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Abstract. In this paper, we present a design strategy of elliptic curves 
whose extension degrees needed for reduction attacks have a controllable 
lower boundary, based on the complex multiplication fields method of 
Atkin and Morain over prime fields. 

1 Introduction 

In recent years, elliptic curves have been used to define a new category of dis- 
crete logarithm problems, in hope to  build new one-way functions instead of the 
existing cryptographic functions [1][2] [3]. 

An elliptic curve over a field K ,  E / K  is defined by the Weierstrass canonical 
form 

2 
E / K  y2 + U l I y  + U 3 y  = Z3 + U 2 Z  + U4E + a6 ( U I ,  U2, U 4 ,  a6 E K ) .  (1) 

When char(K) # 2 , 3 ,  E / K  can be transformed by an isomorphism to a form 
of 

E / K  : y2 = z3 + ax + b ( a ,  b E K ) .  (2) 
The discrete logarithm problem over an elliptic curve E / K  is to  find z E 2 

such that for P, Q E E / K ,  Q = xP. Hereafter we will assume that char(K) = p.  
The above problems are expected to  provide a new cryptographic function 

with stronger integrity and have been applied to build cryptosystems. Until now, 
two algorithms are known as attacks on the problems: the Baby-step-Giant-step 
algorithm[4] and the MOV reduction [ 5 ] .  

The first method by Shanks costs O( d m l o g  # E ( K ) )  of fully expo- 
nential time. Its fast versions, e.g. Pohligh-Hellman's algorithm[6] reduced the 
computation to order of the root of the maximum prime factor of # E ( K ) .  If 
the maximum prime factor is smaller than log#E(K), it costs O((log#E(K))2) 
and becomes a very powerful method. 

The second algorithm by Menezes, Okamoto and Vanstone uses the Weil 
pairing to  embed the discrete logarithm problems over E ( F , )  into the classic 
discrete logarithm problems over certain extension of the ground field F p k ,  which 
then can be solved by efficient algorithms such as Adleman's index algorithm[7] 
of subexponential time. This approach works when the extension degree of the 
ground field required for a well-defined embedding is very low. 
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To defend the elliptic-curves-based cryptosystems against the first attack, 
the order of elliptic curves # E ( K )  has to  contain a large prime factor. As to  the 
second attack, it is known that for a class of elliptic curves called super-singular 
curves, the reduction can be fulfilled with extension of 6 degree of the ground 
field[5]. The super-singular curves however are in fact very few. For the ordinary 
or non-super-singular curves, it is shown in [8] that  with high probability, the ex- 
tension degrees of the ground field needed for reduction attack on random curves 
are an exponential function of char(F) = p .  However, this is an asymptotic con- 
clusion and not directly applicable to a fixed prime p [S]. In cryptosystem design 
practice, it would be desirable to find some strategy to  control the lower bound 
of the extension degree for particular curves defined over fixed fields. 

In this paper, we consider about the extension degree of ground fields which is 
needed to  reduce discrete logarithm problems over elliptic curves to discrete log- 
arithm problems over finite fields. Then we show an algorithm to design elliptic 
curves over primary fields which can control the extension degree for the reduc- 
tion attack. This algorithm is based on the complex multiplication field method 
by Atkin and Morain[9][10]. (Both the algorithms can also be generalized over 
extension fields[ll].) 

2 Current Design Methods of Curves 

Below we review popular design methods of elliptic curves. 

(1) Method using Schoof’s algorithm[l2] : This method selects randomly 
curves until a desired group structure is found. The order of the curve is cal- 
culated by Schoof’s algorithm. Koblitz used the following algorithm to design 
curves of prime orders and the extension degree for the reduction attack to  be 
larger than (10gp)~[8]. 

[Koblitz’s algorithm] 

1. Choose a curve E / F ,  randomly; 
2. Calculate N = #E(F, )  by Schoof’s algorithm; 
3. Check that if N is a prime, if not, go back to I ;  
4. Check that if pl 9 1 mod N ( l  5 j 5 (logp)2) if not, go back to 1. 

In this algorithm, the order calculation part is of most costly, which requires 
O((1og p)’) computations by Schoof’s algorithm. This becomes awkward when 
p is large. Recently, progresses have appeared in development of fast order cal- 
culation algorithms. However, the order-counting problem seems to be difficult 
for curves with arbitrary orders. One way to avoid this difficulty is to  choose 
an order first which is “easy” in certain sense and with desired cryptographic 
property, then build a curve with such order. This is the method by Atkin and 
Morain. 
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(2) Method using complex multiplication field: It is implemented by 
Atkin and Morain to  build curves of assigned order with complex multiplication[g] 

[Atkin, Morain’s algorithm] 
“. 

1.  Determine an order #E(F,)  = m such that t = p +  1 - m satisfies It1 < 2f i ;  
2. Calculate d such that t2  - 4p = c2d ; 
3. Calculate the class equation H d ( z )  ; 
4. Solve H d ( 2 )  E 0 mod p to find a root j,; 
5. Build a curve with j, as its j-invariant. 

