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Abstract. We present a technique which aids in the linear cryptanalysis 
of a block cipher and allows for a reduction in the amount of da ta  re- 
quired for a successful attack. We note the limits of this extension when 
applied to  DES, but illustrate that  it, is generally applicable and might be 
exceptionally successful when applied to other block ciphers. This forces 
us to  reconsider some of the initial attempts to quantify the resistance of 
block ciphers to linear cryptanalysis, and by taking account of this new 
technique we cover several issues which have riot yet been considered. 

1 Introduction 

Matsui and Yamagishi [6] introduced the idea of linear crypianalysis in 1992 
in an attack on FEAL [lo]. The techniques used in this attack were refined by 
Matsui and used with dramatic effect on DES [7] in a theoretical attack on 
the full 16-round DES requiring 247 known plaintext/ciphertext pairs [4]. After 
further work an experiment was performed during which the key used in the full 
16-round version of LIES was recovered using 243 known plaintext/ciphertext 
pairs [9]. 

The most, notable feature about linear cryptanalysis is that  i t  is a known 
plaintext attack rather than a chosen plaintext, attack (differential cryptanalysis 
[l] is a chosen plaintext attack) and as such poses more of a practical threat to  
a block cipher. At present, however, a successful linear cryptanalytic attack on 
DES still requires a large quantity of known plaintext. 

In this paper we consider an extension to the. linear cryptanalytic attack 
[4, 51 using multiple linear approximations. This offers a slight improvement in 
the efficiency of an attack on DES but  more importantly, it is generally applicable 
and in certain c,ircumstances it might well be extremely effective in reducing the 
amount of data  required by a crypta.na.lyst, for a successful attack on a block 
cipher using linear cryptanalysis. 

Our paper is organized as follows. We briefly describe the technique of linear 
c,ryptanalysis, and then we present, an adaptation of these methods which allows 
us to  use multiple linear approximations. After providing theoretical estimates 
for the perf0rmanc.e of our techniques we present experimental evidence that 
supports our claims. Wc then consider some of t h e  implications of our work and 
draw our conclusions. 

Y.G. Desmedt (Ed.): Advances in Cryptology - CRYPT0 '94, LNCS 839, pp. 26-39, 1994. 
0 Springer-Verlag Berlin Heidelberg 1994 



27 

2 Linear Cryptanalysis 

We shall assume familiarity with the original paper by Matsui [4] which i n t r e  
duc.ed the linear cryptanalytic. attack on DES; we shall also refer to the more 
recent paper due to Matsui [5]. 

The basic idea behind linear cryptanalysis is to find some linear approxima- 
tion to the action of the iterated Iilock cipher which connects together, in one 
expression, some bits of the plaintext Pil . . . Pi., ciphertext C:j, . . . Cjb and key 
I<k, . . . Kk,, We shall write Pi, @ . . . @ Pi, as P [ x p ]  and we can write a single 
linear approximation as 

If equation 1 is correct with probability p = $ + t for randomly chosen 
plaintext and a fixed key, then we say that it has baas t .  By collecting known 
plaintext/c.iphertext pairs the cryptanalyst can make a guess for the value of 
K [ X K ] ;  provided 6 # 0 the guess becomes more reliable as the cryptanalyst 
collects more plaintext/ciphertext pairs. 

We note that the expected value of the left side will be i + t if K [ [ x K ]  = 1 
and - E if K[XK] = 0. tinder certain heuristic assumptions the cryptanalyst 
is attempting to distinguish a distribution with mean 4 + E and variance a - 
t 2  from one with mean 4 - c and variance - t 2  [fL]. The cryptanalyst has 
to  take sufficiently many plaintext/ciphertext pairs to be confident that this 
distinction is being correctly made and so the smaller the value of E ,  the more, 
plaintext/c.iphertext pairs are required to give the same level of confidence that 
the identification is correct. 

The basic algorithm that allows the cryptanalyst to deduce one bit of key 
information from a single linear approximation is Algorithm 1 in [4, 51. 

Algorithm 1 

Suppose that equation 1, P [ x p ]  @ C,"X~;] = K [ X K ] ,  is correct with probability 
p = $ + c .  

