
Designated Confirmer Signatures and
Public-Key Encryption are Equivalent

Tatsuaki Okamoto

NTT Laboratories
Nippon Telegraph and Telephone Corporation

1-2356 Take, Yokosuka-shi, Kanagawa-ken, 238-03 Japan
Email: okamoto@sucaba.ntt.jp

Abstract. The concept of designated confirmer signatures was intro-
duced by Chaum [Cha94] to improve a shortcoming of undeniable signa
tures. The present paper formalizes the definition of designated confirmer
signatures and proves that a designated confirmer signature scheme is
equivalent to a public-key encryption scheme with respect to existence.
In addition, the paper proposes practical designated confirmer signature
schemes which are more efficient in signing than the previous scheme
[Cha94].

1 Introduction

The concept of undeniable signatures was proposed by Chaum et al. [ChaSO,
CA89]; the recipient of a signature cannot misuse the signature and the signer
cannot subsequently deny the signature. Unfortunately, for many practical appli-
cations undeniable signatures have one major shortcoming compared to normal
(self-authenticating) digital signatures. Since undeniable signatures rely on the
signer cooperating in subsequent confirmations of the signature, if the signer
should become unavailable, such as might be expected in the case of a default
on the agreement authorized by the signature, or should refuse to cooperate,
then the recipient cannot make use of the signature.

The concept of designated confirmer signatures was introduced by Chaum
[Cha94] to solve this weakness of undeniable signatures. It involves three parties:
the signer, recipient, and confirmer. In designated confirmer signature schemes,
if the signer is unavailable to confirm the signature, the confirmer, previously
designated by the signer, can confirm the signature for the recipient.

In [Cha94], however, no formal definition (i.e., no rigorous concept) of des-
ignated confirmer signatures was given, and only an example of designated
confirmer signature based on the RSA scheme was proposed. As mentioned in
[Cha94], the remaining problems were as follows:

- give a formal definition (i.e., rigorous concept) of designated confirmer sig-
natures.

- construct a designated confirmer signature based on a more general assump-
tion. (i.e., find a sufficient assumption which is as weak as possible.)

- clarify what assumption is essential for constructing a designated confirmer
signature. (i.e., find a necessary assumption which is as strong as possible.)

- propose more efficient constructions than [Cha94].

Y.G. Desmedt (Ed.): Advances in Cryptology - CRYPT0 '94, LNCS 839, pp. 61-74, 1994.
0 Springer-Verlag Berlin Heidelberg 1994

62

The present paper solves all these problems.

- This paper gives the first formal definition (i.e., rigorous concept) of desig-
nated confirmer signatures.

- This paper ultimately answers both the questions on necessary and sufficient
assumptions. It proves that designated confirmer signatures exast zf and only
if public-key encryption [GM84] exists. That is, it shows that the existence
of public-key encryption is the necessary and sufficient assumption for con-
structing designated confirmer signatures.

- This paper proposes practical designated confirmer signature schemes that
are more efficient in signing than the previous scheme [Cha94]. The pro-
posed schemes are based on three move identification protocols, while the
previous scheme is based on the RSA scheme. Two typical constructions are
shown, one of which iitilizes the Schnorr scheme [SchSl] as a three move
protocol, while the other uses instead the extended Fiat-Shamir scheme
[GQ88, OhOk881 as a three move protocol.

The theoretical part of our results can be considered from the following view-
point. In the theoretical research fields of cryptography, the relationships of
(computational) cryptographic primitives have been investigated extensively for
the latest ten years and many typical cryptographic primitives have been classi-
fied into two classes: one-way function family (OWF) and encryption-decryption
function family (EDF). OWF consists of the primitives that are equivalent to
one-way functions with respect to existence. EDF consists of the primitives
that seem to require the encryption-decryption property as well as the one-way
property. Impagliazzo and Rudich’s result [IR89] s e e m to imply that several
primitives such as secret key agreement may essentially require the encryption-
decryption property in addition to the one-way property. In other words, EDF
seems to be exclusive to OWF. OWF includes digital signatures [NY89, RomSO],
pseudo-random generators [ILL89, Hasgo], and bit-commit,ment, [NaoSO]. EDF
includes secret key agreement, public-key encryption, and oblivious transfer.
(Here note that the security of these primitives have been formally defined, and
that, for example, a digital signature scheme means a digital signature scheme
which is existentially secure against adaptive chosen message attacks [GMRi88].)

The following natural question is suggested: To which class, OWF or EDF,
do undeniable signatures and designated confirmer signatures belong? Boyar
et a1 [BCDPSO] gave an answer to this question: undeniable signatures exist if
and only if digital signatures exists (i.e., if and only if one-way functions exist
[NY89, FbmSO]). That is, undeniable signatures belong to OWF. Hence, the
other remaining problem has been to determine to which class, OWF or EDF,
designated confirmer signatures belong.

