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Abstract. In this paper we show that for any one-way function f ,  
being able to determine any single bit in ax + b mod p for a random 
Q( Ixl)-bit prime p and random u,B with probability only slightly bet- 
ter than 50% is equivalcnt to inverting , f ( x ) .  

1. Introduction 
One of the most important questions in cryptography is the existence of so called une- 
wuyfunctions - functions easy to compute but hard to invert. It is natural to construct 
an encryption scheme from this primitive. Intuitively, finding the encrypted message 
would mean inverting the one-way function which in turn is presumed hard. One must 
be careful though, since even i f  the function is hard to invert, it may reveal partial 
information like: “The encrypted message starts with the text ’Fort Meade”’, or less 
dramatic, “The message is an odd integer”. This problem was noticed by Goldwasser 
and Micali, IS], who also showed how to circumvent it based on certain assumptions. 

However, we would like the assumptions to be as weak as possible, preferable 
we would likc to use any one-way function f .  Although we can never hope that f(x) 
itself will not leak any information about any bit in x ,  one could at least hope that 
some specific hits in  .K or in some simplc function h(x) would remain hidden, given 
f ( x )  (or f ( x )  and the description of h in the second case). We want bits that given 
f ( x )  (and h)  are unpredictable or “random looking” to any resourcc bounded adversary, 
resource bounded refering to computing time. Such bitdfunctions are called a hard 
core for f .  This concept was studied by Blum and Micali in [3] and by Yao in [IZ]. For 
instance it was shown how to construct a pseudo-random generutor, another important 
cryptographic primitive: Supposc the one-way function f is a permutation and that H 
is a set of boolean functions such that for random h E H ,  h(x) is unpredictable given 
f(x),h. Choose a random h, a random xo and output h(x0) .  Update: x;+l = f ( x ; )  
and output h(x;), i = 0, 1 , .  . . , m. Finally, output h. By the propertics of f and H just 
discussed, one can hope that the sequence h ( x o ) ,  h(x!  ), . . . ,h(xln),  h will look random. 

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 ’96, LNCS 1109, pp. 114-128, 1996. 
Q Springer-Verlag Berlin Heidelberg 1996 
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Where should we look for hard core functions? For efficiency reasons it should 
be as easy as possible to compute h(x). What hrst comes to mind is functions of the 
form: h(x)  = “some bit in x”, for instance h(x)  = Isb(n). There are examples of certain 
f Tor which Isb(x) looks random givcn f(s). RSA-type functions has this property as 
shown by Alexi et al. in 111, Vazirani and VaA-ani in 1111 and Blum et al. in [a] .  
Similar results for discrete exponentiation in different settings appeared in [3] by Blum 
and Micah, in [S] by Long and Wigdcrson and in [6], HSstad et al. Howcvcr, singlc bits 
in x may in general not be unpredictable. The simples1 counterexample being Isb(x) 
with respect to f ( x )  = g‘ mod p ,  discrete exponentiation modulo a prime (a conjectured 
one-way function). Here, computing Isb(x) is merely a matter of determining quadratic 
residuosity for f ( x ) .  Since the most attractive situation is when our hard core bits are 
hard core for any one-way function f ,  we need more complex functions than single bits 
in x but which arc still easy enough to compute. One soon also realizes that we can not 
hope that some fixed function will work for any f .  However, we can hope that choosing 
a random function h in some fixed set of functions, H ,  will do the job. Other questions 
raised are: If h E H maps n bits to m bits, are all m bits in  h ( x )  individually hard core‘? 
Can certain subsets of the bits be used simultaneously? 

The first general and efficient construction of a hard core function was done by 
Goldreich and Levin in [4]. They showed that any one-way function has a hard core bit 
obtained as the inner product modulo 2 of x and a random string r.  Two more types of 
functions, (i) affinc functions on a finite field of characteristic 2 and (ii) the analogue on 
the field of integers modulo a (not too short) prime p,  were shown by Naslund in [lo] 
to have the same property. In case (i), it  was also shown that any single of the n bits 
in the function value is hard core for any one-way function. Here we extend the results 
from [lo] to show that essentially all individual bits in the type-(ii) functions are also 
unpredictable. 

In general, to show that some H is hard core for f. one shows that an algorithm, 0, 
for predicting h ( x )  for random h E H can be transformed into an inverting algorithm for 
f .  Roughly speaking, 0 is used to determine the bits in x (or some simple, invertible 
function of x) one by onc. Also, the bits are generally decided in order left to right or 
vice versa. The main technical novelty in this paper is a new method whereby the bits 
are determined two b.y two. The bits are not even adjacent, one of the two is the bit to the 
left of that predicted by 0 and the other is, at least in principle, thc least significant bit. 
There are some cases where we during a short initial phase are only able to determine 
the first or the two bits. However, during this phase the latter bit has no importance and 
after a short delay wc will bc able to determine both the bits. We hope that the ideas 
behind this method will get further usc or inspire others to develop methods applicable 
to show similar results for other types of functions. 

The paper is organized as follows: After giving some notation in Section 2 and 
reviewing some previous work in Section 3, we give a general proof outline in Section 4. 
We then discuss the hardness of internal, but non Icflmost bits in Section 5 and Section 6 
extends the techniques to Lhc leftmost bits. Due to space constraints, most proofs can 
only be sketched here. 
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2. Preliminaries 
The model of computation used is that of probabilistic Turing machines running in time 
poly(n) where P I  is the length of the input, pptm's for short. In general, ( y (  denotes the 
length of the binary slring JJ. If S is a set, IS/ is the cardinality of S and by x Eu S we 
mean an x chosen uniformly at random from S. 

