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Abstract. Ong-Schnorr identification and signatures are variants of the
Fiat-Shamir scheme with short and fast communication and signatures.
This scheme uses secret keys that are 2'-roots modulo N of the public
keys, whereas Fiat-Shamir uses squarc roots modulo V. Security for par-
ticular cases has recently been proved by Micali [M94] and Shoup [Sh96].

We prove that identification and signatures are secure for arbilrary
moduli N = pg unless N can easily be factored. The proven security
of identification against active impersonation attacks depends on the
maximal 2-power 2™ that divides either p—1 or ¢ — 1. We show that sig-
natures are secure against adaptive chosen-message attacks. This proves
the security of a very efficient signature scheme.
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1 Introduction and Summary

Fiat and Shamir [F'S86] proposed a practical identification and signature scheme
that is based on a zeroknowledge protocol of Goldwasser, Micali and Rackoff
[GMRR89] for proving quadratic residuosity. The GQ-protocol of Guillou and
Quisquater [GQ88] and Ong-Schnorr identification and signatures [0S90] are
variants of the Fiat-Shamir scheme which provide shorter communication and
signatures than the Fiat-Shamir scheme. The Ong-Schnorr scheme is a direct
generalization of the Fiat-Shamir scheme, where square roots modulo N are re-
placed by 2t-roots. This compact variant of the Fiat-Shamir scheme is as fast,
in the number of modular multiplications, as the original scheme. Until recently
it was only known that Ong-Schnorr identification is secure provided that par-
ticular 2'-roots modulo NV are hard to compute [0590]. Recently there has been
surprising progress for the case of Blum integers N, i.e. N = p-¢ with primes p,
g that are congruent 3 mod 4.

Previous results. Micali [M94] proves that Ong-Schnorr signatures are secure
if the secret key is a 2'-root of 4, 2 is a quadratic non-residue modulo N and N
is difficult to factor. In the case considered by Micali, the sccret key, the 2'-root
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of 4, reveals the prime factors of N. Therefore, distinct users must have different
moduli N, and ¥V must be part of the sccret key rather than a public parameter
as in the Fiat-Shamir scheme and its extension by Ong-Schnorr. Micali assumes
that the hash function used for signatures acts as a random oracle.

Shoup [Sh96] proves that Ong-Schnorr identification with Blum integers N
is secure against active adversaries unless N is easy to factor. Shoup transforms,
less efficiently than for the Fiat-Shamir scheme, active impersonation attacks
into the factorization of N. Shoup’s reduction is not entirely constructive, as it
requires a priori knowledge on the adversary’s probability of success.

Our results. We prove that Ong-Schnorr identification is secure for arbitrary
moduli N = pg. This extends and improves the results of Shoup in various ways.
It sheds new light on the prime factors p and ¢ of the modulus N. The cfficiency
of our reduction from factoring N = pg to impersonation attacks depends on
the maximal 2-power 2™ that divides cither p - 1 or ¢ — 1. We distinguish
active and of passive attacks. In an active attack the adversary poses, before the
impersonation attempt, as verifier in a sequence of executions of the ID-protocol
and asks questions of his choice using the legitimate user as oracle. In a passive
impersonation altack the adversary is given the public key, but he cannot even
listen in to executions of the ID-protocol.

The cases that m > (, respectively m < t, are quite different. For m > we
transform active impersonation attacks into a factorization of N, as efficiently
as for Fiat-Shamir ID. This factoring method only requires that the adversary’s
success rate is twice the success rate for guessing the exam posed by the verificr.
Moduli N with m > ¢ provide optimal security against active/passive imperson-
ation attacks provided that NV is difficult to factor.

For the case m < t, we transforin passive impersonation attacks into the
factorization of N, as efficiently as for Fiat-Shamir ID. The factoring method
uses public keys that are generated together with a pseudo-key which is inde-
pendent of the secret key. Having only a pseudo-key complicates for small 1 the
reduction from factoring to active impersonation attacks. It becomes difficult to
simulate the ID-protocol, which is necessary to provide the information needed
by the adversary for an active impersonation attack. This leads to a trade-oftf
which we describe in Theorem &: cither there is an additional time factor 207 ™
for factoring NV or the minimal required success rate of the active adversary in-
creases by the factor 2t

Security of signatures. The aforementioned results translate into correspond-
ing security results for Ong-Schnorr signatures. We assume that the public hash
function of the signature scheme acts as a random oracle. The random oracle
assumption has already been used in [FS86] and is commonly accepted to be ap-
propriate for hash functions without cryptographic weaknesses, sce [BR93]. We
consider the strongest type of attacks, adaptive chosen-message attacks. Here the
adversary uses, before attempting to gencrate a valid signature-message pair, the
legitimate siguer as oracle to sign messages of his choice.