The present paper answers this problem. It shows that designated confirmer
signatures belong to EDF. This result seems to be somewhat surprising since
designated confirmer signatures belong to a class different from the class of
undeniable signatures, although designated confirmer signatures were introduced
as a variant of undeniable signatures. (On the contrary, the previous rcsult that
undeniable signatures belong to the same class as digital signatures belong to

The relationships of physical (i.e., information theoretical, or unconditionally secure)
cryptographic primitives have been also investigated (e.g., [Oka93]).

63

[BCDPSO] is less surprising, since undeniable signatures were introduced as a
variant of digital signatures.)

This paper is organized as follows. Section 2 formalizes designated confirmer
signatures and proves the main theorem that implies the equivalence of the
designated confirmer signatures and public-key encryption. Section 3 proposes
practical designated confirmer signature schemes that are more efficient in sign-
ing than the previous scheme.

2 Theoretical Results

2.1 Definitions

In this section, we formally define the "designated confirmer signature", as a
variant of the definition of the "undeniable signature" by [BCDPSO]. In the defi-
nition of designated confirmer signatures, a "designated confirmer" is introduced
in addition to the properties of the undeniable signatures.

Definition 1. [Secure designated confirmer signature scheme] A se-
cure "designated confirmer signature" scheme is (Gs, Gc, Sign, Conf(s,v),
Conf(c,v)) such that the following conditions hold:

1. Key generation (Gs, Gc):
Let S be a signer, and C be a designated confirmer. G c is a probabilis-
tic poly-time algorithm which, on input 1" (the security parameter), out-
puts a pair of strings, (C's secret-key, C's public-key), which is denoted by
Gc(1") = (Glc(l"), G2c(l")).
Gs is a probabilistic poly-time algorithm which, on input strings 1" and
C's public-key E G2c(ln), outputs a pair of strings, (S's secret-key, S'S
public-key), which is denoted by Gs (ln , G2c(ln)) = (Gls(l", G2c(ln)),
G2s(ln), G2c(ln)). Hereafter, however, for simplicity, Gs (ln , G2c(l")) =
(Gls(l", G2c(l")), G2s(1"),G2c(ln)) will be just written by Gs(1") =
(Gls(l"), G2s(1")). The probability is taken over Gc's and Gs's coin tosses.
Note that, as a variant, the input of Gs can be restricted only to 1". (Then,
a slight modification of the definitions of the signing and privacy is required
in some cases, although it is fairly easy. See Note of this definition.)

Sign is a probabilistic poly-time algorithm which, on input strings l", m
(message), C's public-key E G2c(l"), and S's (secret-key, public-key) E
Gs(ln), outputs a string ("designated confirmer signature"), which is de-
noted by Sign(In, m, Gs(1")) (shorlly by Sign(rn)). The probability is taken
over Sign's coin tosses. Let Xs(m) be the set of Sign(rn).

C ~ n f (~ , ~) is an interactive proof [GMRa89] between S and V , which, on
common input strings I", m, s (the presumed signature of m), S's public-
key € G2s(l"), and C's public-key € G2c(ln), outputs either 0 ("true") or
1 ("false"). Here, signer S is the prover with an auxiliary input, S's secret-
key E Gls(l"), and V is the verifier. For all m, for any constant c , and for
sufficiently large n,

Pr(Conf(s,v)(l",m,s,G2s(l"),G2c(ln)) = 0) > 1 - 1/72',

2. Signing (Sign):

3. Confirmation and disavowal (Conf(s ,q , Conf(c ,v)):

64

if s = Cs(m), and

Pr(Conf(s,v)(ln,m,s,G2s(ln),G2c(l")) = 1) > 1 - l /nc l

otherwise. The probability is taken over the coin tosses of S and V .
C o n f (c , v) is an interactive proof between C and V , which, on common input
strings l", m, s, S's public-key E GZs(l"), and C's public-key E G2c(l"),
outputs either 0 ("true") or 1 ("false"). Here, designated confirmer C is
the prover with an auxiliary input, C's secret-key E Glc(l") , and V is the
verifier. For all m, for any constant c , and for sufficiently large n,

P r (C o n f ~ ~ , ~ ~ (l n , m , s , G 2 s (1 ") , G 2 ~ (l n)) = 0) > 1 - l / nc ,

if s = Es(m), and

Pr(Conf~~,~)(ln,m,s,G2~(l"),G2c(l")) = 1) > 1 - l /nc ,

otherwise. The probability is taken over the coin tosses of C and V .
4. Security:

- [Seciirity for signers: Unforgeability against any adaptively cho-
sen message attacks] Let F be a probabilistic poly-time forging
algorithm which, on input strings l", S's public-key E G2s(l"), C'S
public-key E G2p(ln), and C's secret-key E Glc(l"), can request and
receive S's signatures of polynomially-many adaptively chosen messages
{m,}, can request the execution of C o n f (s , ~) for polynomially-many
adaptively chosen strings (either true signature strings or fake signature
strings), and finally outputs a pair of strings (m, s) . Then, far all such
F , for any constant c , for all sufficiently large n, the probability that
F outputs (m, s) for which either Conf(s,v) or Conf(c,v) outputs 0 is
less than l /nc . The probability is taken over the coin tosses of Gs, G c ,
Sign, S, V and F .