Step 1 

Step 2 

Let T be the number of plaintext/ciphertext pairs such that the left 

If T > N / 2  
side of equation 1 is equal to O and let N be the total nuniber of pairs. 

- then guess K [ x K ]  = 0 (when e > 0)  or 1 (when E < 0) ,  
~ else guess K [ x K ]  = I (when c > 0) or 0 (when t < 0) .  

Of more practical irriportance is Algorithm 2 [5] which allows a cryptanalyst 
attacking DES to  recover up to 13 bits of key information in the full 16-round 
DES. More gencrslly, for a n  r-round Feistel cipher we approximate ( r  - 2) itera- 
tions of the F-function from the second to  the ( r  - l)t" round using some linear 
approximation while guessing the subkey bits that  are relevant to the first and 
final rounds. To keep the number of candidates small, it is advisable to corisider 
linear approximations that involve guessing few subkey bits in the first and rth 
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round. In the case of DES, this is conveniently achieved by guessing the subkeys 
relevant to  a single S-box in the outer rounds. 

Following Matsui we write the parity of the relevant output bits from the 
F-function in round one, which is dependent on subkey Kl and plaintext block 
PL, as F I ( ~ L ,  Kl)[xp,]; we use similar notation for the output of the F-function 
in round T .  The relevant linear approximation can be written as follows: 

~ [ x P ]  ~ ( C : [ X C ]  w F I ( J ) L ~  I ~ I ) [ x F ~ ]  Fr((yL1 II~,)[XF,] = [ ~ [ x K ] .  (2) 

Suppose that eqiiation 2 is c.orrect, with probahility p = f + t 

Algorithm 2 

Step 1 Let 1i'1(~) (g = I , ' L ,  ) and A.:'~) ( i t  = I ,  2 , .  . .) be possible candidates 
K, ( h )  ), let Tg,h be the 

number of plaintexts such that the left, side of equation 2 is equal to 0 when 
ICI is replaced by Kig' and It', by Let N be the total number of 
plaintexts. 

Let T,,, be the maxirnurn valiie and Tnlin he the rninirrium value of 
all TS,h's. 

~ If IT,,, - N/21 > ]",in - N / 2 ] ,  adopt, the key candidate corresponding 

-- If IT,,, - N/21 < lTmdn - N / 2 l ,  adopt the key candidate corresponding 

for lt'l and IC, respectively. Then for each pair 

Step 2 

to  T,,,, and guess ICh1<] = 0 (when 6 > 0) or 1 (when 6 < 0 ) .  

to and guess K [ x K ]  = 1 (when f > 0) or 0 (when c < 0). 

Algorithm 2 provides a guess for t,he relevant, subkey bits of l i 1  and It', 
together with the additional bit of subkey information obtained from the linear 
approximation. Matsui [5] gives both experirriental and theoretical justificatiorl 
for the belief that by taking tic-'  known plaintext,/ciphertex.t pairs AhJOdh711 2 
is correct with high probability. 

To obtain more subkey bits, another linear approximation c.an bc uscd or, 
for a Feistel cipher, the roles of the ciphertext and plaintext can be reversed and 
Algorithm 2 applied again. 

In the particular case of DES, Matsui [5] uses t,he second approach to obtain 
26 bits of subkey information in total. Fortuitously, the key schedule in DES 
ensures that  these 26 bits of subkey information correspond to  26 distinct bits 
of key information. The remaining unknown 30 bits of key can be derived using 
an exhaustive search. 

3 Multiple Linear Approximations 

There are many different linear approximations to a block cipher over a given 
number of rounds. Suppose we have n linear approximations which involve the 
same key bits but differ in the plaintext and ciphertext bits that  they use. 

Matsui's Algoriihm 1 c.an be used on any of the n individual linear approx- 
imations to  define a statistic T i ,  1 5 i 5 71 ,  with a certain bias and variance; 
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the S U C C ~ S S  of Algorilhin 1 depends on both. However, we now show that it is 
possible to use more than one linear approximation at  the same time. In short, 
we work harder on the information we already have rather than calling for more 
plaintext/ciphertext, pairs. 