We call a function g(n)  negligible i l  for every constant c > 0 and for evcry suffi- 
ciently large n, g ( n )  < t ? P .  A one-wuyfurrction is a poly-time computable function f 
such that for evcry pptm, M ,  thc probability that M ( f ( x ) )  E f-' (x) is negligible. The 
probability is taken over x Eu (0, I}'' and M ' s  random coin flips. For simplicity all 
one-way functions in this paper are assumed to be length-preserving, i.e. lf(x)I = 1x1. 
By simple padding arguments, it can be seen that this is no serious restriction. 

Let H be an efficiently sampleablc family of functions where each h E H is com- 
putable in deterministic polynomial time and maps {O: I}" e (0, l}m, rn 5 n and Ict 
f be a one-way function. An ~(n)-oracle  for H is a pptm 0 such that Pr[O(f(x),h) = 
h(x) ]  2 2-"' i- E ( n ) ,  thc probability taken over x E u  (0, h EU H and 0's random 
choices. We call H a hard core function for f if no E(n)-oracle exists for non-negligible 
~ ( n ) .  (When I n  = 1 we have a hard core predicate.) 

For p E Z and z E Z , ,  bit,(z) denotes the ith bit o f  z .  In particular bih(z) = Isb(z). 
For 0 5 i 5 j < 1p1, Ict [z]! denote bits i, i + I , .  . . , j in the binary representation of z. 
Note: [z]: = bit;(z). If H is a family of functions, we will write bit;(H) when referring 
to the family {biti(h(x)) I h E H } .  

For k > 0, let I;, denote the sct of primes of length n / k .  Herc, n = 1x1, the security 
parameter of some one-way function f .  The set of functions we study is 

H,k = ( h ( x )  = n x t h  mod p 117 E Pj, a ,h  E Z,?}. 
Note that the probability space when choosing /I E ~ J  Ii; is that of all triples (p,a,h) 
with p E U  Is, and u,b  EU Z,. However, assuming the existencc of an &(n)-oracle for 
biti(@), simple counting arguments allow us to study a set of p s  of density r(n)/2 in 
Pk for which our oracle will be successful with probability 1 /2 + ~ ( n ) / 2  taken over 
puirs ( q b ) .  When we have such a p and only vary u,b, we indicate this by denoting 
the oracle an (e(n)/2,p)-oracle. 

For a given p ,  the bits in ax + h mod p are not uniformly distributed. By the bias of 
the ith bit we mean the value pi such that Pr,,h[biti(ax + b mod p )  = 01 = + p; when 
a, h arc chosen uniformly at random from Z,. It is easy to see that PO = & and that 
only the msb can have bias greater than I /6. The bias is significant only for the O(1ogn) 
most significant (leftmost) bits so we divide the paper into two main parts: The internal 
(non leftmost) and the leftmost bits. 

3. Previous Work 
In [la] it was shown that an KL-oraclc for Isb(H2) could be used to retrieve x mod p 
with good probability. Repeating this for differcnt p ,  Chinese remaindering was applied 
to find x. 

To find x mod y basically the following method was used: Assume the existencc 
of a "very good" oracle for the Isb. Having determined the Isb of ax + b mod p we zero 
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it by subtracting: h' = b - Isb. Computing 2-' ( a x +  h') mod p will then give us the rest 
of the bits in ux+h mod p shifted one step to the right. Continue this process to extract 
all the bits in ux+ bmod p .  With u,b,p known, x is casily found. 

The very good oracle in turn was constructed using the two point based sampling 
technique from 113 and a majority decision. This could be done if ux + h mod p was 
"small" (zeros in the msbs) to avoid wraparound modulo 17 (i.e. reduction by p )  when 
adding sample points. Actually a polynomial number of' oracles had to be constructed 
with at least one of them being good. All the oracles were then tried. It was also noted 
that the methods used applies for bit;(H{) with i E O(logn), since the bits to the right 
of the oracle could be put to zero with non-negligible probability. 

4. Proof Outline 
The method summarized above does not work with Q(a) bits to the right initially un- 
determined. Supposc we have an oracle lor biti(H$), i e Q ( n ) .  Here wc decide the bits 
two by two; bit i + 1 and another bit. In principle, we would like the latter bit to be the 
lsb, but as will be seen this is sometimes too optimistic. There will sometimes be a short 
initial phase during which wc can only determinc bit i + 1, but on the other hand, thc 
Isb can be shown to be unimportant during this phase. After this phase, the lsb (actually 
what was the lsb some iterations ago) will start to matter but this will also imply that we 
can start to determine it. To begin with, let us for simplicity ignore any possible proh- 
lem and for a second let us assume that we cun determine bit i + I and the Isb. Having 
determined them, they are set to zero by subtracting: 0' = b - 2'+' bit;+( - lsh. Next, 
ux + h can be right-shifted: 2-I (ax + b') mod p .  No non-zero bit will pass position i 
and since the Isb is always zero before the shift, no wraparound is caused. We can now 
proceed with the ncxt two bits. 