Let A be a probabilistic poly-time attack-
ing algorithm which, on input strings 1") s 's public-key € G25(ln), s's
secret-key E G1s(ln) , and C's public-key E G2c(ln), can request the
execution of Conf(C,A) for polynomially-many strings (either true signa-
ture strings ur fake signature strings) adaptively chosen by A , and finally
execute C o n f (~ , v) which is accepted by V , where V is a honest verifier.
Then, for all such A , for any constant c, for all sufficiently large n , the
probability that A succeeds in the above-mentioned attack is less than
l /ne. The probability is taken over the coin tosses of Gs, Gc, C, V and
A.

- [Security for confirmers]

5 . Privacy (Untransferability):
- [Signature simulator] A signature simulator, relative to a verifier

V , is a probabilistic polynomial time algorithm, which, when given a
message m, outputs
SimuIator(m) = (Fahe(rn) , F a h e q s , v) (F a k e (m) , m),

where Falce(m) is a fake signature of rn, FalceT(s ,v)(Fake(m), m) is a
simulated transcript of verifying conversation between the signer S and V
proving that F a k e (m) is a valid signature, and FakeT(c , v , (Fake (m) , m)
is a simulated transcript of verifying conversation between the designated
confirmer C and V proving that Fake(rn) is a valid signature.

Fak .eqc , v) (Fak .e (m) , m)) ,

65

- [Signature oracle] The szgnature oracle 0, relative to a verifier V ,
receives a message m as input and outputs
Oracle(rn) = (Sign(m), ValidT(s,v)(Sign(m), m) ,

where Sign(m) is a string chosen randomly from valid signatures of m,
ValidT(s,v)(Sign(m), m) is a transcript chosen randomly from true
verifying conversations between the true signer S and V proving that
Sign(m) is a valid signature. and VulidT~c,v)(Sign(m),m) is a tran-
script chosen randomly from true verifying conversations between the
true designated confirmer C and V proving that Sign(rn) is a valid sig-
nature.

Let D be a polynomial time distin-
guisher, which is allowed to choose a message m, obtain some valid sig-
natures of messages in set M’, with m # M’, and interact, with the
true signer in verifying (and denying) the validity of the signatures of
messages in set M’. Let D(s , T(s,v), T(c,v), m) denote the output of a
distinguisher D when its input is the possible signature s for message
rn, and possible transcripts T(s,v) and T(C,v). Let n be the security
parameter .
Then, for any verifier V , there exists a signature simulator relative to I/
such that, for any polynomial time distinguisher D , and for any constant
c, the following holds for n sufficiently large:

ValidT(c,v)(Sig+) 1 m)),

- [Privacy (Untransferability)]

Note: When the input of Gs is restricted only to I”, as a variant, a slight
modification of the definitions of the signing and privacy is required in some
schemes, as mentioned in the key generation. For example, Sign(m) consists of
two parts: one part (Signl) depends on C’s public-key but not on m, and the
other part (Signz) depends on m. Then, Sign1 can be considered to be a part
of 5”s public key, although it is not published before. (See the note in Step 1
of the signing protocol in the [If part] of the proof of Theorem 3.) Then, in the
privacy definition, Sign2 is considered to be Sign(m) instead.

There are three kinds of definitions of a “secure” public-key encryption
scheme [GM84], and these three definitions have been proven to be equivalent
[MRS88]. Here, we adopt the definition based on the indistinguishability.

Definition 2. [Secure public-key encryption scheme]
key encryption” scheme is (G, E , D) such that the following conditions hold:

A secure “public-

1. Key generation (G):
G is a probabilistic poly-time algorithm which, on input 1” (the security pa-
rameter), outputs a pair of strings, (secret-key, public-key), which is denoted
by G(1”) = (Gl(l”), G2(ln)). The probability is taken over G’s coin tosses.

E is a probabilistic poly-time algorithm which, on input strings I”, m (plain-
text), public-key € G2(1“), outputs a string (“ciphertext”) c , which is de-
noted by EGqIm)(m). The probability is taken over E’s coin tosses.

2. Encryption (E) :

3. Decryption (D) :

66

D is a probabilistic poly-time algorithm which, on input strings 1” , cipher-
text c = E G , (, ~) (~) , (secret-key, public-key) € Gs(ln), outputs a string,
which is denoted by DG(ln)(C), For any rn, for any constant c, and for suffi-
ciently large n,

Pr(DG(ln)(EG2(1n)(m)) = m) > 1 - l /nc

The probability is taken over D’s coin tosses.