Suppose the ith linear approximation for 1 5 i 5 11 has the following form: 

For the sake of analysis, we will suppose that each bias t t  is positive; changes 
can easily be made to the data collecting phase to ensure that this condition 
holds. 

Algorzthrn 1M 

Step 1 For 1 5 i 5 n let T, be the number of plaintext/ciphertext pairs such 
that the left side of equation 3 is equal to 0. Let N denote the total number 
of plaintexts. 

For some set of weights a l  , , . . a,  where Ey=l (1, = 1 calculate Step 2 
n 

Step 3 If U > 5 then guess K [ x K ]  = 0, else guess A’[xK] = 1 

The analysis below will show that we have introduced a new statist,ic. 11 
(defined in terms of the Ti, 1 5 i 5 7 1 )  which has a bias .c,omparable to the 
Ti’s but a reduced varianc.e. Because of this reduced variance the attack requires 
fewer known plaintexts. We will also see in Lernrna 2 that  the success rate of 
Algorithm 1M is optirnized if the weights are defined as a; = t i /  C c i .  

3.1 Analysis of Algorithm 1M 

For each linear approximation define. xi to be a random variable whose value is 
0 when the left aide of t,he ith linear approximation is equal to 1 and 1 when the 
left side is equal to 0.  Hy making this definition we see that, sum of xi for the 
ith linear approximation over all plaintext/ciphertext pairs in the experiment is 
equal to T i .  

We observe that for a good block c,ipher the value of the left sides of t’wo 
different linear approximations will be essentially independent since the two left 
sides differ by a combination of plaintext, and ciphertext hits. This observation 
is supported by the experimental work presented in Section 4, and leads to the 
following assump tion: 

Assuinptioii 1 For a l l  i and j with i # j ,  zi = z j  with probability i, where the 
probability is taken over randomly chosen plaintezts. 

We now establish the values for the rnean and variance of the statistic I J .  
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Lemma 1. Let y = zy=l aixi with c:=l cii = 1. Then under Assumption 
have E[y] = -Cy=l aiti ~ ~ K [ X K ]  
The variance satisfies 

+zy=l aifi i j K [ x ~ - ]  = 0 and E[y] = 

n 9 / n  \ 2  

i= 1 \ i=1 1 

Proof. See Appendix A 

I we 
= 1. 

0 

Following Matsui and noting that, each value of the statistic U = niTi can  
also be expressed as a sum of independent values y = C a;x;, we will make the 
following assumption which is consistent with the experimental results presented 
in Section 4.  

Assumption 2 The dzstrzbutaon of the statastzc I J  = Cr=l a,T; can be acru- 
rately i r i o d e l ~ d  uszng a norirral dzstrzbutzon 

Our goal is to maximize the distance between N / 2  and E[U] = N E [ y ]  in 
terms of the standard deviation q 1  = f lcy.  This increases our success rate for 
a fixed N ,  or alternatively, allows us to use a smaller N while maintaining the 
same level of success. 

Lemma2. Under Assumptions 1 and 2, wzih the statistic I J  defined as in AIgo- 
rithrri 1 M ,  the distance ( N / 2  - E [ U ] I / u ~ ~  is niaximized for a given N when the 
weights ai are proportional t o  the biases t i .  

Proof. See Appendix A. 0 

The maximum distance is easily calculated as 'LfiJ(E 6 : )  /( 1 - 4 €22). 
Adopting the conventional notation of @(.) for the normal cumulative distribu- 
tion function "21, this leads to the following theorem: 

Theorem3. Under Assumptions 1 and 2, the success rate of Algorithm 1M, 
with optimal uiezghts aj,  as 

Proof. Follows direc.tly. 0 

When E E ;  is small, we approximate the success rate as @ ( 2 f i a ) ,  a 
generalization of Matsui's single-approximation success rate of @(2&~). 

As an illustration of the improvement possible, suppose that we have n linear 
approximations all involving the same key bits and all having the same bia5 6. 

Then using Algorithm 1M and N' known plaintext/ciphertext pairs the success 
rate is given by @ (2mm) = @ (2mJ;;t). Using Algorithm 1 with 
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a single linear approximation, the success rate is @ 2 f l c  . We see that if 
N' = N / n ,  then there is an wfold reduction in the amount of data and yet the 
two algorithms have the same success rate. 