Pointcheval and Stern [PS96] show how to transform security proofs for dis-



145

crete logarithm identification schemes into security proofs for the corresponding
signature scheme. Using similar arguments we transform security of Ong-Schnorr
ID, against passive attacks, into security of the corresponding signature scheme,
against adaptive chosen-message attacks. In Theorem 6, we prove that signa-
tures cannot be produced faster by an adaptive chosen-message attack, than by
random trials unless the modulus N can easily be factored. We get the same
result for arbitrary keys and moduli N which Micali {[M94] proves for particular
keys and modnli N.

Generalizing the properties of Blum integers. Blum integers N are char-
acterized by the property that squaring acts as a permutation on the set Q iy
of quadratic residues modulo N. The cryptographic relevance of Blum integers
relies on this property. One of our basic tool is a generalization of this property
to arbitrary integers N based on Lemma 2.

2 Ong-Schnorr identification

Let N be a product of two large primes p and ¢. Assume that N is public with
unknown factorization. Let 7ZZ%, denote the multiplicative group of integers mod-
ulo N. Let the prover A have the private key s = (81,..., $x) with components
81,y 88 € X7y, The (orlesponding public key v == (v1,...,v) has components
v; satisfying 1/v, = s for j = 1, ..., k. We assume that the verifier B has access
to A’s public key v.

Ong-Schnorr ID-protacol (A, B) ( A proves its identity to verifier B)

1. A picks a random r €5 Z%; and %endq r:=1? to B.
2. B picks a random exam e = (ey,-.. r [0,24)* and sends it to A.
3. Asends y:=r[[, s} toB.

4. D checks that z = y HJ v]

Standard forgery. It is known that a fraudulent prover A can cheat by guess-
ing the exam e and sending the crooked proof » := r? H 7', y := 1. The
probability of success is 27 **. Qur goal is to prove that this 27 success rate
cannot be much improved unless we can easily factorize N. As the security level

is 2%, we are interested in parameters k, ¢ where kt is approximately 72.

Ong-Schnorr signatures are obtained by replacing in the ID-protocol the
verifier B by a public hash function h. To sign & message M the signer picks
a random r € Zy forms x 1= r‘“” and computes the hash value e := h(x, M)
in [0,2" as well as y := r [I;s;. The mgnaturo of the message M is the pair

(e,y). It is verified by checking that, h(y? H‘, ’UJ ", M) = e holds true.

The length of signatures and communication. For a security level of 2!
steps we only need hash-values e = h(we, M) that are ¢ bits long. The length of
signatures is the lengih of the modulus plus ¢ bits. Fiat, Shamir [FS&6] cautiously
recommend hash-values with 128 bits. Tt has been argued against shorter hash
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values that the signer can compromise his key by constructing distinct messages
having the same signature. By the birthday paradox, thc signer can generate
such colliding messages in time O(2%/2). However this attack is not relevant, as
the legitimate signer can always corrupt his key by revealing his secret. On the
other hand successful attacks, without using the secret key, require 2° steps.

In the ID-scheme, A cau send in step 1 a hash-value h(x) instead of z. Then
B checks in step 4 that h(z) = h(yz' HJ 7)5‘). Even in case of the ID-scheme,
it suffices that h(z) is slightly longer than ¢ bits, see Girault, Stern [GS94] for
a thorough analysis. It is tempting to let h(z) consist of some bits of z. Only

rather weak attacks are known, see [GS94].

Efficiency. For Ong-Schnorr identification (resp. signatures), both the prover
(resp. signer) A and the verifier B perform on the average %'—gt multiplications in
Zy. For k=8, t =09, these are 45 multiplications. Further optimization is pos-
sible in the same way as for the Fiat-Shamir scheme, see [FS86], [MS88]. While
very fast generation of signatures requires long multi-keys, signature generation
is rather efficient cven for single component keys. For & = 1, ¢t = 72 generation
of signatures requires only 108 modular multiplications whereas RSA, using a
1000 bit modulus, requires 1500 modular multiplications on the average.

Verification of signatures is very efficient if the public key components v; are
integers with only a few non-zero bits in their binary representation. The ver-
ifier performs only ¢ squarings, for computing y** in Z}, and a few additions,
shifts and reductions modulo N. If the binary representation of v; has w; many
ones, a multiplication by v; requires w; additions, shifts and reductions modulo
N. The reductions modulo N can be dismissed if the v, are small integers. Mi-
cali and Shamir [MS88] propose public keys consisting of small primes v;. More
generally, the v; can be small integers that are relatively prime and have small
Hamming-weight.

Previous protocols. The original Fiat-Shamir scheme is the case t = 1 of the
Ong-Schnorr protocol, repeated several times. While Fiat-Shamir ID requires ¢
sequential rounds for a security level 2¥, the Ong-Schnorr scheme compacts ¢
rounds of the Fiat-Shamir scheme into a single round. Fiat-Shamir ID is sccure
against passive and active attacks unless NV can easily be factored. Fiat-Shamir
signatures are secure in the random oracle model [FS86], [FFS88]. Attacks with
a success rate that is at least twice the probability of guessing the exam e, can
be transformed into the factorization of N.