A public-key encryption scheme (GI E , 0) is secure if for any polynomial
sequence of random variables X,, = (X, (1) ,Xn (2)), for any polynomial time
machine A , for any constant c and for any sufficiently large n

4. Security:

Pr(Xn = (m0, ml)) ‘ (1 Pr(A((m0, m l) , EG(ln)(mO)) = 1)

The probability is taken ovcr XP) and Xi2)% distributions and coin losses
of A , G and E.

2.2
Encryption

Theorem 3. {Main Theorein]
A secure designated confirmer signature scheme exists if and only if a secure
public-key encrypiion scheme exists.

Sketch of Proof:
[If part:]

Equivalence of Designated Confirmer Signature and Public-Key

First, we assume the existence of a secure public-key encryption scheme.
Let E,,(rn) be a secure public-key encryption of a plaintext m for receiver

C (e c is C’s public-key), where only C can decipher m by m = Ddc(Eec(m))
(d c is C’s secret-key).

Then, an ordinary signature scheme which is existentially secure against
adaptive chosen message attacks [GMRi88] (hereafter, we will call this signature
scheme simply the “secure” signature scheme) exists, since a secure signature
scheme exists if and only if a one-way function exists [NY89, ROm90], and a one-
way function exists if a secure public-key encryption scheme exists (use the key
generation function of the public-key encryption scheme to construct a one-way
function).

Let us(m) be the set of ordinary secure signatures of m generated by signer
S, and Vs(m,s) be a verification boolean function for S’s signature, where
V,(rn,s) = 0 iff s E cs(m) and Vs(m,s) = 1 iff s $ us(rn).

We will now explain a designated confirmer protocol based on a secure public-
key encryption scheme and ordinary secure signature scheme. Let S be a signer,
C be a confirmer, and V be a verifier. The designated confirmer protocol consists
of the signing protocol by S, confirmation protocol between S and V , confirma-
tion protocol between C and V .

First the key generation and signing protocol between S and V is as follows:

67

Protocol: (Key generation and signing: designated confirmer sig-
nature)

Step 1 (Key generation) C generates a pair of keys, (e c , dc), and publishes
e c as C’s public-key. S publishes a public function VC as S’s public-key
for the verification of S’s signature. S also publishes Ps,c = Eec(lic)
for each designated confirmer C .
Note: Instead P s , ~ can be transmitted along with S’s signature (Le.,
certificate) in uS(fs,c).

Step 2 (Signing) S generates a designated confirmer signature Sign(m) of
message m such that

Sign(m) = W s , hKc(m)),

where s E us(m) , BC is a secure bit commitment function [NmSO],
and h is a pseudo-random function [GGM84]. S sends (m, Sign(m))
to v.

Note: A secure bit commitment function exists, if a secure public-key encryp-
tion scheme exists, since a secure bit commitment function exists when a one-way
function exists [Nao90, ILL89, HasSO]. A pseudo-random function exists, if a se-
cure public-key encryption scheme exists. (This is also from the reduct,ion to a
one-way function [GGM84].)

The confirmation and disavowal protocol between S and V is as follows:

Protocol: (Confirmation and disavowal between S and V : desig-
nated confirmer signature)

Step 1 S determines, on input (m , Z) , whether 2 E Zs(m) or not, by the
BC opening of 2 with h K , (m) (S can open the BC, since S knows
K C , i.e., h ~ , (m)) .

Step 2 When S proves the validity of 2 = Sign(m) E Cs(m), S proves to
V that there exists (s , K ~ , r) satisfying Vs(m,s) = 0, Sign(m) =
BC(s,hK,(m)), and Ps,c = E,,(lic) with a zero-knowledge inter-
active proof for any N P problem [BCC88, IY87, GMW861, where r
is a random string which is used for generating E e C (K c) from Kc.
Note that such a zero-knowledge interactive proof exists since it is a
poly-time predicate that (s , Kc, r) satisfies Vs(m, s) = 0 , Sign(m) =
B C (s , h ~ , (m)) , and PS,C = Eec(Kc) .

Cs(m) is an invalid signature of m, S proves
to V either one of the followings with a zero-knowledge interactive
proof [BCCSS, IY87, GMW861:
- there exists (Kc, r) such that PS,C = E,, (Kc) and the BC open-

ing of Z with h.~ , (m) is unsuccessful (i.e., Z # BC(*, h ~ = (m))) .
- there exists (s’ , Kc, r) such that PS,C = E,,(Kc), Z = BC(s‘,
h~,(m)) and Vs(m,s’) = 1.

