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Abstract. We propose a new family of hash functions based on com- 
putations over a finite field of characteristic 2. These functions can be 
computed quickly, detect small modifications of the input text, and their 
security is equivalent to a precise mathematical problem. They rely on 
the arithmetic of the group of matrices SL2, and improve upon previous 
functions based on the same strategy. 

1 Introduction 

We focus on the problem of designing easily computable cryptographic hash 
functions. Such a function H should map the set of variable length texts over an 
alphabet A, to  a set of (short) fixed length texts that are named hashcodes. 

H :A*  --.A” 

A hash function should have the following properties : 

- It should be easily (i.e. quickly) computable. 
- It should be computationally difficult to find “collisions” , i.e. two texts hav- 

ing the same hashcode. (This is sometimes known as the strong collision 
criterion). 

Hash fiinctions are widely used in numerous cryptographic protocols, and a 
lot of work has already been put into devising adequate hashing schemes. Despite 
that ,  numerous propositions have been shown to be insecure, and the security 
of those which remain unbroken remains formally unproved. 

Following ideas introduced in [12] (see also [13]), we elaborate here on a 
design principle which enables one to obtain the following unconditional security 
property. Small modifications of t h e  input text are always detected. More precisely 
we will present here a new hash algorithm which meets this property, and which 
displays several other attractive features. In particular, it improves upon previous 
proposals of this kind [12] [ll]. 
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~ The algorithm can be easily implemented in software by using only basic op- 
erations, namely addition in a finite field of characteristic 2, with 2n elements 
F2. (with say n in the range 130-170), which allows fast computations. 

- It is particularly well suited to  parallelisation, and to precomputations. 
- The security of the scheme we propose is equivalent to a precise mathematical 

problem, for which there exist several results in favor of its difficulty. 

The hash algorithm we propose can be described as follows. 

Defining Parameter. An irreducible polynomial P,(X) of degree n in the 
aforementioned range. 
Algorithm. Let A and B be the following matrices. 

Define the mapping 
T : ( 0 , l )  -+ { A ,  B }  

0 - A  
1 - B  

The hashcode of binary message 2122.. .zk is just the iriatrix product 

451)T(22). . .X(Zk) 

where computations are made in the quotient field Fzn = F2[X]/Pn(X) of 2" 
elements. The hashcode is thus some element of the group SLZ(F2n) of 2 x 2 
matrices with determinant 1 over Fp.  We need 3n + 1 bits to  encode the hashed 
value (that is 390-510 bits). 

A design strategy lies behind the construction of this function. It is based on 
associating to  such a function a Cayley graph, and by exploiting the fact that 
security is related to graphical parameters. We will elaborate on this in the next 
section. Provable properties of the hash algorithm using this strategy will be 
given in section 3. 

2 A Design Strategy. Graph-theoretic Issues 

2.1 The General Construction 

We have based the design of our hash functions on the following general scheme. 

Defining Parameter. A finite group G, and a set of generators S of the same 
size as the text alphabet A. Choose a function x : A -+ S which defines a 
one-bone  corrcspondence between A and S. 
Algorithm. 
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The hashcode of the text 2122., .xk is just the group element 

Motivation for this construction is twofold : the hash functions display a con- 
catenation property, and one can associate to  such a scheme a Cayley Graph, 
several parameters of which are relevant to security (namely its girth and ex- 
panding properties). 

Concatenation property. If x and y are two texts, then their concatenation XY 
has hashed value H(xy) = H(z)H(y). This clearly allows an easy parallelisation 
of the scheme, and precomputations when parts of the message are known in 
advance. 

Parameters of the associated Cayley graph. We can associate to  this scheme the 
Cayley graph C(G,S) :  its vertex set is G and there is a directed edge from gi 
to  92 if and only if gT1g2 E S. The following parameters are of fundamental 
importance when studying the security of the hash function. 

The girth of the graph. We shall use the following definition of the directed girth. 

Definition 2.1 Call the directed girth of a graph 0 ,  the largest integer 
8 such that given any two vertices v and w, any pair of distinct darected paths 
joining v t o  w will be such that one of those paths has length (i.e. number of 
edges) 8 or more. 

- 

It is readily seen that for the associated Cayley graph C(G,S) ,  this notion is 
translated into the following property of the hash function. 