The GQ-protocol [GQ88] is the case of single component keys, where 2'-
powers @ = 72" are replaced by w-powers © = r* for an arbitrary integer u less
than N. The GQ-protocol consists of a single round with a large cxam e. This
greatly reduces the length of transmission and of signatures compared to the

Fiat-Shamir scheme, at the expense of a slightly increased work load.

Notation. Let the fraudulent prover A be an interactive, probabilistic Turing
machine that is given the fixed inputs k,t, N (k,t arc sometimes omitted). Let
RA be the sequence of coin tosses of A. Define the success bit S5  (RA,e) to be 1
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if A succeeds with v, RA,e, N and 0 otherwisc. Accordingly call the pair (RA, €)
successful/unsuccessful. The success rate SA,U of A with v is the expected value
of S5 ,(RA, e) for uniformly distributed pairs (RA, e). For simplicity, we assume
that the time TA,U<RA’€) of A with v, RA, e is the same for all pairs (RA,e),
ie.T; (RA,e) =Tj . This is no restriction since limiting the time to twice the
average running time of successful pairs (RA, €) decreases the success rate S A
at most by a factor 2. For simplicity we assume that Tj = £2(k - t(log, N3
and thus T/i,v covers the time of the correct verifier B.

Theorem 1. [0890] There is a probabilistic algorithm AL which, given the
attacker A, N and v, computes (y, 5, ¢, €) such that y,§ € Zy, e,€ € [0,20)F, e #
e and (y/y)? = I1; vf"_e-’. If Sz, > 27"* then AL runs in expected time
O(T&U/SA’U).

The proof of Theorem 1 is a straightforward extension of Lemma 4 in [FFS88].
Algorithm AL constructs a random pair (RA,e) with §; (RA,¢) = 1 and
produces a second random exam é for which A; succeeds with the same RA. AL
outputs e, € together with the replies v,y of A associated with RA.

Theorem 1 does not yet transform successful attacks into a factorization of V.
Let the public key components v; are generated as v; := .9;2 from random s; €r
ZZn. Denoting ¥V :=y/y and S := Hj sj’ﬁé‘, we have Y2' = §2'. Unfortunately

$2"" can be independent of the 2'-roots s; of v;. Otherwise, the factorization
{ged(Y £ S,N)} = {p,q} would hold at least with probability %

As our security proofs are based on Theorem 1, it is convenient to introduce
some notation for the entities of Theorem 1. We denote ¥ :=y/y, £ := max{i|

e=emod 2}, Z:=T], 55("" )2 By the construction we have Y?' = 227"

We use the structure of the prime factors p, gof N. Let p—1 = 2™rp', g—1 =
2™maq" with p', ¢’ odd. W.lo.g. let m, > m,, and denote m := m, = max(myp, mq).
We have m = 1 iff both p and ¢ are congruent 3 mod 4, i.e. if N is a Blum integer.
For Blum integers squaring acts as a permutation on the subgroup @Ry of
quadratic residues in Zy. This property characterizes the set of Blum integers.
Lemma 2 cxtends this property to arbitrary cyclic groups. For a multiplicative
group G let G* denote the subgroup of u-powers in G, G¥ = {g" | g € G}.
Lemma 2 is obvious.

Lemma 2. For any cyclic group G of order |G| = 2™m with m odd, squering
5Q:GY — GQM, k1?5 a2—1 mapping fori=0,...,.m—1andis 1 —1
for i > m.

Extension of the Blum integer property. Let N, m, < m, = m be as
above. Zjy is direct product of the cyclic groups 7, and Z;,. Hence squaring
SQ : UE - ZI*\YZIH, x — x%, acts as a 4-1 mapping for i < m,, as a 2-1
mapping for m, < i < m, , and as a permutation for 7 > m, = m. With
this observation we can extend cryptographic applications from Blum integers
to arbitrary moduli.
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3 Passive impersonation attacks for m > ¢

We show that Ong-Schnorr ID is for m > ¢ as secure as Fiat-Shamir ID. We
assume that k& and £ are given as input along with N, but m may be unknown.

Theorem 3. There is a probabilistic algorithm which on input A, N generates
a random public key v €r (Z‘;\}Z‘)", factorizes N with probability at least 1/2,
with respect to its coin tosses, and runs in expected time (T3 /S5 ) provided
that S5, > 2 M+ and t <m.