Step 3 When S proves that Z

The confirmation and disavowal protocol between C and V is as follows:

Protocol: (Confirmation and disavowal between C and V : desig-

Step 1 C calculates li’c = Da,(Ps,c). C determines, on input (m , Z) , whether
nated confirmer signature)

Z E Cs(m) or not, by the BC opening of Z with h~,(na) .

68

Step 2 When C proves the validity of 2 = Sign(m) E Zs(m), C proves
to V that there exists (s , l ic, t) satisfying Vs(rn,s) = 0, Sign(m) =
B C (s , h ~ ~ (r n)) , and Gt(ln) = (eC ,dc) , li‘c = Dd,(Ps,c), with a
zero-knowledge interactive proof [BCC88, IY87, GMW861, where t
is a random string for key generation algorithm G t o generate keys

Step 3 When C proves that 2 @ Cs(m> is an invalid signature of m, C proves
to V either one of the followings wilh a zero-knowledge interactive
proof [BCC88, IY87, GMW861:
- there exists (Kc , t) such that Gt (1”) = (e c , d c) , Kc = Ddc (P s , ~) ,

and the BC opening of 2 with h ~ , (r n) is unsuccessful.
- there exists (s’,lic,t) such that G t (l ”) = (ec,dc), Kc =

Ddc(Ps,c), 2 = B C (s ’ , h ~ ~ (m)) and Vs(m,s’) = 1.

(ec, d c) .

Now, we show that the above-mentioned scheme satisfies the conditions for
a secure designated confirmer signature scheme.

1. Confirmation and disavowal:
- If 2 E Cs(m), there exists (s, Kc, r) such that Vs(rn, s) = 0, 2 = BC(s,

hKc(m)), and P s , ~ = E e C (K c) . Then, signer S knows (s , l i c , r) and
prove verifier V that 2 is S’s valid signature of message na.
If 2 @ Cs(m), either one of the two cases described in the above protocol
occurs. Then, S can prove that 2 is not S’s valid signature of message
m.

- Similarly, C, given (r n , Z) , can prove verifier V 2 E Cs(m) and 2 @
.Es(m) correctly.

2. Security:
- If we assume that the proposed designated confirmer signature scheme

does not satisfy the security condition for signers, then we can easily
show that the underlying ordinary signature in as(rn) is not secure. This
is contradiction. Note that the zero-knowledge property of C o n f (s , v)
is used in this part. (Here, note that forger F can distinguish a true
signature and false signature since F knows C’s secret key.)

- The security condition for confirmers is satisfied, from the zerc-knowledge
property of C ~ n f (~ , ~) . Note that attacker A can distinguish a true sig-
nature and false signature since A knows S’s secret key.

3. Privacy (Untransferability):
A signature simulator, Simulator , relative to V can be constructed as fol-
lows:
- Sirnulator selects a random message a and calculates E,,(u) as F a k e (m) .
- Let M1 and M2 be zero-knowledge simulators of confirmation protocols

between S and V, and C and V , respectively. Simulator runs M I and
sets F a k e q s , v) (F a k e (m) , m) = the output of M I . Simulator also runs
Ma and sets F a k e q c , v) (F a k e (m) , m> = the output of M2.

From the definition of secure public-key encryption, F a k e (m) can be easily
shown to be indistinguishable from Sign(rn). From the definition of zero-
knowledge, FakeT(s ,v) (Falce(m), m) and F a k e T c c , v) (F a k e (m) , m) are in-
distinguishable from Validqs,v)(Sign(nz), m), and ValidT(c,v)(Sign(m),

69

m)), respectively. Following the well known Hybrid argument of [GM84], we
conclude that Oracle(m) and Simulator(rn) are indistinguishable.

[Only if part:]
We assume the existence of a secure designated confirmer signature scheme.
Then, the public-key encryption scheme can be constructed using the desig-

nated confirmer signature scheme as follows:

Protocol: (Public-key encryption)
Step 1 Key generation: The public-key of the designated confirmer in

the underlying designakd confirmer signature scheme is used for the
public-key, e , of the encryption scheme. The corresponding secret-key
of the confirmer is used for the secret-key, d , of the encryption scheme.

Suppose a plaintext, b, is one bit (0 or 1). An arbitrary
message m is selected, and the other necessary parameters (signer’s
secret and public keys) for a signer in the underlying designated con-
firmer signature scheme is generated.
When b = 0, E,(b) is a valid designated confirmer signature, Sign(m),
of m along with the generated signer’s parameters. When b = 1, E,(b)
is a fake signature F a k e (m) 4 Es(m), which is generated by the sig-
nature simulator Simulator, along with the signer’s parameters. Here,
note that Fake(m) Cs(rn) can be checked by signer’s confirmation
protocol. Here, the public-key of the designated confirmer is used as

Step 2 Encryption:

E .

