAL and its modified F-function [MY921 are analyzed here. We 
use the similar notations and define the right most bit of each symbol as the 
O-th bit, which is the lowest bit, as well as in the reference [M93]. 

2.2 Principle 

Linear Cryptanalysis analyzes the probability that the following equation holds. 

. . .  where i l ,  i2,. . . , 2 , , ~ 1 , 3 2 , .  . . , j b ,  11, k2.. . , k, are fixed bit locations defined by 
the linear expression, (YP,  YC, Y K ) .  The value of the right side of this equation 
depends only on the key values. We denote S [ k l ,  kz . . . , ke] by S simply. 

* A part of this research was conducted while the second author stayed at NTT Net- 
work Information Systems Laboratories as a spring intern in March of 1994. 
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Two kinds of probability are defined in Linear Cryptanalysis: one is p = 
Probp,K{E(P, K ) ( r C ) $ P ( r P )  = K(rli)}, and the other is the absolute value 
of probability different from a half, p’ = Ip - 1/21. Hereafter, p‘ will be used as 
the probabili ty of the linear expression (f P, f C,  TI<). 

2.3 Implementation Techniques 
Matsui [M93] proposed the following practical implementation of an attack 
against DES, and captured the effective text bits among text information, P 
and C, which are essential to calculate Equation (2), and the effective k e y  bits 
among key information, K1 and ITn, which are essential to calculate Equation 
(2). Hereafter, 2 and k denote the number of effective text bits and the number 
of effective key bits, respectively. 

P[il, it,--. 1 ial  B CLI, j 2 , .  f .  r j b ]  B J ’ I ( ~ L ,  I<I)[uI, W, .. . , w I  
BFn(Cr.,K,)[v1,212,...,21,1 =s. (2) 

Algorithm 1 (Counter Technique) 

Step 1: Prepare 2‘ counters Ui(0 6 i < P), where i corresponds to each value 
on the t effective text bits of Equation (2). 

Step 2: For each plaintext and the corresponding ciphertext, compute the value 
5’ of Step 1 and count up the counter Ui by one. 

Step 3: Prepare 2k counters Tj(0 5 j < 2’), where j corresponds to each value 
on the k effective text bits of Equation (2). 

Step 4: For each ‘ j 7  of Step 3, let T j  be the sum of Ui’s such that the left side 
of Equation (2), whose value can be uniquely determined by i and j ,  
is equal to 0. 

If lTmax - N/2I > lTmin - N/2I ,  then adopt the key candidate corre- 
sponding to Tmax and guess S = 0 when p > 1/2 or 1 when p < 1/2. 
If IT,,, - N/2I < - N/2I, then adopt the key candidate corre- 
sponding to Tmin and guess S = 1 when p > 1/2 or 0 when p < 1/2. 

The computational complexity of this procedure is O ( N ) +  0 ( 2 t + k ) .  The number 
of counters, Ui and q, required by this procedure is 2‘ + 2‘. If we approximate 
( n  -2)-round F-functions from the second round to the ( n  - 1)-th round based on 
an (n -2)-round linear expression, we call this strategy 2-Round Elimination. 
1-Round Elimination is also defined using an ( n  - 1)-round linear expression. 

Step 5: Let Tmax(Tmin) be the maximal(minima1) value of all Ti,j’s. 

3 Linear Approximation of FEAL 
3.1 What are the Problems 
The essential differences between DES and FEAL are the structure of S-Boxes 
and that of F-function. More exactly, S-Boxes of DES are defined in a non- 
mathematical way using tables. S-Boxes of FEAL are defined mathematically 
using modular addition calculation with two bits left rotation. So it seems easier 
to find some property of S-Boxes of FEAL than that of DES. On the other 
hand, the eight S-Boxes in F-function of DES act in parallel more independently 
than four S-Boxes in F-function of FEAL which act sequentially, where the byte 
rotation is built in instead of the permutation of DES. Thus, it seems easier to 
find some semi-global property of F-function of DES than that of FEAL. 
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3.2 Linear Expressions of F-function 

We get various linear expressions of S-Boxes approximating the addition opera- 
tion with the bitwise consideration of carry propagation as was done in [CG91]. 