‘7(

Proof. The factoring algorithm picks random s; € Zjy, sets 1/v; := s7 for
j =1,...,k, runs algorithm AL of Theorem 1 on input A, N, v producing the
(+¢

output (y,7,¢,€), and computes the corresponding ¢, V, Z with v = 72
Then, it checks whether

{ged(Y? + ZE'“,N)} = {p,g} holds for some 4, 0<i <t

For the analysis we assume w.l.o.g. that (e; — & )/2% is odd. The probability
space consists of the coin tosses of AL including s; €p Zjy for j = 1,... k.
To simplify the analysis we fix Y, Z(mod p), ss(modgq),...,si(mod g) so that
the probability space reduces to s;( mod q) €g Z;. By Lemma 2 and since t < m
there are 2! different 2'-roots s;(modq) of 1/v = s¥' (modgq). They yield 2!
different values Z(mod q). Since ¢ < t < m, we have for at least 287! of these
cases that ¥ % +22 and that Y'"' = 22" holds for the largest ¢ < ¢ which
satisfies Y2 # +7%2"" Hence for at least half of the cases we obtain square
roots Y2" and 227 of the same square modulo N, that are distinct even when
changing the sign, and thus {ged(Y? + Z¥ N} = {p, q}. This shows that the
algorithm factorizes N with probability at least 1/2.

The expected tine of the factoring algorithm is that of algorithm AL of
Theorem 1. The other steps arc negligible due to the assumption 7'; , = 2(k -
t(log, N)*). |

A basic difficulty with the above factoring algorithm is that it requires ¢ < m,
while the construction only guarantees ¢ < t. If £ > m it can happen that
Y = Z% holds for all possible 2-roots s; of 1/v;. In this case the factoring
method breaks down completcly.

Lemmad. Letm be an arbitrary integer with 1 < m < t. Algorithm AL of
Theorem 1 produces on input A, v an output (y,7,c,¢) so thal ¢ # & mod 2™
holds with probability > 1/4 provided that S5 > 2k,

The Lemma shows that the algorithm of Theorem 3 factorizes N with prob-
ability at least 1/8 and runs in expected time O(Tj; /S, ) provided that
S, 22 kmis -

Av =

Proof. A coin tossing sequence RA of A is called - heavy if .. Si (RAe) >

- /1,11
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okt—km+1 6 if A succeeds for at least a 27"+ fraction of the e. The claim
follows from facts A and B.

Fact A. If RA is m-heavy and S; ,(RA,e) = 1 then e # € mod 2™ holds
for at least half of the ¢ with S ;. ”(RA (,) = 1.

Proof. For every e we have #{é | ¢ = ¢mod 27} < gk since e; =
é; mod 2™ holds for at most a 27" -fraction of the €. Now the fact follows since
RA is m-heavy.

Fact B. If S; > 27K"*2 then RA 15 m-heavy for at least half of the pairs
(RA,e) with Sz, (RA e) =1

Proof. If RA is not m-heavy at most a 275" i fraction of the e satisfy
S;.(RAe) = 1. On the other hand, since S5 > 2=kmE2 at least a 27 FMH2
fraction of the (RA,e) satisfy S5 (R24,¢) = 1.

Algorithm AL generates a random pair (RA4,e) with S; (RA,e) = 1. By
Fact B RA is m-heavy with probability > 1/2. After hmng (RA,¢) so that
S;i.(RAje) = 1, AL generates a random ¢ with §; (RA.é) = 1. By Fact A
e # & mod 2™ holds with probability > 1/4. O

t—km

Remark. The lower bound 55 , > 2~k is necessary in Lemma 4. [t is possible

to position a 277 _fraction of successes so that e = € mod 2™ always holds.

4 Passive impersonation attacks for m < ¢

For m < t we give another reduction from factoring to impersonation. The
factoring algorithm generates a random public key v together with a pseudo-key
§ which enables to transform successful attacks of a passive adversary A into the
factorization of N.

Theorem 5. There is a prob. algorithm which, given A and N, generates a
random public key v €g (Z*Q')k factorizes N with probability > 1/2 with rebpecz‘
to its coin tosses, and runs in expected time O(1'; /S ;) provided that S

2- R and m < t.

Proof. Factoring algorithm

1. Pick random &, €p 7}, set 1/v, := s "forj o1,k (thus v; €R Z}‘\}“)L).
2. According to Thoorom 1 compute All (A, 0) = (y,7,¢,¢) and set

f:=max{i | e =emod 2}, Y :=y/ly, Z:= II, .s,l' e
3. Test whether for some i, € <i<{: {ped(y? 4 22" ,N)} = {p,q}.

By the construction we have Y2 = 22" and ¢ < (. Wlo.g. let {e; —&;)/2¢
be odd. Arbitrarily fix Z(modp), §:(modg),..., 5 mod ¢ and ¥ so that the
probability space reduces to the 2™ solutions & (mod¢) of 5" = 1/v; mod g.
These 2™ solutions vield 2 different values §; € Z} and, since (e, — &)/2’ is
odd, they generate 2™ different values 7 c Z% . For at least 2! of thesc cases
we have that Y2777 2 £2277" and that Y277 = 2277 holds for the
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largest i which satisfies Y2 # 227" Hence for at least half of the cases
we obtain square roots Y> 7', Z¥7"7" of the same square, that are distinct
even when changing the sign, and thus {ged(Y2" + 227" 7" N)} = {p,q}. This
shows that the algorithm factorizes at least with probability 1/2. O

The above proof establishes security of public keys v that are generated with-
out a corresponding secret key s. We have generated v from a random pseudo-key
3 so that 1/v, = 9f holds for j = 1,..., k. We cannot generate first a secret key
s to produce a pseudo-key § by squaring the components of s, as the components
3; arc, with probability 3/4, quadratic non-residucs. If we have v and s together

with 3, we can easily factor N.