Proposition 2.2 - If we replace k consecutzve symbols of a text 

2 = 21x2 . . . Xil-pi+t+l . . . 2 t  

b y  a string of h consecuiive symbols so that the resulting texci 

has the same hashed value, then sup(k, h) 2 8. 

In other words, if we can obtain C(G, S )  with a large 8, we protect against local 
modifications of the text. 



43 

Expanding properties.  A desirable feature of any hash function is the equidistri- 
bution of the hashed values. This property can be guaranteed if the associated 
Cayley graph C(G, S )  satisfies 

Proposition 2.3 I f  C(G, S) is a Cayley graph such that the gcd of i ts  
cycle lengths equals 1 ,  then for the corresponding hash function, the distribution 
of hashed values of texts of length ri lends t o  equidistribution when n t ends  l o  
anfinity. 

- 

This is proved by classical graph-theoretic (or Markov Chain) methods by 
studying the successive powers A" of the adjacency matrix of the graph. To prove 
that  this property occurs in practice, we need to  evaluate the speed with which 
equidistribution is achieved. The best results will be achieved if the Cayley graph 
C(G, S )  sufficiently resembles a random graph. This can be obtained for graphs 
with a high magnifying or expansion coefficient ( for more details see [12]). 

2.2 The Choice of SLZ. 

The groups SL2(Fq) of 2 x 2 matrices of determinant one over a finite field Fq 
seem to us to  be a promising choice for devising quality hash functions. There 
are several reasons for this. By choosing simple matrices for generators, one 
obtains fast hash functions: this is because multiplication by such a matrix, i.e. 
processing one bit of text, amounts to  a few additions in Fq: in this paper, we 
focus on the case when q = 2" which provides the fastest computations of all. It 
is comparatively easy to  obtain Cayley graphs over those groups that have large 
girths, [7]: [8] is a record-breaking construction. Cayley graphs over SL2(Fq) tend 
to  display good expanding properties: this is justified both theoretically [9] and 
experimentally [6]. 

2.3 On the Difficulty of Finding Collisions. 

Another attractive feature of the general hashing scheme is that we can express 
clearly in mathematicals terms the problem offinding collisions. It may readily be 
checked that the problem reduces to finding two strings of generators (elements 
of S )  such that the corresponding products coincide in G ; i.e. find s1, s2, . . . sn, 

~ 1 , ~ 2 , .  . .urn E S such that 

equivalently 
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So we see that finding a collision is equivalent to finding factorisations of the form 
(1). Now it can be argued that there are always trivial factorisations of the form 
(1) in any finite group (e.g. slGl = 1, for any s E S). But we must note that only 
n R log IGl bits are needed to express hashed values, so that we can choose groups 
of large cardinality (e.g. \GI = 2500) for which trivial factorisations involving N - 
IGl elements are useless as actual forgeries (because no text has ’i?500 bits !). This 
means, broadly speaking, that the strong collision criterion is satisfied whenever 
it is computationally difficult to find short factorisations of the form (1). This 
problem is known to be potentially difficult. For instance Jerrum [5] considers 
the problem of finding the shortest factorisation of an arbitrary element of an 
arbitrary permutation group over some set of generators, and proves that it is 
Pspace-complete. This provides additional motivation for pursuing this group- 
t heor et ic st rat egy. 

Moreover when we choose G = SLz(F,) as explained above, it seems that the 
search for short factorisations in G yields challenging and apparently difficult 
problems, see e.g. [l]. Some work has already been devoted to solve this problem, 
and the main results are the following probabilistic algorithms. 

1. Subgroup attacks. A hashing scheme based on matrix computations has been 
devised in the past [2] with a group of too small a size for which a probabilistic 
attack was devised in [3]. It is based on the search for texts whose hashcode 
falls into a subgroup. For our choice of q this algorithm turns out to be 
inefficient, because all subgroups of SL2(Fq) have index larger than Q + 1 
(theorem 3.2). 