Theoretically, one can produce curves over the prime field with arbitrary order 
with this algorithm. The most demanding part of the algorithm is the step 3,  4. 
Since the degree of H ~ ( z )  equals the class number of d ,  h ( d )  which is of O(+$), 
the calculation of H d ( 2 )  and the solution of it over Fp by Berlekamp’s[13] or 
Rabin’s[l4] algorithms require computations of exponential time. 

Thus, this algorithm can only be used for small class number cases. Under 
this condition, curves with the order equals to  the characteristic or contains 
a large prime factor are built in [15][16]. The curve used in [15] is interesting 
because it can resist any reduction attacks. However, there is only one isogeny 
class of such curves over a prime field. (Although much richer isogeny classes of 
pdivisible curves exist over extension fields [17]). Besides, in order to  make the 
class number small, one has l o  restrict the prime p to  meet certain conditions. 
For the same reason, isogeny classes of curves are also restricted. On the other 
hand, it seems that to build curves without using Schoof’s algorithm could be 
computationally attractive. 

3 
Extension Degree against Reduction Attack 

Design of Curves with Controlled Lower Boundary of 

To control the  extension degree for the reduction attack, we choosc the following 
strategy, i.e., to  specify a lower boundary B of the extension degree for the 
reduction attack, then design a curve with the order satisfies this lower boundary. 

First we consider the extension degree for the reduction attack on non-y 
divisible curves. 

The condition for any well-defined reduction to F,p with m = # E ( F , )  is 
that  

m l g k - l  (3) 
or 

qk I mod m (4) 
By Euler’s theorem, the minimum IF satisfies (4) must a factor of cp(rn). Thus, 
take the primary factorization of cp(rn), one can find the minimum factor satisfy 
(4), then find the minimum k. However, the primary factorization of p(m) is 
then necessary, which could become a new computational burden. 

Now we give a condition of order rn for the extension degree to  be larger 
than B. 
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Theoreml. Assume an elliptic curve over F ,  has order m. Denote the ex- 
tensaon degree f o r  arbitrary reductaon as Ic. If p(m)/2 as B-nonsmooth 0nd 
q2 $ 1 mod na then 

k 2 B. 

Here n i s  B-nonsmooth means that n has not primary factors less than B. 

Proof: As before, by Euler’s theorem, k divides p(rn). If p(rn)/2 is B-nonsmooth, 
then k = 2 or Ic 2 B. Thus, if q2 $ 1 mod m, then k 2 B. &ED 

Corollary2. Let # E ( F , )  = m, 1 I m (1 : a prime), and the extension degree for 
any reduction as k. If ( I  - 1)/2 is B-nonsmooth and q2 $ 1 mod 1 then 

k > B  

Therefore, curves are to be designed to satisfy the following condition. 

Condition : I I #E(F,)  and ( I  - 1) /2  is B-nonsmooth. 

We need then a method to assign order of a curve. There is currently only one 
method for this purpose, the one with complex multiplication fields, or Atkin 
and Morain’s algorithm. 

Below, we show an algorithm over primary fields to build the curves satisfy 
the above condition based on the Atkin and Morain’s algorithm. 

zh 

zh 

[Algorithm] 

1. Choose a large prime 1 such that ( I  - 1)/2 to be B-nonsmooth and ( f )  = 1, 

2. Choose t ,  c ,  s such that (t - 2)’ = 4sl+ c 2 d ,  (t f 0 , 2  mod I) ; 
3. Check if p = sl + t - 1 is a prime , if not, go back to 2, ; 
4. Calculate the class equation Hd(z) and solve Wd(z) E 0 mod p to find a root 

5. Define a curve with j-invariant as j,. 

choose also d < 0 with small h ( d )  ; 

j o  ; 

In this way, curves of order sl are derived. 
In Stepl,  to search for B-nonsmooth 1 need about (log l)(log B )  primality 

tests. (f)  = 1 holds in probability of 1/2. Once (4) = 1 is true, there are plenty 
of solutions for Step2. Assuming p is random, Step 3 will repeat about logp 
times to  pass the check. (In simulation it seems quite easy.) 
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[Example] 

1. Choose prime 1 = 2183814375991796599109312252753832503 and d = -43; 

2. Choose t = 5472 72782 79345 38832, s = 4; 
3. Obtain p = 87 35257 50396 71864 01909 97683 89498 68843; 
4. From H d ( z )  = 2 + 9603, we have j, = -9603, which defines a curve as 

where 1 - 1 = 2 * 10 91907 18799 58982 99554 65612 63769 16251 

zh 

y2 = z3 + ax + 6 modp 
a = 29 71431 93700 48984 66387 07954 89768 65095 
b = 9 30797 87665 24631 56378 60591 36653 79551 
p = 87 35257 50396 71864 01909 97683 89498 68843 

This curve has its order and the  extension degree for any reduction as 

#E(F,)  = 4 * 21 83814 37599 17965 99109 31225 27538 32503 
B = 10 91907 18799 58982 99554 65612 63769 16251 

(5) 
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