5 Security of Ong-Schnorr signatures

We study the security of Ong-Schnorr signatures in the random oracle model
where the hash function h is replaced by a random oracle. This is widely be-
lieved to be the appropriate model for hash functions without cryptographic
weaknesses. This model has already been used in [FS86] and has been further
developed in [BR93]. In the random oracle model, the hash function A produces
for cach query (z, M) a random value h(z, M) € [0,25)%. If the same query is
repeated, the same answer must be given.

We consider the most powerful attacks: adaptive chosen-message attacks as
introduced by Goldwasser, Micali, Rivest [GMR&88]. The adversary, before at-
tempting to generate a new message-signature pair, uses the legitimate signer as
an oracle to sign messages of his choice.

The strength of the adaptive chosen-message attack gets somewhat diluted
by the random oracle assumption. The hash values h(z, M) are random in [0, 2")F
and independent for distinct pairs (2, M). The adversary cannot get anything
from signatures (e,y) that are produced according to the protocol. Such signa-
tures are random pairs in [0,2%)* x Z}. In the random oracle model, adaptive
chosen-message attacks are not stronger than no-message attacks, where the
attacker is merely given the public key.

For the next theorem, let /1f be an attacker which, given N and the public
key v, executes an adaptive chosen-message attack, where the oracle for the hash
function & is queried at most f times, f > 1. Firstly, Af,'u asks for signatures of
messages of his choice, and then attempts to produce a new messgae-signature
pair. Let TAM be its expected time and S,-K,- its success rate with v.

7‘“

Theorem 6. There is o probabilistic algorithm which, given the attacker Af
and N, generates a random v €p (ZR?')“, factorizes N with probability ot least
1/2 with respect to ils coin tosses, and runs in expected time O(f T /S/i,- )

Arv
provided that SA, o 9—kt+1

Compared to Theorem 3 there is an additional factor f both in the time
bound for factoring as well as in the minimal required success rate of A;. We
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explain below that the second factor f is necessary. The first factor f comes in
because the adversary cannot solicit a successful oracle query, one that results in
a valid signature. It is open whether the factor f in the time bound is necessary.
This is not a weakness of Ong-Schnorr signatures as this factor appears already
for Fiat-Shamir signatures, see Lemma 7 of [FS86]. This Lemma claims the time
bound O(T?2*") without giving a proof. We prove a stronger time bound for
general Ong-Schnorr signatures.

Proof. Depending on whether m > # or m < {, we mimic the factoring algo-
rithms corresponding to Theorems 3 and 5. We first give an informal argument
for the case m > t. )

The factoring algorithm picks random s, €p Zjy, sets 1/v; = s? for y =
1,...,k, and lets Ay execute his attack on the public key v. For the signatures
requested by A; it produces random pairs in [0,29)% x Z}. Suppose that Ay
queries the h-oracle about (x;, M;) lor 7 = L,..., f and outputs the message-
signature pair (M, e, y).

We can assume that (yQ’ Hiwj’,M) = (2;, M;) holds for some i < f, since
otherwise ¢ = h{y?' I1, v}, M) holds with probability 27*¢. If the adversary
produces z; := y2' HJ ’U:J for some preselected ¢ and y, the oracle returns the
preselected e with probability 2 *¥*. Each oracle query contributes at most 27+
to the success rate SAN,. Hence at least with probability Sfi,,v — f27% the
attacker Ay is able to produce two distinct pairs (e,y) and (e,¥) so that e # €
and y2' [1v = g2 I1, v = . For these pairs we have (.y/gj)? =[[» ",
and (y,7, e, €) has the same properties as the output of algorithm AL of Theorem
1. It yields the factorization of N with probability 1/2 as described in Theorem
3.

The formal factoring algorithm constructs the above mentioned pairs (e, y),

(&, 7) employing a version of algorithm AL of Theorem 1. It simulates Ay using
statistically independent oracles for A.

Factoring algorithm

1. Pick random s; €p Z3y, set 1/v; 1— .57)' foryj=1,...,kand uw:=0

2. Pick a random sequence of coin tosses RA for A;.

3. (first signing attempt) Simulate the adversary A; with v, RA.
For the message signature pairs requested by Af provide random signatures.
Let the adversary query the h-oracle about (z,;, M;) fori=1,..., f.