It is somewhat artificial to assume that there are n linear approximations 
involving the same key bits, all correct with the same probability. Later we will 
outline some extensions which allow us to relax these conditions on the use of 
multiple linear approximations However, we can summarize oiir results so far by 
saying that the use of several carefully chosen linear approximations concurrently 
will lead to a reduction in the amount of data required for a linear cryptanalytic 
attack. 

0 

3.2 Algorithm LM 

We now introduce an extension to Algorilhm L? [4, 51 which uses multiple linear 
approximations. For an r-round Feistel cipher we approximate ( r  - 2) iterations 
of the F-function from the second to the ( r  - l) th round using 11 linear approxi- 
mations while we still make guesses for the subkey bits needed to extend through 
the first and final rounds. Note that to keep the number of candidates small, the 
approximations should all involve the same guessed subkey bits in round one, 
as well as in round r. Following the notation established for Algorithm 2 we can 
write the ith linear approximation as follows: 

P [ x ~ ] #  ('[x;] cii F ~ ( P L ,  li1)[X&,] Fr(C:Lr ~ir)[X&,] = I ~ [ x K I .  (4) 

We will again suppose, without loss of generality, that each bias c i  is positive. 

Let z{ig) (9 = 1 , 2 , .  . .) and K $ ~ )  (11 = 1 , 2 ,  . . .) be possible candidates 
for Ir'l and I<, respectively. Then for each pair ( K l g ' ,  ITSh)) and each linear 
approximation a let Tj,h be the number of plaintexts such that the left side 
of equation 4 is equal to 0 when Ii'l is reylaccct by K i g )  and Xr by A'$*). 
Let N be the total number of plaintexts. 

Step 1 

Step 2 Let ai = ci/)-& ci. Calculate, for each 9 ,  h,  
ta 

i =  1 

Step 3 Let ti,,, be the maximum value and Umin be the minimum value of 

- If (U,,, - N f 2 )  > (Urnin - N/21, adopt the key candidate corresponding 

- If ltJmUz - N / 2 (  < (Urnin - N / 2 ( ,  adopt the key candidate corresponding 

all lJg,h's.  

to Urn,, a n d  guess K [ x K ]  = 0. 

to Urnin and guess K [ x K ]  = 1. 

Algorithm 2M is a generalization of Algorithm 1M and we expect i t  to be 
sucxessful for essentially the same reasons. The main issue is that we are replacing 
the statistic. defined using Algorithm 2 with one that has a smaller variance. We 
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know that the variance is reduced for the c.orrect key guess; the complicating 
issue is what happens to  the statistics (Jg,h for incorrect key guesses. By Lemma 
1 the use of multiple linear approximations ensures that the variance of any 
statistic, even those for inc0rrec.t key guesses, will be reduced. This gives us one 
reason to  expect a higher success rate with Algorithm LM for a given number of 
plaintext/ciphertext pairs. 

Another reason is due to a cancellation property. I,et, Pj,,L be the probability 
for a random plaintext/ciphertext pair that  an incorrect key guess gives the same 
answer as a correct key guess; that  is, the probability that 

Then it  is easy t~o show that 

Y 

i = l  

where 66,h is a “correlation coefficient” defined as = 2P;,*--l. This coefficient 
takes values between -1 and $1. 

The greater the magnitude of the difference between E[Ug,h] and N / 2 ,  the 
greater the likelihood that the key guess A$’’)) is adopted. However, since 
a correlation coefficient, can take both positive arid negative values for an 
incorrect key guess, but is always 1 for the correct, key guess, the correct guess 
is at a significant advantage. We will explore this phenomenon more closely in 
subsequent work. 

Par t  of Section 4 contains results on thc perforrnarlce of Algorithm 2M. 

4 Experimental Results 

In this section we report the findings from several experiments performed on 
small-round versions of DES. We chose small-round versions because we wish to  
present confirmation of the performance of our algorithms and we feel that these 
examples are particularly illustrative. 