2. Density attacks. A preliminary version of a group theoretic hash function 
was shown to be insecure in [ll]. It was based on the group SL2(Zp) and 
the two generators C = (A i )  and D = ( i  y ) .  The key to the forgery was 
the following: it is readily seen that a short factorisation over SL2(Z,) of 
the identity produces collisions (by insertion into any message M ) .  To find 
such a factorisation, the strategy is to reduce the problem to factorising in 
an infinite group, in this case SL2(Z). Look for a matrix U of SLz(Z) which 
reduces modulo p to the identity, and can be expressed as a product of C’s 
and R’s. In this case this simply means that U should have non-negative 
coefficients. There is an effective algorithm to obtain the factorisation of U .  
To have an effective forgery, one miist have a way of finding such a matrix 
U whose factorisation into C’s and D’s is short. A probabilistic algorithm 
that does this is given in [ll]: it is based on the fact that the set of matrices 
of SL2(Z) with non-negative coefficients is a “dense” subset of SLz(Z) ,  TO 
protect against such attacks, one should choose sets of generators S that 
generate sufficiently sparse submonoids of the infinite groups associated to 
SL2(Fq). 
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3 A Specific Hash Function 

In this section we turn to  the specific hash function associated to  G = SL2(Fq) 
with q = 2" and with the generators A and B mentioned in the introduction. 
We address the following topics related to  its security, i.e. 

- What is the set of hashcodes? 
- Why does this hash function detect local modifications of the input. 
- Why does this hash function protect against density attacks. 

3.1 The Set of Hashcodes 

In order to  show that the set of all hashcodes is not too small we need to clarify 
what is the subset (actually the subgroup) of SL2(FZn) which is generated by A 
and B. More precisely we show here that this subset is the whole group: this is 
the following theorem 

Theorem 3.1 - 
< A ,  B >= SLz(Fzn) 

(where < A ,  B > denotes the group generated by A and B )  

From that i t  follows that the set of hashcodes has 2n(22" - 1) elements 
(since ISL2(Fzn)( 2n(22n - l)), which is sufficiently large to  avoid direct 
probabilistic attacks, which use the birthday paradox for instance. Moreover, it 
is straightforward to check that we can code efficiently these hashcodes by using 
just 3n + 1 bits. 

Theorem 3.1 is proven by using some known results about the subgroups of 
SLz(F2n). For our purposes, we use the classification obtained by Dickson (see 
[4]), and which can also be found in [la] (see theorem 6.25 p.412-413) 

= 

Theorem 3.2 

(a) Abelian subgroups. 
( b )  Dihedral subgroups of order 2d,  where d divides 2" + 1 or 2n - 1. 
(c )  The alternating groups Aq, or As, or the symmetric group S,. 
( d )  The upper triangular subgroup, its subgroups, and their conjugates. 
( e )  SLz(F-p), where m is a divisor of n ,  (and its conjugates). 

- All possable proper subgroups of SL2(Fp) are the following: 

It is straightforward to check that none of these cases can occur. 
Case (a) is impossible since A.B # B.A.  
Case (b) cannot occur, because neither A ,  nor B is of order 2. 
Case ( c )  is checked with a little computation: for n > 2, A and B generate a 
subgroup whose order is larger than those of the groups of (c). 



46 

Case (d) uses a different approach. Let us note that all the matrices of the 
upper triangular group (or a conjugate of this group) have a common eigenvector. 
Since A and S = A-’B = ( i  i )  have no common eigenvector, A and B can not 
generate only the upper triangular group (or its conjugates) or its subgroups. 
Case (e) is settled by noting that X cannot belong to a subfield F z m  of Fzn, 
hence A does not belong to  SLz(F2m). A and B can not generate a conjugate 
U-1SL2(F2m)U of this group (U = ( z  :) E SL2(Fp)) since this would imply 

U.A-’.B.U-l E SL2(F2-) 
D’.A-’.B.A.U-l E SL2(Fzm) 

(2) implies that  u2 and d2 belong to F z m ,  hence a and d belong to Fz-. (3) 
implies that c2 and b2 belong to Fzm, hence c and b belong to Fzm. This in turn 
implies that  U belongs to  SLz(Fp), which would imply that A belongs to  this 
same subgroup, which is impossible. 

Moreover, by using the above classification of subgroups and similar argu- 
ments, we can show (details will be archived in a technical report) that the Cayley 
graph corresponding to  our hash function satisfies the condition of proposition 
2.3, so we obtain an even stronger property on the hashcodes, that is : 

Proposition 3.3 
distribution when 1 tends to infinaty. 

- The distribution of hasheodes of length 1 tends l o  equi- 

3.2 Protection Against Local Modifications 

We have seen in section 2 that if the Cayley graph associated to our scheme has 
a girth larger than a then any modification of a text obtained by replacing k 
consecutive bits by h other bits will necessarily change the hashcode if k and h 
are less than a. 