Finding bit i + 1, Isb is now done as follows: Assume that we can make sure that for 

has zeros to the right of bit i and in the msbs. Furthermore, suppose we have a random 
- w are both value ofthe form r x + s  mod p for which [ ~ X + S ] : ~ ~ ,  = z and [ r . ~ + s ] , ~ / ~ ~ ~ ~  - 

known. Then, with high probability (if no wraparound occurs), [ax + b + rx + x z 
too. (More precisely, it will be z or z + 1 depcnding on if  a carry propagates from less 
significant bits into thc bit-window we are studying.) What would happen if we attempt 
to shift ua+ b to the right mod p ,  i.e. ask the oraclc about 2-' (ax + b) + rx + s mod p'! 
Case 1, Isb(ax+ b mod y )  = 0: We indecd shift ax + b to the right, so the bits to the 
right of bit i in 2-'(ax + h)  mod p will still be all zeros. The important thing that 
happens is that bit;,, (at -t /7  nod p )  is shifted into position i. This bit has weight 2d 
among the bits i ,  i - I , ,  . . , i - d.  
Case 2, Isb(ux + b mod p )  = 1 :  Bit i + 1 is still moved into position i, but in addition 
wc get wraparound. More preciscly we will get 

somern',dE O(logn), ~ehave [c l s+b] j -~=Oand[a . r+h] , ,~~- , ,~ ,  n / k -  I =Oi.e. a x f b m o d p  

/ i l k -  I 
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Now, assume the prime p looks like p = p1 2'+' + &21+2 + p3 where p i ,  p2,p3 E Z, 
p2 < 2d+' and p3 is "small". We get 

Since p3 is small, the term (p3 + 1)/2 will only affect the rightmost bits (with high 
probability). The tcrm p12'+' will only affcct bits to the left of the oracle, assuming no 
extra wraparound occurs when the msbs in p are added to the msbs in rx+ s. Now, since 
we know thc value w above, we know if wraparound occurs in which case we subtract 
( p  - 1 ) / 2  in a similar way. So it would seem that wraparound is no scrious conccrn but 
in fact this is what sometimes prevents us from determining the Isb. Nevertheless, let 
us again ignore this and push the problems ahead somewhat. 

Thus the important difference in this casc is that we by (1) and (2) also add p2  
to the value in bits i ,  i - I , .  . . , i - d .  Cases I ,  2 can hcnce be summarized as: If bits 
[ax + b]j- ,  = 0, [ax + h],Llk-nLf = 0 and [rx + s] jpd = z, then with high probability, i.e. 
unless unforseen wraparound occurs, we havc 

n f k -  1 

z' = [2- ' (ax+ b) + rx+ % [2-'(ax+ b)]f-d + [rx- t  s];-d 

= z + 2d hiti+' (ax+ b mod p )  + pzlsb(ax+ b mod p ) .  (3) 

Knowing z and determining z' thus gives some information about the two unknown 
bits in ux + 6. We immediately sce that we can not allow J p z  - 2dJ to be small since the 
effect of biti+I (ax + h mod p )  = I would hc the same as if Isb(ux+ b mod p )  = 1. We 
will later make precise what should be demanded from p2 (or actually from p ~ / 2 ~ + ' ) .  

Section 5.2 gives a generalization of the two point based sampling from [l] to get 
values of the type rx+ s mod p with known z-values. How do we determine the z'-value 
after the shift? 

Observation 4.1.  Let J , J '  be equal-length subintervals to {0,1,. . . , Zd+' - I} ,  at dis- 
tance D = 2"biti+l (ax+ h mod p )  + p2 Isb(ax + h mod p )  (i.e. their left endpoints are 
R apart, modulo 2"' and we write J' = J + D).  Thcn by (3), with high probability: 

[YX + s]:-,, E J ++ [2- I (ax + 0 )  + rx + .s]j_d E J + D = J ' .  

If the fraction of 1 -answers the oracle gives on J differs non-negligible from that on 
J', we can distinguish this by sampling. Thus, we need four interval pairs: (J,,,J,, + D,,), 
v = 1,2,3, for the three D,-values p2,2" and 2" + p2 and one, (54,54 + D4),  for thc 
exclusivc or of bit;,, and the Isb: D4 = 2d - p2. (We will later need "two-dimensional" 
intervals to take care of the wraparound problem. Nevertheless the intuition is the same 
and the above notation simplifics the layout of thc ideas.) 

We will in Section 5. I ,  5.3 discuss the properties needed from the prime p and use 
this in Section 5.4 to show existence of, and how lo find the intervals. 

With the general idea described, let us return to the wraparound problem. A close 
look will show that depending on whether rx + s mod p 2 p / 2  or not and whether 
Isb(ux + h)  is zero or one, we always have one of two possibilities for the value we 
query the oracle on: ( I )  It is smaller than p / 2  and lies in some interval J, or: (2) It is 
greater than p / 2  and lies in [he interval J + p?.  Hence, we can not argue that we havc 



random points in J and J + p2. For instance the oracle might be correct only on y E Z, 
such that biti(y) = biti(y + [ p / 2 ] )  and otherwise behave randomly. 

All is not lost though, since this means that the Isb-value has virtually no effect on 
the oracle's behaviour and the information we get is precisely the value of the (i + 1)th 
bit. We therefore simply neglect the lsb, determine bit i+ 1 and zero it and shift ax+ b 
to the right. We don't know the Isb that went out to the right, but by assumption, the 
oracle behaves independently of that bit. What happens on the next attempted shift? 
We now add roughly 2d biti+z(.x + b) + p2 bit1 (ax+ 17) + [ Lp/4]]i-dlsb(ax + b) to the 
value in the sample point in  Equation (3). (To be correct, Lp/4j should be replaced 
by 2-2 mod p ,  but these numbers arc basically the same.) We can ignore the term 
p2 bit, (ax + b)  since it (by assumption) has no effect on the oracle. Now, either lhe 
term [ Lp/4]]jPd lsb(ux + b) influences the oracle or it doesn't. If it does, we can now 
determine the lsb delayed by one step and in the ruture, all bits to the left of it delayed 
one step too:On the other hand, if not even [Lp/4]]j-,lsb(ccr+ b) has any effect, we 
can ignore this term loo and just determine bit i + 2. 

