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Abstract. The goals of this paper are to  formalize and investigate the 
general concept of a digital signature scheme based on a general one-way 
function without trapdoor for signing a predetermined number of mes- 
sages. It generalizes and unifies previous work of Lamport, Winterriitz, 
Merkle, Even et al. and Vaudenay. The structure of the computation 
yielding a public key from a secret key corresponds to  a directed acyclic 
graph B. A signature scheme for G can be defined as an antichain in 
the poset of minimal verifyable sets of vertices of with the naturally 
defined Computability relation as the order relation and where a set is 
verifyable if and only if the public key can be computed from the set. 

1 Introduction 

Lamport [5] proposed a so-called one-time signature scheme based on a general 
one-way function (OWF), i.e., a function f that is easy to compute but compu- 
tationally infeasible to  invert, for suitable definitions of “easy” and “infeasible”. 
Lamport’s scheme for signing a single bit is set up by choosing as the secret 
key two strings zo and 21 at random and revealing as the public key the pair 
( ~ ( z o ) ,  f(z1)}. The signature for bit b is zb. For signing longer messages, several 
instances of this scheme can be used. 

Motivated by Lamport’s approach, many researchers have subsequently pro- 
posed more efficient one-time signature schemes. The goals of this paper are to 
formalize the concept of a signature scheme based on any OWF for signing a 
predetermined number of messages, and to present several results on the num- 
ber and size of messages that can be signed with a given scheme. In contrast to 
Rompel’s result [9] showing that a signature scheme can be obtained from any 
OWF, the emphasis of this paper is on efficiency and on a unified description of 
the general idea rather than on rigorously proving the security of schemes with 
respect to a certain intractability assumption. 

In addition to  the general interest in a class of intriguing graph-theoretic 
problems, our motivations for considering the design of signature schemes based 
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on OWFs are as follows. First,, there is a severe limitation on the diversity of 
mathematical problems (such as factoring integers or computing discrete loga- 
rithms in certain finite groups) that can at  present be used as the bases for a 
digital signature scheme. Therefore an alternative design approach with a much 
larger degree of freedom in choosing the underlying cryptographic function ap- 
pears to be of interest. Second, for applications where only few messages need 
to  be signed, schemes based on an arbitrary one-way function have the potential 
of being computationally more efficient than presently-used number-theoretic 
schemes, but their disadvantage is that each public key can only be used for 
signing a predetermined number of messages. Moreover, wen if these schemes 
turn out to  be of limited interest as regular digital signature schemes, they do 
have applications in other contexts such as on-line/off-line signatures [3] and the 
signature schemes of [l]. 

The number (i.e., diversity) of messages that can be signed by the Lamport 
scheme with r public-key pairs is 2'. Using the same secret key and public key, 
but allowing as signatures all subsets of cardinality r of the set of 2r public-key 
components, the number of messages can be improved to ( y ) ,  which is optimal 
[ll]. These sets are compatible because computing a signature from a different 
signature requires the inversion of the OWF for at least one value. 

Note that the size of the secret key of such a scheme can be reduced signifi- 
cantly by generating all the secret-key components in a pseudo-random fashion 
from a. single secret, kcy S .  Similarly, the public key can be reduced to a single 
value P by applying a one-way hash function to the list of public-key compo- 
nents. 

A generalization of the Lamport scheme attributed by Merkle to Winternitz 
[6] is to  apply the OWF to t,wo secret key components iteratively a fixed number 
of times, resulting in a two-component public key. Meyer and Matyas [7] proposed 
as a further improvement to use more than two chains of function evaluations: 
t,hey observed that a one-time signature scheme for a message space of size I<! 
can be obtained from a scheme with Ii chains of length 11' each, by allowing as 
signatures all combinations of K nodes containing one node in each chain such 
that at' each level there is one of these nodes. This scheme was generalized further 
in [3] and later in [la] to a scheme with 1 chains of length k where the signatures 
consist of one node in each chain such t>hat the total sum of the levels of these 
nodes (within their chains) is constant. It can be proved that this strategy yields 
the maximal number of signatures for such a computation structure. 