The relevance of our proposition lies in the fact that the girth for the asso- 
ciated graph of the scheme we propose is large : 

Theorem 3.4 
than n. 

- The girth of the Cayley graph G(SL2(FZn), A ,  B )  is larger 

In other words, for n chosen as explained in the introduction we are sure to 
detect any modification of up to  n = 130 - 170 consecutive bits of the input 
text. 
Proof. 
In the Cayley graph setting, the girth is just the minimum value I for which 
there exist two different strings of A’s and B’s sl ,  SZ, . . .sl, and (TI, 6 2 , .  . .om 

(with m 5 1 )  such that 
S l S Z . .  .sy = u1uz.. .um 
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If we consider now A and B as elements of S&(F2[X]), then the two products 
SISZ . . .SI and ~ 1 ~ 2 . .  .urn differ in this infinite group (see lemma 3.5). Since 
Fz. is defined as the quotient Fz[X]/P,(X), where Pn(X) is some irreducible 
polynomial over Fz of degree n,  it follows that the only way these products 
will coincide over SL2(Fz.), is that one of the matrices s l s g  . . .s] or u l u z . .  .urn 
(computed over SL2(F2[X])) has one of its entries equal to a polynomialof degree 
2 n. It is easy to check that this can happen only if 1 >_ n or m 2 n. U 

Lemma 3.5 For two different strings of A’ s  and B’s , s1, s2,. . .sl, and 
u1, uz,.. .urn the products (compated over  SL2(F2[X])) sls2 . . . S I  and ~ 1 ~ 2 . .  .urn 
are different. 

- 

PTOOf. 

It is straightforward to  show by induction that a product u1u2 . . . u, takes the 

degree is indicated by the subscript), or (LT!:i) :”’‘:&) if 6, = B. Hence 
two products slsz . . . 61 and ~ 7 1 ~ 2  . . .Q, can be equal over S&(F2[X]) only if 
rn = I ,  and urn = SI. By simplifying on the right by u, = S I ,  and by iterating 
this argument we obtain the lemma. 0 

form ( pm-l(x) p m ( X )  Qrn-l(X) Bm-a(X))  if urn = A (The P’s and Q’s denote polynomials whose 

3.3 Protection Against Density Attacks 

A density attack in the case of this particular hash function takes the following 
form. 

1. find a matrix U of SLz(F2[X]) which is equal to the identity modulo P,(X) 
(where P,(X) is the irreducible polynomial o f  degree n which defines the 
field F2n as F2[X]/Pn(X)). 

2. express this matrix U as a product of A and B in SL2(Fz[X]) (if possible). 
3. this factorisation becomes a factorisation of the identity when computed over 

4. one can deduce from it a message whose hashcode is the identity and which 
may be inserted in every message A4 without changing the hashed value of 
M .  

SLZ (Fzn). 

Point 1 is rather easy to solve (in the same way as over S&(Z)), nevertheless 
the key of our proposition is to  make point 2 infeasible. What makes this last 
problem so difficult is that  there are very few matrices of SL2(Fz[X]), which can 
be expressed as a product of A and B.  More precisely 

Theorem 3.6 - Define the set 
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Sketch of the proof: 
This follows from 

I{U E Em , U is a product of A and B}I = 2m+1 - 2 

(because of the form of products of A and B, see the proof of lemma 3.5) and 

IE,I = 0(22m) 

(this comes from a counting argument giving the niimher of pairs of coprime 
polynomials of bounded degree). 0 

The above theorem shows that even if we can find a matrix U satisfying 
point 1 by random search methods, then since it will have an entry which is a 
polynomial of degree at least n (see proof of theorem 3.4), U will have a very 
small probability of being a product of A and B (that is 0(&)).  

4 Concluding Remarks 

We have defined a new family of hash functions based on computations in 
SLZ(Fp). These functions improve upon previous schemes [12], which were de- 
fined over the group SLz(Z,). First, computing time is substantially speeded UP. 

It requires at  most a few shifts and XOR's of 150-bit quantities per message bit. 
Because of the concatenation property, precomputations and fast rxiultiplications 
in fields of characteristic 2 can also be used. Second, we can prove an explicit 
security property which speaks against the density attacks that have shown the 
first attempt of [13] to  be insecure. 

We have chosen the size parameter q so that J"i stays too large with respect 
t o  computing power. This is to protect against, the subgroup approach used in 
conjunction with birthday attacks. 
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