4.1 Coiifiriiiing the assumptions and Alyorathm I M  

The  aim of the first set of experiments was to  substant,iat~e the assumpt,ions made 
during Sec,tion 3.1 and to test, the theoretical predictions made about the use 
of multiple linear approxiniations. Although the experiments were c,onducted on 
a. small scale, they provide good corroborating evidence for the validity of both 
the assumptions and the theoretical results. It is reasonable to  assume that these 
results would extend to a larger scale. 

We used a five-round version of DES with two linear approximations identi- 
fied using the notation in [5] as -ACD- and -DCA-. Each linear approximation 
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number o f  pairs 

Pl 
P, 

holds with bias c = 25 x 2-12 6,104 x lod3.  Let Ji'i denote the 48-bit sub- 
key used a t  round i ,  PL the low 32 bits of plaintext and C,'L the low 3 2  bits of 
ciphertext. Then we have 

Pi : Pb[7, 18,24,Z9] & C:,5[7, 18,241 = K2['22] @ K:3[44] @ K 4 [ 2 2 ]  
P2 : P,5[7, 18,241 @ C : L [ ~ ,  18,24,29] = Ii'2[22] cf3 K3[44] @ A'4[22] 

First we consider Assumption 1 .  IJsing 2,000,000 plaintext/ciphert,ext, pairs and 
linear approximations PI and P2 we fonnd that the outc,ome of the two relations 
agreed 999,351 times and disagreed the remaining I ,  000,649 times; this gives 
us some confidence that Assumption 1 is reasonable. 

We next completed 100 attempts at, the linear cryptanalysis of five-round 
DES using Algorithm I M  on an increasing number of plaintext/ciphertext pairs; 
these numbers were chosen so that the number of plaintext,/cipliertext pairs 
was roughly if-', i t - 2  and f-'. The success rates achieved in practice 
using PI and Pz individnally and then jointly are presented below, together 
with the results predicted by the theory for Algorithm 1 using individual linear 
approximations and for Algorilhni I M  using multiple linear approximations. 

experimental results theoretical predictions 
3,356 6,711 13,422 26,844 3,356 6,711 13,422 26 ,844  
81% 86% 94% 99% 76% 84% 92% 98% 
75% 88% 92% 99% 76% 84% 92%) 98% 

number of pairs 
PI 

(Iuszng PI and P2J 92% I 95% I 98% I 100% 84% 1 9 2 %  I 98% I 100% 11 

expert in e n t a 1 resu Its 
13,422(26,844153,6881107,376 

3% I 2% I 17% 1 51% 

These results confirm Theorem 3 :  it is clear that the use of Iwo linear ap- 
proximations gives success rates comparable to individual linear approximations 
with half as many plaintext/ciphertext pairs. 

4.2 Coiifiriiiiiig A l g o ~ i l h i n  2M 

The aim of the second set of experiments was to confirm the expected behavior of 
Algorithm 2M.  The experiments c,onsisted of atstacking a seven-round version of 
DES by using the five-round linear approximatioris PI and P2 from the previous 
experiment for rounds two through six, and guessing the 12 subkey bits used in 
the first and seventh rounds. The results are presented below. We note that the 
same success rate achieved using either of the single linear approximations on 
their own could be achieved by using both linear approximations together with 
half as many plaintext/ciphertext pairs. 
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5 Effectiveness and Extensions 

In an attack on DES it is perhaps surprising how little advantage is gained at 
present using rnultiple linear approximations. An exhaustive search reveals that  
there are 10,006 14-round linear approxirnations involving a single S-box at each 
round with bias (ci( > We found that x:2f06 6:  M 1.23 x l O - " .  With our 
present, techniques we can use only a small frac,tion of these approximations, 
giving only a minor improvement in the number of plaintext/ciphertext pairs 
required. 

Even if we could use all these linear approximations at the same time, 
it would only result in a reduction by a factor of about 38 in the number 
of plaintext/ciphertext pairs, since for the "best" linear approximation, c 2  FZ 

3.22 x Futurc rcsearch will undoubtedly reveal whether techniques exist 
using multiple linear approximations which can begin to deliver such improve- 
ments. 