If this should go on, we will get more and morc "spooky" bits that moves out to the 
right but as long as their effect is negligible, we can determine the bit to the left of the 
oracle in each step. But this can not go on for ever! We claim that after a small O(logn) 
delay during which the spooky bits are of no importance, we can start to determine 
them: If we after T shifts still have no non-negligible advantage in determining the Isb, 
this means that most of our oracle's advantage is for y E Z, such that most of 

biti(y), biti(y+ 1 ~ / 2 ~ J ) ,  bit;(y+ [2p /2 ' ] ) ,  ... ,biti(y+ 1(2'- l ) p / 2 ' ] )  

are equal. (Actually, the values { L,jp/2'] 1 j = 1 , . . . ,2' - 1 } is a permutation of values 
close to { j2-T mod p 1 j = 1 , .  . . ,2' - I}, which is what we actually want to study.) 
Intuitively, if no small integer multiple of l p / 2 T ]  is close to any multiple 2', this set of 
ys must be vcry small, contradicting our hypothesis on the oracle! The value z above 
will be called a good shift. 

5. Security of Non Leftmost Bits 
Assume we have an nF-oracle for bit;(H$) where (26c+26) [lognl 5 i 5 n/k-c:.logn 
with c:, the maximum of 7c+ 8 and the smallest constant such that the bias of bit n / k  - 
cklogn is at most n-'/4. This choice of c:. will be explained later. The case 0 <_ i < 
(26c+26) [lognl is covered by [lo]. 

5.1. Some Results on Uniform Distribution of Sequences. For a E Q, {a} denotes 
the fractional part, a (mod 1 ) .  By a rationul sequence we mean a sequence of the form 
{a},  {2a}, . . . , { N a }  where a E Q, N E N. We denote such a sequence by (a)~. 

Definition 5 . 1  . The rational number a, 0 5 
integers t ,  q, 0 5 t < q 5 Q: 

< 1 is said to be of ( Q ,  y ) - t y p e  if for all 

(That is, the distance from 9a to the nearest integer is a1 least &.) 
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Lemma 5 .  I .  Let s E Z be given and let J > Q’y. Then 

Proof Given s, look at a particular pair of integers t ,q ,  t < q. ‘The values of r that are 
bad for this t ,q  are the ones satisfying ( r / s  - t / q \  5 I /(q2y) which is equivalent to 
r being chosen in the interval [: (I - A) , ( I  + &)] . This has probability at most 

2(q2yr)-’ +$-I since the interval contains at most 2s(q2wjP1 + 1 integers. Hence 

Definition 5.2. Let ( a ) ~  be a rational sequence and let J = [a,b)  be a subinterval of 
[0, I )  (allowing wrap around 1 by 1 E 0 (mod I ) ) .  Define 

A ( ( a ) , v , J )  = I(a)NnJl, 

i.e. the number of points in the sequence falling into J .  
The discrepancy (deviation from uniform distribution) of (a)N is defined by 

We will ofcourse not actually deal with rational numbers, but rather inlegers. How- 
ever, it is easy to scc that the sequence ir  mod s ,  i = l . .  . . , N, will be as well distributed 
in Z,y as the sequence (r/s)N is in [O, 1 ) .  Well known results state that if a is irrational 
then !Dn((a)~) 3 0 as N -+ 00. scc 171. We will later need a qiiantitative result for 
rutionul a. 

5.2. Generalizing the Two-point Based Sampling. As mentioned in the proof out- 
line, wc will need a sel, P ,  of random sarriplc points of the form rx + s mod p with 
bits i,i - I . .  . . , i - o( logn)  “known” beforehand, i.c. listed in a set L. ‘To control 
wraparound, their O(1ogn) most signilicant bits must also be “known” as the values 
in a list M. To this end we will use a generalization from [lo] of the two point based 
sampling techniquc introduced in [I] .  Wc will get a polynomial number of candidates, 
{ ( L , M ) }  one (L,M)-pair bcing correct with high probability. 

Lemma 5.2 .  Lctdl,rlz,t > Obeconstants. Ie tniE polyjn) anti let rlis1,r2,s2 EU Z,be 
given. It is then in deterrninislic polynoinial time possible to generate a list P(riJI,12,5?),  

of t m  uniformly distributed, pairwise independent points of the form rx+ s mod p and 
at most ~2m522(d1+‘12)/’ngri1 possibilities for a pair of lists { (L ,M)} ,  each L consisting of 
tm values in {0, l } ( d l t i ’ ~ ) ~ l O f r i l  and each M ofrnz  values i n  (0, 1}3/210gm. 
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Forrandomrl,sl , l i ,s2,  foratleastone(L",M") E {(L,M)},foreveryj= I ,  ... , t m  
2 .  the following two conditions hold, each with probability at least 1 - z. 

Proof: Straight forward generalization of Lcrnma 10 in [lo]. a 
5.3. Good Primes. Using the results in the previous subsections, now define the set of 
primes to study from now on. 

Definition 5.3. Let dl,d2 be constants' satisfying d2 > 23c + 23 and c + 4 < dl C: 
3c + 3. Let I ( n )  = 2(d1+'12)r10g'rl+1, ~ ( n )  = 2dl Ilognl and N(n)  = 5n7' (Note: l (n )  2 
4N(n)'w(n) for sufficiently large n) .  Finally, let z ( n )  = [log/V(n)l. Assume p E Pk, 
k > 0 and that p is of the form 

( J )  
is such that & is of (ZNjn) ,~( r i ) ) - typc  for j = 1,2 , .  . . , ~ ( a ) .  

set H;, but with p restricted to q. 
Then p is called a good prime. Call this set of good primes Pi and let H! be as the 

Note that p!$ corresponds to bits i, i .- 1 , .  . . i - (dl + d2) [lognl in Lp/2'] which 
is M 2-j mod p and also that by the choicc of c:. earlier, we always have ~ ( n )  bit to the 
left of bit i. By only studying these bits, we will introduce a truncation error, but by 
choosing d2 sufficiently large, this error can he controlled. 