When a + b = z, for example, a[i] @ b[i] = z[i]  holds with probability of 
2-(it1)(i 1 o), a[;, i - j ] @ b [ i ]  = .[ill a[ i ]@b[i ,  i - j ]  = ~ [ i ]  and Q[i]@b[ i ]  = Z [ i ,  i - j ]  
hold with probability of 2-(j+l)(l  5 j 5 i). Note that a[O] @ b[O] = 2[0]  always 
holds, since there is no carry at  the least significant bit in the addition operation, 
and this gives 15 non-trivial linear expressions of F-function with probability of 
1/2, which can be always extended to 3-round linear expressions. If j = 1, we 
can make many examples with probability of 1/4 ignoring the bit position of i .  
This gives many local linear expressions with probability of 1/4. 

Here the concatenation rule of operations inside the F-function [B94, M94] 
is also applicable in the same way as that between F-functions. 

3.3 Linear Expressions of Reduced Round FEAL 

We developed. the following search algorithm to find effective 7-round linear 
expressions, where ( rY4--r, rX4-r)  = (fY4+rj fX4tP) holds for r = 1,2,3.  

Algorithm 2 (Search Algorithm of 7-Round Linear Expression) 

Step 1: Set (fY4,rXd) = (0,O). 
Step 2: Select (I'Y2, r X z )  of F-function whose probability is 1/2. 
Step 3: Search rY3 where (FY3, r X 3 )  has the probability of 2-2, given r X 3  = 

Step 4: Search rX' where ( r X z ,  f X $ )  has the probability of greater than or 

Step 5: Put (I'Yll rX1) = (rY3 @ rXz ,  r X 3  @ fX4).  Check whether its prob- 
ability is greater than or equal to 2-4 exhaustively, if (rY3,rX3) ac- 
tivates the same S-Boxes of F-function as (fX2, F X ; ) .  

ry2 .  

equal to 2- 3 . 

We have found the following eight pairs (f X a ,  rX$) using the above a l p  
rithm and sixteen 7-round linear expressions with probability of greater than 
2-'. This is one of examples with probability of 1.764 x 2-9, which is effective 
in our implementation described in Section 5. 

Note that the middle 5-round part of the expression also has the probability 
of 1/8, while Biham described a 5-round linear expression with probability of 
1/32 in [B94]. 

rxz rx; 
0000010010105050 
0000010018185858 
0000010010107878 
0000010018187070 
0100000060101010 
0100000058181818 
0100000070101818 
0100000078181010 

ry, rxr P: 
P 1D000400 50101010 

2 04010000 01000000 2-1 
3 1C000400 04010000 2-' 

5 lC000400 04010000 2-2 
6 04010000 01000000 2-1 
7 c 1D000400 SO101010 

1 lD000400 54111010 85 x 2-l' 

4 00000000 00000000 2-1 

lD000400 54111010 85 X 2-l' 

k 1.764 x Z-' 
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4 Discussion 
4.1 Attack Strategy 

Since the approximate probability of a linear expression for 6-round is larger than 
that for 7-round and N = c x p‘-’ holds, the 2-Round Elimination strategy is 
better than 1-Round Elimination from the standpoint of the required number of 
pairs for attack. However, 2-Round Elimination is infeasible, since the number of 
effective text bits, t ,  and the number of effective key bits, k, satisfy 1, k = 24 - 30 
roughly, and the processing amount is 0(242“48) in 2-Round Elimination where 
we assume N = 218, since Biham’s linear expression for 6-round satisfies p’ = 
2-’, where the Biham’s iterative 4-round expression [B94] is applied to 6-round. 