Note that  there may well be differen1 linear approximations involving dif- 
ferent subkey bits which, because of the key schedule used in the block cipher, 
correspond to the same key-bits in the user-provided key. In such a case these 
linear approximations would each provide a guess for the same bit of key infor- 
mation, and could be used together with Algodhm 1M or LM. Unfortunately 
the existence of such linear approximations depends closely on the key schedule 
in the cipher. 

Our aim is to  remove the assumption that all the linear approximations use 
the same subkey bits. Our approach is to  modify the techniques we have, without 
regard for the key schedule, to use good linear approximations which potentially 
involve different subkey bits. At this point we present only an extension t o  A/-  
gorithni I M .  

Suppose we have n linear approximations and the ith linear approximation 
has the form 

P[&] @ C[X4:] = Zi[&]. (5) 
To consider the approximations together, we must first guess, for each j ,  

2 5 j 5 71, whether Zi'[x&] and Ii[[xi.] are equal or not. There are a t  most 2"-' 
guesses and for each guess we obtain 71 linear approximations of the form 

where A' = 0 and Ai for i > 1 depends on the guess. 
At this point, for each guess, we c.an determine by Algorithm 1M whether 

Zi'[xk-] = 0 or 1, where the statistic T, in Algorilhm I M  is taken from the left 
side of equation 6. Note that in practice one would not repeat Algorithm I M  
for each guess; instead one would c.onsider up t o  Y - '  ways of combining the 
statistics Ti for 1 5 i 5 11. 

This approach does not determine which guess is correct, but for each guess it 
does give an estimate for the value of Ii[xk]. In effect this halves the exhaustive 
search space. We need only have a high success rate for the value of K [ x k ]  for 
the correct guess. Analysis similar to  that for Algolzihm 1M suggests that fewer 
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plaintext/ciphertext pairs are required for a given success rate than if we only
used a single approximation.

As an example of this approach, consider the following linear approximations
to six-round DES. Following Matsui's notation, let Pi represent the linear ap-
proximation A-ACD- while Pi represents E-DCA-. These hold with bias 3.8 lx 10~3

and 3.05 x 10~3 respectively.

Pi : PH[7, 18,24, 29] 8 PL[15] * 6'L[7,18,24] =

Kx[22] © K3[22] © K4[44] © Ks[22] (7)

P-, : PH[7,18, 24] e P t[12, 16] e CL[7,18, 24, 29] =

Kx [19, 23] * K3[22] © K4[44] e Ks[22] (8)

We can use both linear approximations in Algorithm IM while guessing whether
the right sides are equal or not. The results of this experiment are provided
below. The amount of data in these experiments was chosen so that the number
of plaintext/ciphertext pairs was roughly |f~2, \(~2, \e~2 an<^ f~2 w n e r e l ~
3.81 x 10~3. The success rates provided in the table below are for the correct
guess, which in our experiment was that the right sides are equal.

More analysis of this technique will be presented in future work.

1
| number of pairs

Pi

PI
using P\ and Pi

experimental results | theoretical predictions \

8,590) 17,180|34,360|68,720||8,590| 17,180|34,360J68,720]

81%
73%
89%

82%
82%
93%

92%
86%
99%

100%
96%
100%

76%
76%
82%

84%
79%
79%

92%
87%
96%

98%
98%
95%

6 Implications

If we consider DES-like ciphers generally, we can imagine situations where the
use of multiple linear approximations might well be very significant. If an S-box
has b output bits, then there are potentially 2* — 1 useful linear approximations
using the same input mask, and hence the same subkey bits. We note that there
are no useful variants of the trivial one-round linear approximation (denoted as
— by Matsui).

The Feistel structure of a DES-like cipher means that we can consider 2 — 1
variations on the left half of the plaintext and 2h — 1 variations on the right
half which would provide alternative linear approximations on exactly the same
subkey bits. Since the trivial one-round linear approximation has no useful vari-
ations, the best linear approximations (which we would expect to use the trivial
one-round linear approximation) might not allow consideration of all these vari-
ations.

One of the most interesting cases is a DES-like block cipher with larger S-
boxes. Our results show that the extra linear approximations admitted by the
use of larger S-boxes might increase the vulnerability of the block cipher to some
form of linear cryptanalysis using multiple linear approximations. More research
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is required to  assess the significance of this development but we note that it 
should be an important consideration; after the work of O’Conner [a] larger S- 
boxes have been proposed as a way of increasing the resistance of a block cipher 
to differential cryptanalysis [3]. 