The described schemes can only be used to sign a single message. Merkle [6] 
proposed the so-called tree-authentication scheme for signing several messages 
consecutively with a single public key P .  
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2 
graphs 

One-time signature schemes based on directed acyclic 

In this paper, vertices and sets of vertices o€ a graph are denoted by small and 
capital letters, respectively, and graphs, posets as well as set,s of sets of vert,ices 
are denoted by calligraphic letters. We summarize some well-known definitions 
and results on partially ordered sets (poset). A poset is defined as a set with an 
antisymmetric, transitive and reflexive order relation, denoted 5. Two elements 
z and y of a poset 2 = (2,s) are comparable  if and only if x 5 y or y 5 x 
and they are inconzparable otherwise. A subset U C 2 is a chain if every pair 
of elements of U is comparable, and it is called an antichain if every pair of 
elements of U is incomparable. A chain (antichain) is called mazimd if it is not 
a subset of another chain (antichain). 

Definitionl. The width of a poset 2, denoted w(2), is the maximal cardinality 
of an antichairi. 

Definition2. For a poset i? = (2, s), a funct>ion r : 2 -+ JN is called a repre-  
s e n t a t i o n  func t ion  of Z if for all distinct 2, y E 2, 2 5 y implies ~ ( z )  < ~ ( y ) .  

Let B be a suitable, large set (e.g., the set of 64, 96 or 128-bit strings) and 
let fl , f2, . . . with fi : Bi -+ R be a list of one-way functions, where f; takes 
as input a list of i values in B and produces as output a single value in B. 
Consider a scenario in which a secret key 5’ consisting of u values s1, . . . , s, E H 
is chosen at random, and a sequence of values su+ll  s u + z , .  . . , st is computed 

, su by applications of the one-way functions f i .  More precisely, for 
u+ 1 2 j 5 t , s j  is the result of applying an appropriate OWF to a. subset U j  (of 
appropriate size) of is1 , , . . , sj-l}, where the order of the arguments is assumed 
to be fixed but is irrelevant for the further discussion. Some of these computed 
values will not be used as input to  a OWF and are published as the public key 
P .  Signatures consist of appropriately chosen subsets of {sl, . . . , st}. 

In the following we need to distinguish between the st>ructure of the described 
computation for setting up  a digital signature scheme and thc particular values 
resulting for a particular choice of the secret key. Consider a directed graph 

= (V)  E )  with vertex set V = ( ~ 1 , .  . . , u t ) ,  where ui corresponds to  the value sir 
and with edge set E containing the edge ( 7 4 ,  wj) if and only if si is an input to the 
OWF resulting in s j .  Hence the value corresponding to wj can be cornputcd from 
the values corresponding to the predecessors of ‘ u j ,  and it functionally depends 
on the value .5k (corresponding to wk) if and only if there exists a directed path 
from IJk to vj. 

In such a graph the secret key set and the public key set, correspond to the 
sets of vertices with in-degrcc 0 and out-degree 0,  respectively. ‘ lhe graph 
is assumed to be known publicly and can be used by all users, but the values 
corresponding to the vertices for a user’s particular secret key are kept secret 
by the user, except those valucs corresponding to  the public key. A signature 
scheme assigns a signature pattern, i.e. an appropriat,e subset of vertices, to 



every message in the message space. A user’s signature for a given message 
consists of the values (for that user’s secret key) corresponding to the vertices in 
the signature pattern for that message, when the computation according to 6 is 
performed for that user’s secret key. The set of signature patterns must satisfy 
certain conditions discussed below. 

Definition3. For a given directed acyclic graph (DAG) G = (V, E ) ,  the secret 
key  pa t t e rn  S(G) c V and the public key  pa t t e rn  P(G) c V are defined as the 
sets of vertices with in-degree 0 and out-degree 0,  respectively. Let X be a subset 
of V .  A vertex w is defined recursively to be computable from X if either w E X 
or if w has at least one predecessor and all predecessors are computable from 
X. A set Y is computable from X if every element of Y is computable from 
X. Note that V and hence every subset of V is computable from the secret 
key S(G). A set X E V is called verifyable (with respect to the public key) if 
P(G) is computable from X. A verifyable set X is m i n i m a l  if no subset of X 
is verifyable. Two minimal verifyable sets (MVS) X and Y are compatible if 
neither X is computable from Y nor Y is computable from X. A set of MVSs is 
compatible if they are pairwise compatible. 