Let us estimate t and k for Biham’s 7-round linear expression, and those for 
our expression for 7-roundI assuming the 1-Round Elimination Technique. The 
processing amount of an attack using our linear expression is 0(236“40), since 
t ,  k = 20 - 24 holds roughly and p’ = 1.149 x 2-’. The processing amount of an 
attack of 1-Round Elimination using Biham’s 7-round expression is 0(224”30) 
using Algorithm 1, since 1 ,  k = 12 - 15 and p’ = 2-11. The number of counters, 
Ui and T j ,  required by Algorithm 1 is 212w15, which is acceptable. 

We decided to adopt the 1-Round Elimination Technique that requires 
us to  analyze the following equation: 

P~[16,23,25,26,31] @ C ~ [ 3 1 ]  @ C~[16,23,25,26] 
@ F ~ ( C H  @ CL,  I&)[23,25,31] = S. (3) 

Our linear expression is effective for the later phases of an attack to derive 
subkeys other than those derived from the above equation. 

4.2 Comparison with DES 

The best expression can be obtained by an exhaustive search algorithm against 
DES [M93, M94]. Since the number of active S-Boxes, which are approximated 
with a certain masking value, at the first and last rounds of F-function is 2 and 
the bit length of data input to each S-Box is 6, the number of effective key bits 
is 12 in Equation (2). 

On the other hand, since the byte rotation is built in implicitly between 
S-Boxes, the number of effective key bits and effective text bits seems to be 
24 - 30, which is larger than is true with DES. Thus 2-Round Elimination is 
infeasible in FEAL, which it is efficient in DES. Unfortunately, since we don’t 
have any practical search algorithm to obtain the best expression of FEAL, there 
might be a better linear expression than Biham’s. 

How about the effective key and text bits? The closer from the right side an 
input bit is to  a bit position related to a reference point output by the eighth F- 
function, the more strongly the value of the input bit determines the value of the 
XOR operation performed on the reference points, F ~ ( C H  @CL, 1<8)[23,25,31] in 
Equation (3). Therefore, the effective k e y  bits should be subdivided into explored 
k e y  bats and detec ted  key  bits for an attack against FEAL. Note that since each 
key bit input to an  S-Box of DES influences all output bits more equally than 
that of FEAL, detected key bits are identical to explored key bits in DES. AS 
a result, the treatment of effective key bits is simpler in an attack against DES 
than against FEAL. The similar discussion is valid in the treatment of effective 
text bits, which provides the number of counters, U;. Thus there are various 
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strategies to  reduce the number of effective (explored/detected) key/text bits in 
an  attack against FEAL. 

Concerning the parameter, N ,  of FEAL-N, where N means the iteration 
number of F-function, it seems that while FEAL-32 is as secure as DES against 
Differential Cryptanalysis, FEAL-16 is as secure as DES from the standpoint 
of Linear Cryptanalysis, since the number of key bits which are explored by the 
attack is 12 with the l4round linear expression with probability of 1.192 x 2-” 
in DES, while it is 12 - 15 with the 15-round linear expression with probability 
of ’L?-23 in FEAL assuming the Biham’s iterative 4round expression is applied 
to the 15-round case. 

5 Experimentation Results 
The following information was described in [OA94]: 
(1) A table relating the success rate, the number of pairs of plaintexts and 

(2) How to  derive the remaining values of all subkeys, and 
(3) How to  improve the success rate. 

ciphertexts, and the effective key bits needed to solve Equation (3), 

6 Concluding Remarks 
It has been confirmed that the entire subkeys used in FEAL-8 can be derived 
from 225 known plaintexts with a success rate approximately 70% spending about 
1 hour, from 226 known plaintexts with a success rate about 100% spending a 
little over 1 hour using a WS (SPARCstation 10 Model 30). 

It seems that  while FEAL-32 is as secure as the 16-round DES against Dif- 
ferential Cryptanalysis, FEAL-16 is as secure as it from the standpoint of Linear 
Cryptanalysis if we restrict ourselves to Matsui’s implementation technique using 
Biham’s linear expression. 

(1) Search algorithm t o  obtain the best expression of FEAL, 
(2) More efficient technique than Algorithm 1, and 
(3) More efficient strategy for reducing the numbers of effective text bits and 

There are several open problems: 

effective key bits in an attack against FEAL-8. 
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