Lemma 5.3.  The probability that a randomly chosen p t Tk is good is 1 - O(n-("1-3)). 

Proofi By Definition 5.3 and Lernnia 5 .  I ,  the probability that an n/k bit number is bad 

up the probabilities that each pF's  is not of (2N(n)*,\?(n))-~ypc.) It is well known that 
the number o f  primes of length w / k  is 0 ( i 2 n / k )  arid so 

Pr[p is a bad prime] <: Pr[p is bad I/ Pr[p prime] t O ( ~ Z - ( " ~ - ~ ) ) .  

(regardless of primahty) is at most 9T(n) 1og2(2N(n))/V(n) € 0(2p("1-2)['0sn1 (Sum 

0 

5.4. Finding Good Intervals and Shifts. Let I be the set of all possible values for the 
bits;,;- 1 ,... , i -(dl+d2)rlognl inavalueniodulop. Thatis,!={O,l, ... , l (n ) - l} .  
Let Y = { [z/(p/2'('*))] 1 z E Z,}, i.e. a partition of  Z,, into (roughly) equal sized sets. 

Define projcctions from Z, onto I and Y rcspcctively: q ( z )  = [ z ] ~ - ( ~ ~ , + ~ ~ ) , , ~ ~ ~ , ,  
and q ( z )  = Lz / (p /2 ' ( " ) ) ]  and let n(z) be the pair (rc/(z),ny(z)). Ohscrve that ~ ( 2 ' )  
(/(n)/2,0) andn(Lp/2jJ) = (py',2~(11)p./) for I 5 j 5 ~ ( n ) .  

i Please note that this is 3 prcliiiiinary version a n d  that soiiic of thc cnnctants may possibly be improved 
and othcrs may have to he ~ncreased. 
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We will by the word interval refer to a pair J = ( I ' , y )  where y E Y and I' is a subset 
of consecutive values (points) in I ,  allowing wrap around the endpoints of I .  The length 
of J ,  IJI, is the length of Z'. 

For any interval J = (Z',?), J+x(z) refers to thc interval ( I ' + x ~ ( z ) , y + x y ( z ) )  with 
the addition carried out componentwise modulo If I and IY 1 respectively. By PI ( J )  wc 
mean the average fraction of 1 -answers the oracle gives on J .  For two intervals J 1 , 5 2 ,  
denote by A(J1 , J2)  the value / P I  ( J I )  - PI (J2) I .  

Definition 5.4. Let TO E U(1ogn) be the smallcst integer (if it cxists) such that there is 
an interval J of length at least 2d2r10g'11-2 and with A ( J , J  + x( Lp/2'DJ) non-negligible. 
Then To is called a guud shift. 

The good shift is the number of steps we may have to wait before we can start to 
determine (what was) the Isb. It is important that we choosc the smallest possible TO 
since we must be certain that the information we gct for the TO - 1 tirst shifts is precisely 
the ( i  + 1)th bit. This holds since the effect of the spooky bits is negligible for these first 
shifts. It is perhaps not obvious that a good shift exists or if i t  does, that we can keep 
on determining the (i+ 1)th bit from the 70th shift and on but we will shortly prove that 
this is thc case. 

To begin with, we have the following immediate conscquence to our assumptions: 

Lemma 5.4. If 0 is an (n-c/2,p)-oracle for bil,(H$) and the bias of bit; is p;, then for 
h(x)  = a x +  b mod p, a,/? EU E,,: 

npc 

Pr[U(h,f(x)) = 1 Ibit;(h(x)) = I ]  - Pr[O(h,f'(s)) = 1 1  biti(h(x)) = 01 2 2 (2 - p;) . 

Put differently, and using our assumptions on the bias induced by the choice of the value 
c: earlier: There is an interval J of length / ( n ) / 2  satisfying A ( J , J +  ~ ( 2 ~ ) )  2 rz-'/2. 

We omit the (simple) proof. The next lemma will show the existence of other, non- 
trivial, subintervals for which the fraction o r  1 -answers from the oracle also differ non- 
negligible. 

Lemma 5 . 5 .  Let p E P''. There is an interval J in I x Y of length at least 2"z~10gnl--2 
with 

A ( J , J  + K( Ly/2T('')j ) )  2 y(n) 

where y(n) is non-negligiblc. 

Proof; See the appendix for a proof skctch. 0 

It is not too hard to see that adding 2' does not affect numbers of (2N(n),yf(n))-type. 
So, together with Lemma 5.4, we have thc following corollary: 

Corollary 5.6 .  There are intcrvalsJ1, J 2 ,  J l ,  JJ of length at least 2d2r10g'Ll-2 and a value 
TO 5 ~ ( n )  such that 

A(Ji,Ji +dLp /zTo] ) ) ,  A(J2,Jl +n(2')), A ( J ? , J ,  + ~ ( 2 ' +  Lp/2'"])), 

A(J4,J4 + 742' - lp/2T"I)) 

arc all at least y(rz). In particular, every ( 1 7 ~ '  /2, p)-oracle for biti(Hi) has a good shift. 
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Since none of the &’s can be closc to n(2’), there will be no trouble retrieving biti+I 
for the TO - I first shifts. 

Now that good intervals/shifts do exist, we will need to be able to find them. 