R e m a r k s .  
(1) Of course, the OWFs used for evaluating different vertices can be different, as 
long as a function together with the order of the arguments is uniquely specified 
for each vertex. 
(2) As mentioned before, the secret key components can be generated in a 
pseudo-random manner from a single secret key. We can hence extend 4 by 
introducing an extra vertex so (the real secret key) and edges form SO to the 
vertices s1,. . . , s, (using the convention that when two vertices in G have the 
same set of predecessors, then the two OWFs used in the corresponding compu- 
tation steps are different and unrelated). Similarly, one can without much loss of 
generality restrict the discussion to graphs with only one public-key component 
because a list of public-key components could be hashed using a secure crypto- 
graphic hash funct,ion. 
(3) Because messages can be hashed prior to signing, it suffices to  design signa- 
ture schemes for a message space corresponding to the range of a secure crypto- 
graphic hash function, for instance the set of 128-bit strings. 

The computability relation on the set of MVSs of a graph is transitive, anti- 
symmetric and reflexive, and hence the set of MVSs of a graph G ,  denoted W(G), 
forms a poset (W(G),  5 )  with computability as the order relation, i.e., we have 
X 5 Y for X, Y E W(G) if and only if X is computable from Y .  Note that two 
MVSs of G are compatible if and only if they are incomparable in (W(G), 5 ) .  

Definition4. The associated poset of DAG 6 is the poset (W(G), 5 )  of minimal 
verifyable subsets of G ,  

In order to remove a possible source of confusion it should be pointed out 
that, a DAG in which every edge (x, y) i s  the  only pa.t,h from .T to TJ has itself the 
structure of a poset and W(G) is the poset of cutsets in this poset. However, we 
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have avoided the term “cutset” for the signature patterns because this term has 
a different meaning for graphs. 

Definition5. A one-time signature scheme A for an acyclic directed graph G = 
(V, E )  is an antichain of the associated poset W ( g ) .  

The important parameters of a one-time signature scheme A for a graph 
= (V, E )  are the number IVI of vertices (which is equal to  the sum of the size 

of the secret key and the number of function evaluations required for computing 
a public kcy from a secret key), the number IAl of signatures which must be at  
least equal to  the size of the message space, and the maximal size of signatures, 

Example: Figure 1 shows a graph for which it is especially easy to design a 
signature scheme. At each level of the graph, the verifier is given one of two 
unknown values, where a message bit determines which one is given. This scheme 
allows to  sign 1 bit per three vertices, i.e., 1/3 bit per vertex. More efficient 
schemes will be discussed later. 

m a x x a  1X I. 

Public Key 
/ 

Signature for thc message ’ 01ooO1’ 

z 
Secret Key 

Signature 

Values unknown 
to the verifier 

Figure 1. 

The following interesting problems are now well-motivated. First,, for a given 
graph to find a large (ideally a maximal-sized) antichain in the associated 
poset. Note that w ( W ( g ) )  denotes the maximalsize of such an antichain. Second, 
for a given size of the message space to find a graph with few (ideally the minimal 
number of) vertices allowing the construction of a one-time signature scheme. 
Third, both problems should be treated with a constraint on the maximal size of 
signatures, and also for n generalized definition of a signature scheme for signing 
several rather than only one message. 

The maximal-sized antichain of a poset, c,an be determined by a flow algorithm 
whose running time is polynomial in the number of elcirierits of the poset. This 
method is only feasible for graphs of less than about 30 vertic.es. For larger 
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graphs, a very useful technique for determining lower bounds on the size of the 
maximal antichain is based on represenlation functions. 

It follows from the definition of a representation function r of a poset 2 = 
(2,s) that for any z # y, r ( z )  = r(y) implies that z and y are incomparable. 
Hence for any representation function r of the associated poset (W(B) ,  5)  of a 
given DAG G and for any integer k ,  the set {U E W(G) : r ( V )  = k }  is a one-time 
signature scheme. Let 

be the maximal cardinality of these sets. 
In order to  find good signature schemes for a given graph, we need to  find a 

good representation function, that is one with a large maximal coefficient. For a 
given DAG G let cg : W(G) -+ IN be the function defined by 

CG (U) := I { : I I  @ U and w is computable from U} I 
i.e. C G ( U )  is the cardinality of the set of vertices of G that are computable from 
11 but are not contained in U. 

A proof of the following theorem appears in the full paper. 

Theorem6. For any DAG G ,  the Junctzon CQ 2s a representahon funclaon of 
the assocaated pose1 W(G)  of (3. 

'l'his representation function can be computed easily for many graphs (e.g., 
for all lrees) by using generating functions. Moreover cs is an optimal repre- 
sentation function for many graphs 6, in  the sense that p(G, C G )  is equal to  the 
maximal number w(W(G)) of signatures patterns, but this is not true in general. 