Another consequence of our work is that in assessing the resistance of a 
block cipher to linear cryptanalysis it is not sufficient to consider the best linear 
approximation in isolation; one must, also take account of other linear approx- 
imations which might, be used at the same time. We suggest that some of the 
preliminary work in assessing the practical security of a cipher against linear 
cryptanalytic at,tac,k [3] should be broadened s i n w  these estimates of strength 
are made under the assumption that the best attack is cornpleted using a single 
linear approximation. IJnder this assumption a lower bound on the complexity 
of a linear cryptanalytic at,tack on a Feist,el cipher is obtained by considering 
(i) the bias of the best non-trivial one-round linear approximation and (ii) the 
number of rounds in the cipher. 

By considering a theoretical best linear approximation one overlooks the 
possibility that several good linear approximations c.ould be used concurrently 
to obtain a more efficient attack. We suggest that a more useful measure of 
practical security against linear crypt,analytic attack should also corisider the 
use of multiple linear approximations. 

7 Conclusions 

We have presented an extension to the basic. linear cryptanalytic, attack which 
offers an improvement in the number of known plaintext/ciphertext pairs re- 
quired for the linear cryptanalysis of a block cipher. While its effeckiveness in an 
attack on DES is at  present somcwhat limited, it, is a general technique which 
might have excellent results in the cryptanalysis of other less well designed block 
ciphers. 

Importantly, we note that, thc use of larger S-boxes, which is sometimes 
recornmended as a way of increasing the security of DES-like block ciphers, 
might in certain circ.urrlstances fac,ilitate the use of linear cryptanalysis with 
multiple linear approximations. More research is needed t,o asc,ertain quite how 
significant a threat this might evcntually be. 

We believe that the use of multiple linear approximations is an important 
c,ryptanalytic, tool and one which should be considered both in the design of block 
ciphers and in any attempt to provide a theoretical bound on the resistanc.e of 
block ciphers to linear cryptanalysis. 
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A Proof of Lemmas 1 and 2 

We need the following additional lemma fur  our proof of Lemma 1 

1 1 1 
2 2 
-E[3:,(Z< = zj] + ;E[zi(z; # x 3 ]  = - + t i  

and 
1 1 1 
2 2 2 - E [ ” j I z i = z : j ] + , E [ 2 j I z ; # 2 j ] = ~ + t j .  

I t  is not hard to solve for the individual expectations 

1 
2 

Zj] = ; + 6 i  + t j ;  E[Zil”i = “ j ]  = E[zjIz i  = 

arid the result follows. Analysis is sirriilar if K [ x K ]  = 1. 
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Proof of Lemma 1

Proof. It is straightforward to verify that E[y] = \ ± J^ aze; depending on A'[XA']

The calculation of the variance u'l is more involved.

a] = Etf] - E[yf

= E

- E

- (E[y]f

i=\j-i+l

n n

Under Assumption 1 we established in Lemma 4 that

E[xiXj] = E[Xi]E[xj} - iitj.

This then gives us

n 2 n n n

8 = 1

" ^ 2

\i=\

n

Proof of Lemma 2

Proof. The distance \N/2 - E[U]\/av is maximized when (N/2 - E[U])2/<rl is
maximized. Expanding E[U] and cr^, we wish to maximize

(N/2~NE[y]Y
No-%

= N (E"=i Q«f«)

= N-
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It is easy to show that this is maximized when (1 uiti)’/(C u:) is maxi- 
mized; note that the denominator must be positive since uy” must be. We now 
give an upper bound of ct: on this fradion, by contradiction. 

Suppose that the fraction exceeds the upper bound. Then we must have 
n n 

Expanding the terms, we have 

i=l j=1  i = l  j = l  

Thus we must have, for some i and j, 

~ n i t i n j c j  > a:~.; + n,2ep, 

or ( n i t j  - njci)’ < 0,  whic,h is a contradiction. 
The upper bound is achieved when n i t j  - ajci  = 0 for all i and j ,  i.e., when 

.;/ti is constant. 0 
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