Lemma 5.7. Given is T E poly(n) subintervals to I x Y :  J I  ,h,. . . ,JT, each of length 
h(n) 2 2d211”gn1p2. Then for any constants s , t  > 0, it is possible to find a polynomial 
number of lists, {dj) I j = 1,2 , .  . . }, each I?(’) indexed by the J,s such that for at least 
one j ,  for each 1 = 1,2, .  . . , T :  

Pr[lRy) - P ~ ( J [ ) /  5 y(nj/t] 2 I -ti-.‘ 

Proof sketch: Use Lemma 5.2 to generate random points in Z, [or which we “know” the 
intervals they belong to and query the oracle on these. Roughly ~(n) -~n~”(n )2 ‘ ( ’” ) /h (n )  
sample points are needed. 0 

For the remainder of the paper, we will assumc that the good shift is equal to one, 
i s .  that we can distinguish between valucs of the form z and z + [ p / 2 J .  Equivalently, we 
can assume that we have already shifted ax + b by TO - 1 steps to the right, determining 
and zeroed bit i + 1 at each step, and from now on want to determine both bit i + 1 and 
the lsb (or rather, what was the Isb TO - 1 iterations ago). 

5.5. Constructing a Good (bit;+! ,Isb)-oracle. Supposc the bits [ax+ b]~p~d,+~i2),10e,L, 

and [ax+ bl$I:,210gm all are zero and that wc have sample points P = { YX + s mod p }  
from Lemma 5.2 with the valuc in the same bitpositions “known”. By substituting 
d = (dl  + dz) [lognl (so that 2d = l ( n ) / 2 )  in Observation 4.1 wc have 

Observation 5.1. Let J I , J ~ , J ~ , J ~  be the Intervals from Corollary 5.6, let bi+l,bg be 
the two (unknown) bits biti+l (ax + b mod p ) ,  Isb(ux + b mod p )  respectively and let 
bi+l,bo be a current hypothesis for bj+l ,ho. Then, if n(rx+ s mod p )  = (z,y), we have 
(assuming no wraparound from the msbs): 

(z’,y’) = n(2-] (ux+b)  + (,:u+s) inod p )  = ( z , y j  +n(2‘h,+l+ ~p/2Jbo)  

and therefore, for v = 1,2,3,4, with high probability: 

a 

Observe that by substituting suitable values in  (0, I }  [or b,+l, 60, ,bo, we recognize 
the four good interval pairs J,s,./,, + n(D,.) from Corollary 5.6. 

For two equal-sized sets (intervals) J‘ = ( I ’ , y ’ ) , J ’ ‘  1 (I“,$’) define #(J’ ,J”)  = 
2(11’1 - /I’nI”l) if y’ = y ”  and (I’I otherwise. (Thc size of the symmetric difference.) 
The next lemma tells IJS how to distinguish between the two intervals in each pair, or 
rather, how to exclude one of the two as a possibility. 



124 

Lemma 5.8. Let J,,J,, + n(llv) be any o f  the interval pairs from Corollary 5.6 and let 
R = { R J }  be approximations to the respective PI (1) within y(11)/4. Let S be a set of 
16tny(n)-’ uniformly distributed, pairwise independent samples from any interval J’ of 
the same length as JLf. Define boolean variablc R(S)  = 0 il#(J,,,J’) E O( 1)  and B(S)  = 1 
if#(J,, + n(D,),J’) E O( 1). Let B ( S )  he undefincd otherwisc. Finally, define R f ( S )  = 0 
if the number of 1-answers the oraclc gives on J’ is closer to RJ,, than to RJ,,+,p,) and 
1 otherwise. Then 

The proof’ is a fairly simple application of’ Chebyshcv’s inequality and is therefore 
left out. ‘The idea is that if we conclude that Bf7(S) = 1 so that we believe thc samples 
to be from J ,  + ~ ( 0 ~ ) .  then with high probability, the hypothesis &i+1,60 as in Ohser- 
vation 5.1 must be wrong - we would otherwise havc sampled in J ,  and should havc 
Bf7(S) = 0. Convcrsely, if Bfl(S) = 0, then (hiti,.] ,lsb) is very unlikely to have a value 

would be the case, we would sample in Jl> + 7t(Dv) and should have B t ( S )  = 1.  

Lemma 5.9. Given an ( q , p ) - o r a c l e  for bit,(H$) with (26c+26)[logn~ 5 i 5 n / k -  

c:.logn, and assuming that [ax + h]l~-jd,+dl), ,og,~,  and [ax- + b1;;;-3,21”g,n are all zero, 
then for any constant t > 0, i t  is possible to construct a polynomial number of oracles, 
0 1 , 0 2 , .  . , , such that with high probability, at least one Oj is a (2 - k,p)-oracle for 
bit;+, and the lsb in H i .  The construction can be made in polynomial time. 

Pro($ Supposc we havc: (1) the intervals .II ,J2,-13,J4 from Corollary 5.6, (2) the ap- 
proximations, R, to all PI (J,),Pl ( J ,  + n(D,) )  within y(n)/4 from Lemma 5.7 and ( 3 )  a 
set P of 3m = 240tny(nP2 sample points from Lemma 5.2 with correct values for the 
“guessed” bits. We aclually have a polynomial number of suggestions for (l),(2),(3), 
but trying all, making one oracle for each, we can assume we have the correct one. In 
each of three runs we will compute a particular B t  as described in Lemma 5.8, each 
run will attempt to rule out one of the remaining possibilities for the pair bit,+l ,Isb in 
ax + b mod p .  