3 Optimal graphs and signature schemes 

A reasonable implementation of a list of OWFs f l ,  f 2 ,  f3 . . . with one, two, three, 
etc. arguments is by implementing a OWF fi with two arguments and imple- 
mcnting the function fi with one argument as fl(x) = fz(z, z) and the functions 
fi for i 2 3 as f i ( i 1 , .  . . , xi) = f2(fi-1(zl1. . . , zi-l), xi). The function fi can for 
instance be implemented by applying DES in an appropriate mode, but much 
more efficient implementations of good candidate OWFs are possible. 

In the described implementation based on a function f i ,  the graph could be 
considered to consist only of vertices with fan-in 1 or 2. In the sequel we discuss 
the problem of maximizing the number of signature patterns for a given number 
n of vertices under this fan-in restriction. Let v(n) be the maximal number of 
MVSs obtainable for a graph with n vertices and let p ( n )  be the maximalnumber 
of compatible MVSs for a graph with n vertices, i.e., let 

v ( n )  = max{IW(G)I : 
p ( n )  = max{w(W(G)) : 6 = (V, E) with IVI = n } ,  

= ( V I E )  with IVI = n }  
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where g has fan-in at  most 2 and public key of size 1. We will now derive concrete 
and asymptotic results on ,u(n). 

= (V, E )  we define R B , ~  to be the graph consisting of 1 uncon- 
nected identical copies of 6. The poset of MVSs of RB,I consists of all I-tuples 
(5'1, . . . , Sr) for which Si is a MVS of the i-th copy of G.  

Let rp be any representation function of W(G) such that there exist S1,Sz E 
W(G) where rp(S1) - T o ( & )  = 1. We define the representation function r of 
W(Ro,l)  by r ( S )  = CiZ1 rG(Si) for an MVS S = (SI, . . . , S I )  E W ( R B , I ) .  

Theorem7. Ebr the representataon functzon r defined above we have 

For a DAG 

I 

where m = lW(G)/ and u is the standard deviation of rp(S)  if S is  chosen 
uniformly f rom W(G). 

Proof sketch. Let Y be the random variable defined by Y = ( r g ( S ) - E [ r p ( S ) ] ) / u  
where S is chosen uniformly from W(G). The distribution of Y is a lattice distri- 
bution with span l / u ,  E [ Y ]  = 0 arid E [ Y 2 ]  = 1. Now we can apply Theorem 3 
of [4, p.4901 to complete the proof. 

It should be mentioned that , ~ ( R Q , [ ,  r )  = O(rn'/&) is satisfied for any choice 
uf ' rp .  Theorem 7 implies the following result which is proved in the full paper. 

Corollary 8. lim log2 dn) > sup 1% 4m.l 
n-cc n m ?7i + 1 . 

We have found a DAG G with 26 vertices whose associated poset has 5004 
vertices. Thus R p , r  contains 0(5004'/&) signatures patterns. In order to com- 
bine 1 copies of the graph in a tree with fan-in 2 we need a tree with only 
1 - 1 additional vertices. Therefore, there exists a sequence of graphs with n 
vertices which allows to sign an - O(1ogn) bits, i .e.,  a bits per vertex, where 
cy = log,(5004)/27 = 0.4551. This result cannot be achieved by trees as the 
following theorern demonstrates. 

Theorem9. Pbr every tree 7 with n vertices, 

IW('T)( 5 2r(n+1) where y = 1og2(685/216)/4 x 0.4162. (1) 

In  other words, n o  tree with n vertices allows t o  sign more than y(n + 1) bits. 
On  the other hand for n 2 1 there exists a tree In with n vertices with 

6 6n 
where 6 = log2(101)/16 x 0.4161. ~ ( W ( 7 n ) )  2 3fi+ 3/2 (2) 

2 

Note that the upper and lower bounds of Theorem 9 are extremely close to 
each other. By refined argumenbs, y can be reduced and 6 increased slightly so 
that they agree in the first 8 decimal digits, but nevertheless it remains to prove 
that there exists a c,onstant which is both upper and lower bound. 
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4 Concluding remarks 

One problem with t h e  schemes discussed in this extended abs t rac t  is that the 
s ignatures  are relatively long. An interesting problem is to devise schemes wi th  
small signature pat terns .  One such scheme based on a forest of chains is discussed 
in [12]. Our definitions can  be extended in this direction and also to include 
schemes for signing a fixed number of messages (rather than only one). Such 
generalizations will be discussed in a forthcoming paper. 
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