Step 3 Decryption: Execute the confirmation and disavowal protocol,
Conf[c,v), for E,(b) as a designated confirmer signature of m. If the
output of the protocol, C ~ n f [c , ~) , is valid, Dd(Ee(b)) is 0. Otherwise,
Dd(Ee(b)) is 1. Here, the secret-key of the designated confirmer is used
as d.

Note: If the length of the plaintext is k bits, repeat the above procedure of
encryption and decryption k times. (Note that the parameters of the signer can
be shared.)

Now, we show that the above-mentioned scheme satisfies the conditions for
a secure public-key encryption sc,heme.

First, from the property of the confirmahion protocol of the designated con-
firmer, Dd(Ee(b)) = b with overwhelming probability.

Next, we show that the above-ment,ioned public-key encryption scheme is
secure. For simplicity of description, here we assume that a ciphertext is one
bit. Then, E,(O) (= Sign(m) E Zs(rn), m, public parameters) and Ee(l) (=
F a k e (m) 4 Cs(m), m, public parameters) are indistinguishable, since Orucle(m)
including Sign(m) and Simulator(m) including Fuke(rn) are indistinguishable
from the privacy condition of Definition 1.

0

Boyar e t a1 [BCDPSO] introduced the concept of convertible undeniable sig-
natures as a variant of the undeniable signatures. The present paper shows that
a convertible designated confirmer signature scheme can be constructed simi-
larly, and that it is equivalent to the public-key encryption with respect to the
existence.

70

Corollary 4. A secure convertible designated confirmer signature scheme exists
if and only if a s e c u e public-key encryption scheme exists.

Sketch of Proof:
[If part:] In addition to the protocols in Theorem 3 of the designated confirmer
signature scheme, the conversion protocol [BCDPSO] between C (or S) and V is
as follows:

Protocol:
Step 1 C (or S) sends li‘c to V.
Step 2 V calculates s by opening the bit commitment Sign(m) = BC(S ,

hKc(rn)) through h ~ , (r n) , and checks whether Vs(rn,s) = 0 holds.

[Only if part:]
Same as this part of Theorem 3.

0

3 Practical Constructions

This section introduces a new type of practical constructions. The new schemes
are more efficient in signing than Chaum’s scheme [Cha94]. They are based on
three move identification protocols such as Feige-Fiat-Shamir [FFS88], Schnorr
[Schgl], the extended Fiat-Shamir [GQ88, OhOk881, and the modified Schnorr
[Oka92], while Chaum’s scheme is based on the RSA scheme. That is, many
constructions are possible (e.g., FFS type, Schnorr type, etc.). Among these
three move protocols, [SchSl] and [Oka92] are based on the discrete logarithm
problem, while [FFS88] and [GQ88,OhOk88] are based on the factoring problem.

This section first gives general description which is common among these
constructions is given. Next, two examples are given: one is based on the Schnorr
scheme, and the other is based on the extended Fiat-Shamir scheme.

The advantage of the proposed schemes based on the discrete logarithm type
protocols [Schgl, Oka921 compared to the Chaum scheme [Cha94] is:

- If the preprocessing technique is used in the signing stage, the time taken
for signing is much shorter than with the Chaum scheme. That is, in the
Chaum scheme, the running time for signing is a t least as same as that for
the RSA scheme (i.e., very slow), while, in the proposed scheme, the running
time for signing after the preprocessing is negligible.

- The security of this construction depends on only one arithmetical problem,
i.e., the discrete logarithm problem, while the Chaum scheme depends on
two arithmetical problems, i.e., the discrete logarithm problem and factoring
problem (if either one is breakable, the scheme is breakable, although our
scheme is breakable only if the discrete logarithm problem is tractable).
Apart from this security advantage, our scheme has some practical merits.
One is that all required arithmetical procedures can be executed using the
same modulus p and q . Another is that an elliptic curve variant can be
constructed, which has practical merits such as shorter data size and less
computational complexity.

71

- The [Oka92] variant of our scheme is provably secure (unforgeable against
chosen message attacks) under fairly weak assumptions. On the contrary, the
Chaum scheme depends on a very strong assumption that the RSA scheme
with hash functions is unforgeable against chosen message attacks.

The advantage of the proposed schemes based on the factoring type protocols

Even if the preprocessing technique is not used in the signing stage, signing
is faster than with the Chaum scheme.

- Our schemes are provably secure (unforgeable against chosen message at-
tacks) under fairly weak assumptions [FFS88, OhOk88, Oka921.

[FFS88, GQ88, OhOk881 over the Chaum scheme is:

3.1 Basic Protocol

Let (A , D) be a three move identification protocol such that first S (prover) sends
a message 2 = Al(w) t o D (verfier), D sends e t o S, S sends y = A z (w , e , s) t o
V , and finally D checks the validity of (2, e,y) by checking x = D (e , y, Q). Here
ur is random coin flips of S, a is S’s public key, and s is S’s secret key. H denotes
a one-way hash function. (Theoretically, H should be an ideal random function,
or a correlation-free one-way hash function [OkagZ] .)