If A} fabricates a signature (e, y) satisfying yZ' H7. v;“ = x; for some 1

(in this case we call the pair (RA,e) successful with x;) then fix RA, i, z;,
M;, e, y, set u:= 4uf and go to step 4. Otherwise, increase u by 1 and go back
t0 step 2 undoing Af-’s computation.

4. (second signing attempt) Simulate the adversary A; with v, RA.
Let the oracle answer the first i — | queries the same way as in step 3.
Let it answer the other queries statistically independent from previous
oracle ontputs. (In particular, the oracle is repeatedly queried about the
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(wi, M;) of step 3 providing statistically independent replies e.)

If A; fabricates a second signature (e,7) satisfying 72 Il vy = 74
then go to step 5. Otherwise, set « 1= u — 1, if ¥ > 0 go back to step 4,
if u = 0 go back to step 2 (undoing the computation of /if in cither case).

e

5 Compute Y :=y/y, £ =max{t]e=emod 2'}, Z:= Hj 550_/ 51/2
(hence Y2 = 22"y,

6. Test whether {gcd()"f"' L

gt

N} = {p,q) holds for some ¢ < ¢.

Sketch of the analysis. On the average it takes 1/5 A, ANy passes of steps 2
and 3 to find 7, @;, M,, e, y. If Sj’ > f 27k the subsequent step 4 fabricates
a second signature (€, 7) with the same x; at least with probability i(l —2.7 4.

For this we note: with probability at least %, step 3 probes at least u > ]ESAT; .

many pairs (RA, e) and fixes some RA for which the fraction of successful pairs
(RA,E) is at least %S;l . In this case, at least a 2]75;: v-fracti()n of & succeeds
in step 4 with the z, of ’g’tep 3. Since step 4 probes at least QfSAM many random
€ it succeeds at least with probability ! — 2.7 !. (The additional factor f for
the number u of probes in step 4 compensates for the number of possibilitics
for successful querics. Only a second signature with the same 7, z, of the first
signature can possibly factor N.) Finally, steps 5 and 6 factorize N at least with
probability 1/2.

In case that m < ¢, the factoring algorithm generates, as in the proof of The-
orem b, the public key from a random pseudo-key s and factorizes N according
to Theorem 5. O

6 Ong-Schnorr ID is secure against active impersonation

Theorem 7 extends the reduction of Theorem 3 from passive to active ituperson-
ation attacks. Theorem & presents, for arbitrary moduli N =p-g with m <t, a
reduction from factoring to active impersonation attacks. The latter result ex-
tends and improves the reduction given by Shoup for the case of Blum integers
N. The efficiency of the reduction depends in an interesting way on the param-
eter m. While the reduction is quite eflicient for m close to ¢, it is less efficient
for Blum integers, where m = 1. This deficiency of Blum integers was not ap-
parent from Shoup’s proof. Shoup’s proof of security is not entirely constructive.
It requires a prior knowledge about the success rate of the adversary Ay, given
the knowledge from the f executions of the protocol (A, /ij‘). We eliminate this
a priori knowledge. In a way, Theorem 7 combines Shoup’s argument with the
proof of Lemma 4 [FFS88].

An active adversary, before the impersonation attempt, poses as B in a se-
quence of executions of the protocol (A4, B), asking A questions of his choice
without necessarily following the protocol of B. Then, he attempts to pose as 4
in the protocol (A, B). For short we let 4, denote an active adversary who asks
for f ID-proofs of A via (4, /if) and then attempts to impersonate A in protocol
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(A7, B). Let T';, . denote the total running time for f consecutive executions
of protocol (4, Ar), followed by protocol (A;, B). The success rate S4, . of As

refers to the coin tosses of .r’if, A, B in these [ + 1 protocol executions. We first
show that Theorcm 3 holds in case m >t for any active adversary Ay.

Theorem 7. There is a probabilistic algorithm, which given N and an active
adversary A;, generates o random public key v €g (Z’}‘ff)"', factorizes N with
probability at least 1/2 with respect to its coin tosses, and runs in expected time
O(Ts, /54, ) provided that S; > 27" and m > t.

Proof. The factoring algorithm picks s, € Z3, for i = 1,...,k and generates
the public key v as 1/v; = s:‘.f-f for j = 1,...,k. Using the private key s =
(s51,...,8k), the algorithm executes the protocol (A,/If) f-times providing to
/If the information necessary to impersonate 4 with success rate SAM,‘

A key observation is that the protocol (A, /if) is witness indistinguishable
and witness hiding in the sense of [FS90]. The protocol (A, Af), executed using
the secret key s, does not reveal to A, any information about which 2‘-root
s; of 1/v; has been used by A. The same distribution of data is given to Ay
in protocol (A4, /if), no matter which of the 2'-roots s; has been chosen by the
factoring algorithm. For this we note that in step 1 of protocol (A4, A¢), A sends
T = TQ’, a randam 2%-power in ’}‘\7)’ In step 3, A sendsy =7 - HJ 5?’ , a random
2!root of x/ H]. 1)j’ that is uniformly distributed among all possible 2 roots.
This uniform distribution is based on the random choice of r and is independent
of the 2%-roots s, of 1/v;.