Consider one o f  the three runs, trying to compute @(S) with .I,, = ( J ’ , y )  for soine 
v E  {1,2,3,4}andhaviiigb= (b;+1,60) asacut~enthypothesisfor (bit;+l,lsh). Usethe 
following sample points for this particular v,6: Let {Pj = r jx+ s j  tnod p }  he the first 
in = 80tny(n)-j sample points in  P and deiine r ’ (g )  = ygi+l +p?])ho. L,et r ; ,  r;, . . . rl;, 
be points chosen independently and uniformly in {O,1 }(dif”2)11ugril to make ry - # ( h )  + 
RIr-(d, + d 2 )  rlognl uniformly distributed in J ’ .  This can bc done sincc [fj]~,-~[/,+[,~~,l~~~,~, 

and 6 are known. Now use the following sample points: 

(bi+l,bo) such that (y(bi+, - & ; + I )  +p2 ( 1 )  ( D O  - ho),bo2T(”)-1) = n(&), sincc if this 

J 

s = s , , ( ~ )  = {2-’(ax+b)+~,+(ry-~(h))2~-(~1+”2)(‘~fi~~l m o d p j j =  I ,  ... ,m). 

We can describe the three runs with the decision tree in the figure below. (Wc assume 
no wraparound from the msbs occur.) 

Internal vertices arc labeled with the  variable Rfl on which we base our decision at 
that vertex. We use 6 = ( 0 , O )  unless indicated. Wc follow a lcft edge if B!(S,(6)) = 0 
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and a right ifHt(Sv(6)) = 1 .  The sets i n  braces indicate the remaining possible values 
for the pair 

By Observation 5.1 and assuming that Lemma 5.8 can be applied, it is easy to see 
that this will give us (bit,, 1,lsb) if none of the three runs make an error in deciding the 
corresponding R f ( S ) .  However, to apply Lemma 5.8 we must check that the conditions 
there are satisfied. 

Isb) and the leaves are the concluded value for (hiti+, , Isb). 

First we see that from Lemma 5.7, 

proximations in R can be made as sinall 
the probability of not having good ap- [00,01,10,11) 

as we wish. Next we must check that (00,10711) / \ {01 ,~0,11}  

if (&;+I ,ho) is a correct hypothesis then nf \n4 

1 

f R h=(0,1) 

/ \ U? 1 1 )  ~ , , ) \ ~ I O .  11) 

all but O( 1) of the samples will be taken 
in the Jv we are aiming for. From this W , I I I  

will also follow that if (&i+_~ ,&) satisfies 
the relation: ((biti+1 -0 i  t .l)l(n)/2 + 
(Isb -6o)p,$l),b02'(")-') = n(D,), then 
all but 0( I )  of the samples will be from 
Jv + n(D,,). In one single sample there are three sources of errors that could sabotage 
this - (4: Bits [P/l)_(d,+d2),log,,, are wrong, (ii): Uncontrolled wraparound and (iii): A 
carry from the least significant bits propagates into bits i, i - 1 , .  . . , i - (dl + dz) [logn] 
of the sample point and we are already at the end of the interval. Using Lemma 5.2 it is 
easy to show that the total error probability of (i), (ii), (iii) is less than 4m-'/2. There- 
fore, the probability that more than O( 1) points end up outside is small. A calculation 
will show that all points are where we want [hem to be with prohahility at least 1 - 
and so Lemma 5.8 can be applied. Hence, using the m points in &(&) in Lemma 5.8, 
the probability that B;(&(&)) is correct is at least 1 - & and we follow the corrcct 
edge in the tree. The probability we follow the correct edges on all three runs is at least 

0 

b=(l,O) R '%={O,l) ~ BR 6=(1,0) n; , n2 I 

h?q p+-, & 

1 

I 
1 - 3 ( & + & )  > I  - K ,  

Theorem 5.10. Given f (x )  and an n-'-oracle for hit;(H,k), (26c + 26) [lognl _< i 5 
n / k  - c:. logn then for p Er, it is possihlc to find a polynomial number of values, 
(2 E Z p }  at least one satisfyingx' _= x (mod p )  with probability at least 3nPC/8. 

Pmof sketch: Assume for simplicity that i = t l / ( 2 k ) .  Choose p EU Pi. With probability 
n F / 2  this gives a (rr7/2,p)-oracle. Next choose random a ,b  E Z , .  Based on all 

possible values, u, ( ~ 1 ' [ ~ x + I ? ] , ~ , ~ ~ ~ ~ , ~ , ~ ~ , ~ ~ ,  [ ~ ~ + b ] j ~ ( ~ , , + ~ , ~ ) , ~ ~ ~ , ~ , ,  set these bits to zero by 
modifying h. For all candidate (: - &, y)-oracles found in Lemma 5.9: Find hiti+!, Isb 
in ax + b mod p and set them to zero by: 6' = 0 - Isb-2rtl biti+l. Right-shift by 
2-' (ux + b') mod p and continue with the next two bits. 

Let {x') be the corresponding values for x mod p found for each of the above 
possibilities. For the correct choice of [ I ,  the "good" oracle 0 will determine biti+l, lsb 
with probability at least $ + - & = I - & so the probability that 0 is correct on all .& 
calls is at least 1 -- $ & = 3/4. For the running time, note that each of the polynomially 

n l k  

many choices can be tried in polynomial time. 
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The situation is now the same as in [lo]: Apply Theorem 5.10 for many, say IOkn" ps .  
For all U(nCk) k-subsets of the the p s  and for each (of the polynomially many) modular 
equations obtained for each p ,  use Chinese remaindering to get a suggestion for x. We 
get a polynomial number of suggestions and with high probability at least one of them 
will be correct (verify against f ( x ) ) .  Hence, as almost every p in P' also belongs to !I$: 

Theorem 5.1 1 .  Foranyk>Oandanyi,  (26c+26)[lognl 5 iIn/k-c:logn,bit,(H2k) 
is a hard core predicate for any one-way function. 