We assume that signer S utilizes the functions (A1, A2,D) of a three move
protocol (A , D), and S’s public and secret keys are (a , s). Let b = g” mod p be
confirmer C’s public key and u be C’s secret key. Here, p is a prime, and q is
also a prime which divides p - 1. The order of g in the multiplicative group of
2; is q.

First the signing protocol between S and V is as follows:

Protocol: (Signing and confirmation between S and V)
Step 1 S generates a designated confirmer signature (d , e , y) of message m

such that

d = g ‘ m o d p , e = (b r modp)@H(rn ,z) , z = A l (w) , y = A 2 (w , e , s) .

Here, T E R Z,, and w is a random number. S sends (m, (d , e , y)) to V .
Step 2 S and V calculate

z = e @ N(m, D(e, y, a)).

S proves to V that logg d = logb z in a zero-knowledge manner (with-
out revealing .). Several efficient perfect zero-knowledge protocols
have been known [Cha90, BCDPSO].

The confirmation protocol between C and V is as follows:

Protocol: (Confirmation between C and V)
Step 1 C receives (rn,(d,e,y)) from S or V. C and V calculate

z = e 6+ H(m, D (e , y , a)) .

Step 2 C proves to V that logy b = logd I in a zero-knowledge manner (with-
out revealing u) .

The conversion protocol between C and V is as follows:

72

Protocol: (Conversion by C)
Step 1 C calculates

z = e @ H (m , D (e , y , a)) .
C proves to V that log, b = log, z C sends ([I, l 2 , k) to V as follows:

I1 = g t mod p , 12 = dt mod p , k = t + H(Z1,12)u mod q .

Step 2 V checks whether

g" 5 / l b H (J 1 i ' a) (mod p) , d" / 2 ~ H (J 1 > ' 2) (mod p)

holds

3.2 Example Based on Schnorr

Here, the Schnorr identification protocol [SchSl] is used as (A , D) such that first
S (prover) sends a message x = gw m o d p (= Al(w)) to D (verfier), D sends
e E Z , to S , S sends y = w + e s mod q (= Az(w,e, s)) to V , and finally D
checks the validity of (x, e l y) by checking z = gYae mod p (= D(e, y , a)) . Here
w E R Z,, a = g-' mod p . (a: S's public key, s: S's secret key).

Let b = gu mod p be confirmer C's public key and u be C's secret key.
First the signing protocol between S and V is as follows:

Protocol: (Signing and confirmation between S and V)
Step 1 S generates a designated confirmer signature (d , e , y) of a message m

such that

d = gr mod p , e = (ar mod p) @ H (m , z),

x = gw mod p, y = w + e s mod q .

S sends (m, (d , e , y)) to V .
Step 2 S and V calculate

z = e CB H (m , gYae mod p) .

S proves to V that logg d = logb z in a zero-knowledge manner (with-
out revealing .) by using [ChaSO, BCDPSO].

The confirmation protocol between C and V and the conversion protocol
between C and V can be shown similarly.

3.3

Here, the extended Fiat-Shamir identification protocol [GQ88, OhOk881 is used
as (A, 0) such that first S (prover) sends message z = wL mod n (= A l (w))
to D (verfier), D sends e E Zr. to S, S sends y = wse mod n (= Az(w,e,s))
to V , and finally D checks the validity of (z, e , y) by checking z = yLae mod n
(= D(e, y,a)). Here w ER Z,, Q = l/sL mod n, and n = PQ (PI Q: primes). (a:
S's public key, s: S's secret key).

Example Based on the Extended Fiat-Shamir

Let b = gu mod p be confirmer C's public key and u be C's secret key.
First the signing protocol between S and V is as follows:

73

Protocol: (Signing and confirmation between S and V)
Step 1 S generates a designated confirmer signature (d , e, y) of a message m

such that

d = g' mod p , e = (b' mod p) @ H (m , x) ,

x = wL mod n, y = wse mod n.

Here, I' E R Z,, w ER 2,. S sends (m , (d , e l y)) to V .
Step 2 S and V calculate

z = e @ H (m , yLae mod n) .

S proves to V that logg d = logb z in a zero-knowledge manner (with-
out revealing r) by using [ChaSO, BCDPSO].

The confirmation protocol between C and V and the conversion protocol
between C and V can be shown similarly.

4 Conclusion

This paper has formalized the definition of designated confirmer signatures and
has proven that a designated confirmer signature scheme is equivalent to a public-
key encryption scheme with respect to existence. This paper also presented prac-
tical designated confirmer signature schemes which are more efficient in signing
than the previous scheme.

Acknowledgments

The author wishes to thank anonymous referees for their useful suggestions, and
is grateful t o Kazuo Ohta for valuable discussions.