Using the data transmitted within the f excecutions of protocol (A, Af), algo-
rithm AL of Theorem 1 produces an output (y.y, e, €) so that Y2 = 227 holds
for Y := y/y and 7 =[], sﬁvﬁ‘»;‘)/z'. The distribution of ¥ does not change
if s; is replaced by another 2'-root of the same 1/v;. This holds cven though
y, ¥ formally depend on s. On the other hand, 7 = H] 556’,6‘)/2‘
with the choice of the 2'-roots s;. Therefore the factoring method of Theo-
rem 3 remains intact. With probability at least 1/2, {ged(Y?" & ZQ"H,N)} =
{p,q} holds for some i with D < i < ¢. O

changes

Secure moduli. In view of Theorem 7, moduli N with m > t provide optimal
security against active impersonation attacks provided that NV is difficult to fac-
tor. This raises the question on how the difficulty of factoring a random integer
N depends on the parameter m. We are not aware of a factoring algorithm that
makes a relevant difference for small values of m, say for m < 10, the relevant
case for Ong-Schnorr 1D.

The previous reductions cannot be casily extended to the case of active ad-
versaries if m < t. At best, we can combine Lemma, 4 with the use of pseudo-keys
as in Theorem 5. The factoring method of Theorem 3 requires ¢ < m which in
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turn ncecessitates a large success rate: Si,. > 27%m_ Using a pseudo-key 3, we
can factorize NV with smaller success rates Si,

Suppose the psendo-key § satisfies 3 s "= = 1/v; for j = 1,....,k with m < m <t.
Using such a pseudo-key the factoring m(\thod works iff £ < t+m m. The draw-
back is that the factoring algorithm, without secret key, cannot easily simulate
the protocol (A, f'if) which is necessary to provide the information needed by the
adversary for an active impersonation attack. Following Shoup [Sh96], we can
simulate the protocol (4, A;) in zeroknowledge fashion by guessing the exam e
partly. It is sufficient to guess ¢ mod 2'~™ since the |27 'e, |-part of the exam
can be answered using the pseudo-key $. To guess ¢ mod 2™, we need on the
average 2°(*~™) many trials. This causes a time factor 2¥(=™) for the factoring
algorithm.

Theorem 8 presents a tradc-off in case of small m-values. We can either have
an additional time factor 25t~ for factoring N, or elsc a required success rate
Si, . thatis 28(m=m) times larger than the success rate required in case m > .

Theorem 8. There is a probabilistic algorithm which, given the active attacker
Af, N and m with m < m < t, generates a random public key v €g (Z}‘VQ')",
factorizes N with pmbabz’lz’tq at least 1/8, with respect Lo its coin tosses,and runs
in ezpected time Q2K /S, .) provided that S5 > Q- kttk(m—n)+2

This theorem contains the result of Shoup [Sh96] that active impersonation
attacks can be transformed in polynomial time into the factorization of a Blum
integer modulus N. If the success rate 53, . is at least 1/(log(N))¢ for some
constant ¢ > 0 and if we have a corresponding a priori lower bound for S o
we apply Theorem 8 with the maximal 1m satisfying 2-FtHh(m-—ml+2 o qAr .
With this m the time factor Zk(f ™) is polynomially bounded, and together with
a polynomial time adversary Ay, the factoring algorithm becomes polynomial
time. A priori knowledge of A’s success rate is not required since we can simply

guess the optimal 7, which increases the factoring time by the small factor m.

Proof. Factoring algorithm
1. Pick random §; €p ZZ},, set 1/v; := sf fory=1,...,kandu:=0
2. Pick a random sequence of coin tosses RA for A;.
To simulate f exccutions of (A, Ay) using 3, repeat steps 2.1, 2.2 f times.
2.1 PickregpZy, ¢ =(¢},... ’(j/“). €gr [0.287™)F and set x := 2 I, ’U:J.
2.2 Compute e € (0,2 following Ay.
If e # ¢ mod 2'=™ go back to step 2.1 undoing the computation of A;.
Otherwme set gy = r- H \“,,. el (An easy calculation shows that
y? H v =2z. The f lt@ldtl()nb of steps 2.1 and 2.2 provide to the
advelbdry Ay the information, needed for inpersonation attacks.)
3. (first impersonation attempt) Pick ¢ €4 [0,2")F and execute (A, B) with
exam e. If S5 (RA,e) =1 set u:= 4u and go to step 4.
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Otherwise set u := u + 1 and go back to step 2 undoing the computation
of /if.
4. (second impersonatiou attempt) Pick e €5 [0,2%)* and execute (Af, 1) with
exam é. If SAfw(RA,é) — 1 and e # &, compute the replies y, y of /if with e,
€ and go to step 5. Otherwise set v := v — 1, if u > 0 go back to step 4,
if w = 0 go back to step 2 (undoing the computation of Af in either case).
~ = ¢
5. Compute Y :=y/y, {:=max{i|e=cmod 2’} , Z =], Ng-t’_e’)ﬂ
(hence Y2' = 22",
6. Test whether {gcd(Y‘Z"" + 72 N} — {p,q} holds for some
+ < min(t,m + £).