6. Security of the Leftmost Bits 
We will now study the U(1ogrt) most significant bits. l f  the bias of the ith bit now still 
is smaller than n-'/4, we use the methods from the previous section. Otherwise the bit 
might not be hard corc according to prcvious notation. So we use definitions introduced 
in [9]: 

Definition 6. I .  Let H be a family of boolean functions having bias p < 1 /2 and let 0 
be a pptm. The quantity 

the probability taken over h €u  H ,  x Ev ( 0 :  I}" and the random choices of 0, is called 
the weighted success ratio of 0 and is denoted by wso(H, f ) .  

Let f be a function. Call H a hard core predicate for f if no 0 exists with 
wso(H,f) 2 2 + g(n)  for non-negligible g. 

A well known lemma, albo from 191, states that for an oracle with a non-negligible 
~ ( n )  as above, the fraction of correct 1-answers must differ non-negligible from the 
fraction of erroneous I-answers. Thus we can replace Lemma 5.4 by this generalization 
and all is set LO prove Lemma 5.5 in  the new setting. In fact, now only one pair of 
intervals is needed sincc only one bit, thc Isb, is unknown at each instant. One small 
detail must be taken care of: According to the definition of the set $, we need logN(n) 
bits to the left of bit i to make sure therc is a good shift. On the other hand, i t  is easy to 
see that the good shift can not be greater than roughly Ipl - i and we can thus change 
the definition of accordingly. 

Theorem 6.1, Each of the U(1ogn) most significant bits in H i  is a hard core predicate 
for any one-way function. 

7. Discussion and Open Problems 
The simultaneous hardness of the internal bits rcrnain open. Thc fact that we could 
show hardness for each individual bit was due to the new technique of determining the 
bits two by two. However, it seems that the fact that two bits have influence over what 
the oracle gets as input also makes it impossible to use the method to show simultaneous 
security in the general case. The natural approach, reducing to a next-bit test (see [12]). 
doesn't seem to work as we do not know the bits close to the ith. 

The reduction from the inversion of f ( x )  is polynomial time but of rather large 
degree. Is therc a simplcr, more security preserving reduction (a simpler proof)? 
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Finally, we ask if it would be possible to improve the rcsults to allow for primes 
significantly shorter than Q ( n ) ,  say IpI = I L ' - ~ .  
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Appendix A. Proof Sketch to Lemma 5.5 
We first need the following results: 

Lemma A. 1. If a is of (Q,w)-typc and N 5 Q / 2 ,  thcn thcrc is an absolute constant B 
such that 

Proofsketch: We use the Erdos-Turan Theorem (Theorem 1.5 in [7]) and adaptions of 
lemmas similar to Lemma 3.2, 3.3 of 171. Space constraints forces us to omit further 
details. 

Let U., be the uniform distribution on Z, 
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Lemma A.2.  Let s,tri,N E Z with nr,N < s .  Suppose X,W are independent random 
variables with X E TI,,,, W E 2 1 , ~ .  Let v E Z,s and define the rational number a = v/s. 
Finally, let Y be the distribution o fZ  = X i- vW mod s .  Then Z is within sD((a)~) /m 
of tyS. 
Proof: For any j E Z, we have 

Pr [X + VW mod s = , j ]  
x,w I.V X 

= Pr[vW mod s = t F ( j  - in mod s , j ] ]  Pr[X = j - t ]  

W S l , i ] ] P r [ X = j - t ]  s x  

A((cx) ,v , ( ( , j  -ni)/smod l ,j/ .s]) 1 
N tn 

- - - 

0 

Within the space limits of this paper, wc can now briefly sketch the idea behind the 
proof of Lemma 5.5. Recall the definition of the two-dimensional space I x Y .  Let be 
thc "lcft" half o f / ,  {01 1 , .  . . , l ( n ) / 2  - l} ,  (All j E I' have their msb, which is biti in the 
representation mod p ,  equal to 0) and I '  the right half, { / ( ~ ) / 2 ~ .  . . ,l(n.) - 1) (wherc 
bit; = 1). Let D = n,( Lp/2 ' (" ) ] ) .  Supposedly, there must be a y E Y such that 

A((41Y)>(~O?))  2 12-(/2, 

this follows from Lemma 5.4. W.l.o.g, assumc that y = 0. Divide 1' into scctions of the 

andIg = [0, -- ( K  - I)D-- I ] .  Likewise, make a similar construction in I ' ,  producing 
Tj, j = 1,2,. . . K .  Now consider moving all these intervals i n  unit steps up the y-axis, 
and in steps by /I along the I-axis. For instance, for some q, s = 0 or 1, we move over 

( I j  0) , (1.; + [),I) , (I,; + 2U12), . . . , ( I ;  + ( 2 Z ( n j  - 1 ) D ,  2+) - 1) 

Now, if either for s = 0 or 1 there is a j and a t such that A((/; + ( t  - l )D, t  - l ) ,  (Pi  + 
t D , t ) )  is non-negligible we are done since this is precisely what we want. Can we be 
sure that there is such s , j , t ?  

By assumption, D / l ( n )  is of ( 2 N ( w ) ,  \v(n))-iype. Therefore, by Lemma A.2, choos- 
ing a random t ,  we see that t D  is close to the uniform distribution on {0, 1 , .  . . , l (n)  - 
1 )  = I .  Now, we know that the average traction of I-answers the oracle gives on I" 
differs non-negligiblc from that o n  I ] .  On thc other hand, the discussion above implies 
that each term of the form P(((1;  + t D , t ) )  contributes (almost) as much to P I ( [ ' )  as 
it does to PI (fi'). So if they arc all the same, this would mean that PI ( I o )  is close to 

This also motivates why we can not hope that the first shift, z = I ,  will work. We 
then have just Lwo copies of each I;. There is no way we can argue that one of them is 
in I' and one in I*, they may very well both he i n  the same half. 

P, ( I ' ) !  
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