References

[BCCSS]

[BCDPS 01

[ChaSO]

[Cha94]

[CA89]

[DH76]

[EIG 8 51

Brassard, G., Chaum, D., and CrCpeau, C.: Minimum Disclosure Proofs
of Knowledge. J. Computer and System Sciences, 37 (1988) 156-189
Boyar, J., Chaum, D., Damggrd, I., Pedersert, T.: Convertible Undeniable
Signatures. Proc. of Crypto'90, LNCS 537, Springer-Verlag, (1991) 189-
205
Chaum, D.: Zero-Knowledge Undeniable Signatures. Proc. of Euro-
crypto'90, LNCS 473, Springer-Verlag, (1991) 458-464
Chaum, D.: Designated Confirmer Signatures. Proc. of Rurocrypt '94,
LNCS, Springer-Verlag (to appear)
Chaum, D., van Antwerpen, H.: Undeniable Signatures. Proc. of
Crypto'89, LNCS 435, Springer-Verlag, (1990) 212-216
Diffie, W., Hellman, M. E.: New Directions in Cryptography. IEEE Trans.
Information Theory, 22, 6, (1976) 644-654
ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. IEEE Trans. Information Theory, 31, 4, (1985)
460-472

74

[FFS88]

[GGM84]

[GL89]

[GM84]

[GMRa8 91

[GMRi88]

[GMWSG]

[Has901

[ILL891

[IR89]

[IY87]

[MRS88]

[NaoSO]

[NY89]

[OhOk88]

[Oka92]

[Oka93]

[Rom 901

[SchSl]

Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. J. of
Cryptology, 1, 2 (1988) 77-94
Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Func-
tions. J . of ACM, 33, 4 (1984) 792-807
Goldreich, O., Levin, L.: A Hard-core Predicate for any One-way Function.
Proc. of STOC’89 (1989) 25-32
Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Computer and Sys-
tem Sciences, 28 , 2 (1984) 270-299
Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of In-
teractive Proof Systems. SIAM J . Comput., 18, 1 (1989) 186-208
Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Se-
cure Against Adaptive Chosen-Message Attacks. SIAM J. Cornput., 17, 2
(1988) 281-308
Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But
their Validity and a Methodology of Cryptographic Protocol Design. Proc.

Guillou, L. C., Quisquater, J. J.: A Practical Zero-Knowledge Protocol Fit-
ted to Security Microprocessor Minimizing Both Transmission and Mem-
ory. Proc. of Eurocrypt’88, LNCS 330, Springer-Verlag (1988) 123-128
Hlstad, J.: Pseudo-Random Generators under Uniform Assumptions.
Proc. of STOC (1990) 395-404
Impagliazzo, R., Levin, L., Luby, L.: Pseudo-Random Number Generation
from One-way Functions. Proc. of STOC (1989) 12-24
Impagliazzo, R., Rudich, S.: Limits on the Provable Consequence of One-
Way Permutations. Proc. of STOC (1989) 44-61
Impagliazzo, R., Yung, M.: Direct Minimum-Knowledge Computations.
Proc. of Crypto’87, LNCS 293, Springer-Verlag (1988) 40-51
Micali, S., Rackoff, C., Sloan, B.: The Notion of Security of Probabilistic
Cryptosystems. SIAM J. Comput., 17, 2 (1988) 412-426
Naor, M.: Bit Commit.ment Using Pseudo-Randomness. Proc. of
Crypto’89, LNCS 435, Springer-Verlag, (1990) 128-136
Naor, M., Yung, M.: Universal One-way Hash Functions and Their Cryp-
tographic Applications. Proc. of STOC (1989) 33-43
Ohta, K., Okamoto, T.: A Modification of the Fiat-Shamir Scheme. Proc.
of Crypto’88, LNCS 403, Springer-Verlag (1990) 232-243
Okamoto, T.: Provably Secure and Practical Identification Schemes
and Corresponding Signature Schemes. Proc. of Crypto’92, LNCS 740,
Springer-Verlag, (1993) 31-53
Okamoto, T.: On the Relationship among Cryptographic Physical As-
sumptions. Proc. of ISAAC’93, LNCS 762, Springer-Verlag, (1993) 369-
378
Rompel, J.: One-way Functions are Necessary and Sufficient for Secure
Signature. Proc. of STOC (1990) 387-394
Schnorr, C. P.: Efficient Signature Generation by Smart Cards. J. of Cryp-

FOCS (1986) 174-187

tology, 4, 3 (1991) 161-174

	Introduction
	Theoretical Results
	
Definitions
	
Equivalence of Designated Confirmer Signature and Publie-Key Enceryption

	Practical Constructions
	
Basic Protocol
	
Example Based on Schnorr
	
Example Based on the Extended Fiat-Shamir

	Conclusion
	Acknowledgments
	References