Analysis. Each evaluation of SA, J(RA, e) requires f exccutions of protocol

(A, A;) followed by an execution of protocol (As, B). Here A is determined by
its sequence of coin tosses RA while A and B follow the protocol (A, B) with
independent coin flips.

The steps 2.1 and 2.2 simulate the protocol (4, Ay) in zeroknowledge fashion
using the pseudo-key 3. This is possible by partially guessing the exam e.

Step 3 counts the number u of probed pairs (RA, e) until a successful pair is
found. Then step 4 probes at most 4u pairs to find a second successful pair
(RA,€) for the same RA. Steps 2, 3, 4 are passed on the average at most
O(l/SAM) times. This follows from the argument set forth in Lemma 4 of
[FFS88).

In step 2.2, the equation e = ¢' mod 2!~ holds with probability 2%(t=™).
Guessing a correct e takes on the average 2/~™) many trials causing a time fac-
tor 2= Hence the algorithm runs in expected time O(Qk(t_m)TAM/S/if’v).

By the coustruction we have v =z Therefore, the factorization at-

tempt in step 6 succeeds with probability > 1/2 iff there exists ¢ with £4+m—m <
i < min(¢,m+ £€). This condition is satisfiable iff £ < t+m —m. By Lemma 4 and
since S/‘/w > 27 kiHkm—m)+2 the inequality ¢ < t +m — m holds at least with
probability > 1/4. Hence the factoring of N succeeds al least with probability
1/8.

The required lower bound on 55

. is nearly sharp, as the inequality SA! >
2—kt+k(ﬁz—m)

at v

is necessary for the condition £ < t +m — M. |

Patent note. No patent has been filed for the Ong-Schnorr scheme. This makes
it attractive to use instances of this scheme that do not fall under the FS- or the
GQ-patent.

Acknowlwedgement. The author thanks V. Shoup for pointing out an error
in a draft version and J.P. Seifert for his comments.
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Erratum

C.P. Schnorr: Security of 2:—Root Identification and Signatures,
Proceedings CRYPTO’96, Springer LNCS 1109, (1996), pp. 143-156
page 148, section 3, line 5 of the proof of Theorem 3.

Correction. The proposed factoring method

Check whether {ged(Y? + 22", N)} = {p, ¢} holds for some 7 with 0 <i < ¢

fails if Y2' = —2%™"" holds for some i with 0 < i < t, otherwise it factors N
with probability % In the first case continue the factoring algorithm as follows
until it factors N with probability %:

Supplemental steps to the factoring algorithm. Repeat the entire algo-
rithmn using independent coin flips and construct independent pairs (Y, Z) with
Y?' = 22 mod N until either of the following two cases arises.

Case I. Y?' # ~Z2" for all i with 0 < 4 < ¢ holds for some (Y, Z). Then termi-

nate as the proposed factoring method succeeds using Y, Z with probability
1

3

Case IL. Y2 = — 22" holds for two independent pairs (Y, Z),(Y’, Z’). Then
replace these pairs by (Yiew, Znew) With Yoew 1= YY', Zyow = Z2'. If
Y2 = — 22" holds for some inew then we have ine, < i, otherwise
terminate ( as the proposed factoring method succeeds using Yew, Znew With
probability £ ).
Continue the repetitions of the entire algorithm using idependent coin flips
and continue to decrease ¢ until the algorithm either terminates in Case I or
enters Case II with ¢ = 1. In the latter case the proposed factoring method
succeeds using Yiew, Znew With probability %, in particular {ged(Yiew *
Znew, N)} = {p,q} holds with probability 3.

With the supplemental steps the algorithm factorizes N with probability % The
supplemental steps increase the time bound for factoring by a factor O(£). The
correctness proof of the amended factoring method uses the following observation
We see from Y2' = 22" mod N that Z2°/Y is a 2'-root of 1mod N. This
root is not necessarily uniformly distributed over all 2'-roots of 1 mod N. But
it is uniformly distributed within certain cosets.

Fact. LetY = Y(Zzt) be a function of Z*' that solves Y2 = 22" mod N with
£ < t. Then Z%)Y takes the roots in co Rn(24)2 with equal probability for
all cg € Rn(2%), where Ry (2!) denotes the group of 2t-roots of 1 mod N and
Ry (252" € Rn(2Y) denotes the subgroup of 2¢-powers.

All subsequent factoring algorithms in the paper have to be amended in the
satne way.
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